

Maths Program of Study

Daffodil Preparatory School

Email: info@daffodilprepschool.org.uk
Website: www.daffodilprepschool.org.uk

Tel: 02070011411
161 Commercial Road
London, E1 2DA

TABLE OF CONTENTS

Intent 4
Implementation 5
Planning 5
Impact 5
NUMBER - Multiplication and division 7
Year 1 programme of study 7
Year 2 programme of study 7
Year 3 programme of study 7
Year 4 programme of study 7
Year 5 programme of study 8
Year 6 programme of study 8
NUMBER - Number and place value 10
Year 1 programme of study: 10
Year 2 programme of study: 10
Year 3 programme of study 10
Year 4 programme of study 10
Year 5 programme of study 11
Year 6 programme of study 11
ALGEBRA 12
NUMBER - Fractions 13
Year 1 programme of study 13
Year 2 programme of study 13
Year 3 programme of study 13
Year 4 programme of study: 13
Year 5 programme of study 14
Year 6 programme of study 14
RATIO AND PROPORTION 16
NUMBER - Addition and subtraction 17
Year 1 programme of study 17
Year 2 programme of study 17
Year 3 programme of study 17
Year 4 programme of study 18
Year 5 programme of study 18
Year 6 programme of study: 18
MEASUREMENT ,
19
19
Year 1 programme of study:
Year 1 programme of study:
19
19
 20
 20 20
Year 6 programme of study: 21
STATISTICSYear 1 programme of study.22
Year 2 programme of study: 22
Year 3 programme of study 22
Year 4 programme of study 22
Year 5 programme of study: 22
Year 6 programme of study: 22
GEOMETRY - Position and direction 23
 23
Year 4 programme opstidep: PRATORY SCHOOL 23
Year 5 programme of study 23
Year 6 programme of study: 23
GEOMETRY - Properties of shape 24
Year 1 programme of study: 24
Year 2 programme of study: 24
Year 3 programme of study: 24
Year 4 programme of study: 24
Year 5 programme of study: 25
Year 6 programme of study: 25

INTENT

Understanding and being able to use mathematics is a key life skill and vital to our pupil's future education and beyond. At UKCC the intent of Oqr mathematics curriculum is that all pupils leave Year 6 at least at securely expected standard with a significant percentage achieving beyond this level.

Fundamental to this is a solid understanding of concrete mathematical concepts gained in the Early Years before a move to more abstract mathematics pnoe the pupil is ready. The key to this is that all pupils take the nextitp in theineaning when they are ready to do so. This leads to very differentiated assorn where pupils are encountering concepts at their appropriate challenge level for the iadividual. Our orogression is provided, but not restricted by, the Abacus Maths scheme. This is based on the expectations of the National Curriculum. Once pupils have mastered the primary curricutum they work on a range of key stage 3 materials

We aim for all pupils to:

- become fluent in the fundamentals of mathematics-so that they develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- be able to solve problems by applyingtheir mathematics to a variety of problems with increasing sophistication, ingluding in unfarilia contexts and to model real-life scenarios
- reason mathematically by folfowing a ine of enquiry and develop and present a justification, argument or proffusing nathematica language.
- have an appreciation of number and number operations, which enables mental calculations and written procedures to be performed efficiently, fluently and accurately to be successful in mathematics.

IMPLEMENTATION

Planning

Planning is undertaken at two levels: planning sheet.

The planning is monitored by the mathscoordinator and senior management team. Cross-Curricular Links ए 다 Mathematics is taught mainly as a sep rate subjectionathematical links are planned and taught within project work, By doing this children see that maths is/not an isolated subject. Organisation and Methodology
Lessons generally follow a format consisting of a mental and oral starter (10-15mins), differentiated group activities (40 mins) and a plenary session (5 mins).

We recognise the importance of establishing a secure foundation in mental calculation and recall of number facts before standard written methods are introduced. We emphasise the use of vocabulary when planning to help determine the appropriate vocabulary to use in our teaching, and children are expected to use it in their verbal and written explanations.

We endeavour to set work that is challenging, motivating and encourages the pupils to talk about what they have been doing.
In K.S. 1 and K.S. 2 children are taught in ability groups. These groupings are flexible and children may be moved between groups following teacher/formal assessment. Parents should be informed of any such movement.

Impact

We believe that the use of formative and summative assessments is essential to monitor the progress of all pupils.

Assessment is carried out on three levels
Short-term assessments are a part of every lesson. Throughout each lesson formative assessment takes place and feedback is given to the children through marking and nextstep tasks to ensure they are meeting the specific learningobjective. The teacher then uses this assessment to influence their planning and ensure they are providing a mathematics curriculum that will allow each child to progress. Pettinent comments are occasionally recorded on short-term planning sheets.
Medium-term assessments are carried out following the completion of each Abacus Evolve textbook (approximately once a terne Aompy of these is to be added to the database. Long-term assessments (PUMA) arempried out atchree points during the school year when pupils' attainment is measured against school

All pupils from Year 2 to Year 6 carry out weekly table tests. Pupils from Year 1 to Year 6 carry out weekly mental tests, based on the strategy taught through the BEAM scheme and our mental maths progression document. Scores from these tests are be recorded in the teacher's mark book. \sum Nobis Nitendum Est \langle
Dafforedil

NUMBER - MULTIPLICATIONAND DIVISION

Pupils should be taught to
Year 1 programme of
solve one-step problems involving multiplication and division,
calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Year 2 programme

recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
 calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals $(=)$ signs show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

PREPARATORY SCHOOL

Year 3 programme of study:

recall and use multiplication and division facts for the 3,4 and 8 multiplication tables write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods solve problems, including missing number problems, involving multiplication and division, including integer scaling problems and correspondence problems in which n objects are connected to m objects.

Year 4 programme of study:

recall multiplication and division facts for multiplication tables up to 12×12
use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers recognise and use factor pairs and commutativity in mental calculations multiply two-digit and three-digit numbers by a one-digit number using formal written layout
solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as nobjects are connected to mobjects.

Year 5 programme of

 identify multiples and facto factors of two number solve problems involying nultiplication and decomposing them into their factorsknow and use the vocabulary of prinarumbers numbers.
establish whether a number up to 100 is prime and reeall prime numbers up to 19 multiply numbers up to 4 digits by a one-or two-digit number using a formal written method, including long multiplication for two-digit numbers multiply and divide numbers mentally drawing upon known facts divide numbers up to 4 digits by a one-digit number using the forma/written method of short division and interpret remainders appropriately for the context
multiply and divide whole numbers and thoseinvolving decimats by 10, 100 and 1000 recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
solve problems involving aadewinhsubtaction, Rulliphiétidnlamanlision and a combination of these, including understanding the meaning of the equals sign solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

Year 6 programme of study:

multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context perform mental calculations, including with mixed operationsand large numbers.
identify common factors, common multiples and prime numbers
use their knowledge of the order of operations to carry out calculations involving the four operations
solve problems involving addition, subtraction, multiplication and division
use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.

NUMBER - NUMBER AND PLACE VALUE

Pupils should be taught to:
Year 1 programme of study:
count to and across jo0, forwards and backwarde, eatinning with o of 1, or from any given
number
count, read and write numbers to 100 in numerals; count in multion of of twos, fives and tens given a number, identify one more and one less identify and represent numbers mingonjects and pictorial representations jncluding the number line, and use the language of equal to, more tharg less than (fewer), most, least read and write numbers from 1 to 20 in numer

Year 2 programme of study:

count in steps of 2, 3, and 5 from 0 , and-in tens from any number, forward or backward recognise the place value of each digit in a two-digit number (tens, ones)
identify, represent and estimate numbers using different representations, including the number line

compare and order numbers from0 up tor 100 use $<>$ and $=$ signs
read and write numbers to at least 100 in numerals and in words use place value and nupherfacts/ATRglippohtents.SCHOOL

Year 3 programme of study:

count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number.
recognise the place value of each digit in a three-digit number (hundreds, tens, ones)
compare and order numbers up to 1000.
identify, represent and estimate numbers using different representations.
read and write numbers up to 1000 in numerals and in words.
solve number problems and practical problems involving these ideas.

Year 4 programme of study:

count in multiples of $6,7,9,25$ and 1000
find 1000 more or less than a given number
count backwards through zero to include negative numbers
recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)
order and compare numbers beyond 1000
identify, represent and estimate numbers using different representations
round any number to the nearest 10,100 or 1000
solve number and practical problems that involve all the-above and with increasingly large positive numbers
read Roman numerals to 100 (I to C) and-know thatove time, the numeral system changed to include the concept of Zero and place value.

Year 5 programme of study: 2 ?

 read, write, order and compare numbers to at leasty 00.0000 and determine the value of each digit count forwards or backwards in steps of powers of 10 for any given number up to 1000000 interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers through zero round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000 Nobis Nitendum Est ζsolve number problems and practical problems that involve all of the above read Roman numerals to $1000(\mathrm{M})$ and recognise years writterin Roman numerals. Year 6 programme of study,
 digit
round any whole number to a required degree of accuracy use negative numbers in context, and calculate intervals across zero solve number and practical problems that involve all of the above.

ALGEBRA

express missing number problems algebraically use simple formulae expressed in words generate and describe linear number sequences find pairs of numbers that satisfy numbersenten es molving two unkhowns

NUMBER - FRACTIONS

Year 3 programme of sfudy:

count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10
recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators recognise and use fractions as numbersi unit fractions and non-unit fractions with small denominators actions as numbers:unit fractions and mon-unit fractions with small recognise and show, usingdiagtansequivatent fractions with small denominators add and subtract fractions with the same denominator within one whole (e.g. 5/7 + 1/7 = 6/7) compare and order unit fractions, and fractions with the same denominators solve problems that involve all of the above.

Year 4 programme of study:

recognise and show, using diagrams, families of common equivalent fractions count up and down in hundredths; recognise that hundredths arise when dividing an object by a hundred and dividing tenths by ten.
solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number add and subtract fractions with the same denominator
recognise and write decimal equivalents of any number of tenths or hundredths recognise and write decimal equivalents to $1 / 4 ; 1 / 2 ; 3 / 4$ find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as units, tenths and hundredths round decimals with one decimal place to the nearest whole number
compare numbers with the same number of decimal places up to two decimal places solve simple measure and money problems involving fractions and decimals to two decimal places.
Year 5 programme of study:
compare and order fractions whose denominatorsafegmultiples of the same number identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths recognise mixed numbers and improper ractionsandronvert from one form to the other and write mathematical statements, has a mixednamber (e.g. $2 / 5+4 / 5=6 / 5=11 / 5$) add and subtract fractions with the sache denominâtor and multiples of the same number multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams read and write decimal numbers as fractions (e.g. $0.71=71 / 100$)
recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
round decimals with two decimal places to the nearest whole number and to one decimal place
read, write, order and compare numbers with up to three decimal places
solve problems involving numberupipothree decimal places. recognise the per cent symber (\%)ARATUTlerstand thetpertentrelates to "number of parts per hundred", and write percentages as a fraction with denominator hundred, and as a decimal fraction
solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5$, $2 / 5,4 / 5$ and those with a denominator of a multiple of 10 or 25 .

Year 6 programme of study:

use common factors to simplify fractions; use common multiples to express fractions in the same denomination
compare and order fractions, including fractions >1
add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. $1 / 4 \times$ $1 / 2=1 / 8$) divide proper fractions by whole numbers (e.g. $1 / 3 \div 2=1 / 6$) associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. 3/8)
identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimat places multiply one-digit numbers with up to two decimal places by whole numbers use written division methods in cases where the answe has up to two decimal places solve problems which require answers to be roundedto specified degrees of accuracy recall and use equivalences between simple fractions, gecimals and percentages, including in different contexts.

RATIO AND PROPORTION

solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
solve problems involving the calculation of percentages (e.g. of measures) such as 15% of 360 and the use of percentages for comparison solve problems involving/similar shapes where the scale factor is known or can be found solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.

NUMBER - ADDITION AND SUBTRACTION

Pupils should be taught to
Year 1 programme of
read, write and interpret mathematical statements invelving addition (+), subtraction (-) and equals (=) signs represent and use number bonds and related subtraction facts within 20 add and subtract one-digit and two-digthembers to-20,ine solve one-step problems that invaue addition and subtraction, using concrete objects and pictorial representations, and missingumber

Year 2 programme of study:

solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods
recall and use additionand subtraction facts to 20 fluently, and derive and use related facts up to 100
add and subtract numbers using conceterobjects, pictorial representations, and mentally, including:

Daffodit

 a two-digit number and presePARATORY SCHOOLa two-digit number and tens
two two-digit numbers

adding three one-digit numbers

show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems

Year 3 programme of study:

add and subtract numbers mentally, including:
a three-digit number and ones
a three-digit number and tens a three-digit number and hundreds
add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
estimate the answer to a calculation and use inverse operations to check answers
solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.
Year 4 programme ofstudy:
add and subtract numbers with up to 4 digits using the topmal written methods of columnar addition and subtraction where appropriate estimate and use inverse operations to check answers to a calculation solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Year 5 programme

add and subtract whole humbers with more methods (columnar addition and subtraction)
add and subtract numbers mentally with increasingly large numbers
use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

solve addition and subtraction multi-step-problems in contexts, deciding which operations and methods to use and why.

Year 6 programmeqN durdy:RATORY SCHOOL

perform mental calculations, including with mixed operations and large numbers.
solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.

MEASUREMENT

recognise and know the value of different denominations of coins and notes sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening recognise and use language relating to dates, including dayson the week, weeks, months and years tell the time to the hour and half past the hour and draw the hands on a clock face to show these times. PREPARATORY SCHOOL

Year 2 programme of study:

choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature $\left({ }^{\circ} \mathrm{C}\right.$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels compare and order lengths, mass, volume/capacity and record the results using >, < and = recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value
find different combinations of coins that equal the same amounts of money solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change compare and sequence intervals of time
tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.

Year 3 programme of study:

measure, compare, add and subtract: lengths $(\mathrm{m} / \mathrm{cm} / \mathrm{mm})$; mass $(\mathrm{kg} / \mathrm{g})$; volume/capacity (l/ml) measure the perimeter of simple 2-D shapes add and subtract amdunts of money tell and write the time from an analogue elock, including using Roman numerals from I to XII, and 12-hour and 2 estimate and read time with increasing accuracy to the nearest minute record and compare time in terms of seconds, minutê) morning, afternoon, noon and midrigी? know the number of seconds in a minute and the number of daysin each month, year and leap year compare durations of events, forexample to calculate the time taken by particular events or tasks.

Year 4 programme of study:is Nitendum Est

Convert between different units of measure (e.g. kilometre to metre; hour to minute) measure and calculate the perimeter of arectilinear figure(inclueling squares) in centimetres
and metres
find the area of rectilinear shapes by counting squares
estimate, compare and calculate diferent measures, Including money in pounds and pence and metres find the area of rectilinear shapes by counting sguares estimate, compare and calcutate different measures, Including money in pounds and pence read, write and convert time between analogue and digital 12 and 24-hour clocks solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.

Year 5 programme of study:

convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) understand and use equivalences between metric units and common imperial units such as inches, pounds and pints
measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres
calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes estimate volume (e.g. using 1 cm 3 blocks to build cubes and cuboids) and capacity (e.g. using water)
solve problems involving converting between units of time
use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.

Year 6 programme of solve problems involving the calculation ahd conersion of units of measure, using decimal notation up to three decimal places where appropriate
use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller anitof measure to decimal notation to up to three decmal thaces convert between miles and kilometress recognise that shapes with the same areas can have different perimeters and vice versa recognise when it is possible to use formulae for area and volume of shapes calculate the area of parallelograms and triangles calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm 3) and cubic metres (m3), and extending to other units such as mm3 and km3.

Daffodil

STATISTICS

Pupils should be taught to

interpret and construct simple pictograms, tally charts, block diagrams and simple tables ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity ask and answer questions about topalyig and

Year 3 programme of study:

interpret and present data using bar charts, pictograms and tables
solve one-step and two-step questions such as 'How many more?' and 'How many fewer?' using information presented in scaled barcharts and pictograms and tables.

Year 4 programme of study:

interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs
solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and pthergrapRATORY SCHOOL

Year 5 programme of study:

solve comparison, sum and difference problems using information presented in a line graph complete, read and interpret information in tables, including timetables.

Year 6 programme of study:

interpret and construct pie charts and line graphs and use these to solve problems calculate and interpret the mean as an average.

GEOMETRY - POSITION AND DIRECTION

Pupils should be taught to:

Year 1 programme of describe position, diréctions

Year 2 programme of study: order and arrange combinations of use mathematical vocabulary

movement including distinguishing between rotation as Qurn and in temight angles for quarter, half and three- quarter turns (clockwise and anti-clockwise), and movement in a straight line.

Year 3 programme of sfudy:

Year 4 programme of study:
describe positions on a 2-D grid as coordinates in the first quadrant
describe movements between positions as translations of a given unit to the left/right and up/down
plot specified points and draw sides to complete argenpolygōn.

Year 5 programmepq study:RATORY SCHOOL

identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.

Year 6 programme of study:

describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes.

GEOMETRY - PROPERTIES OF SHAPE

Year 2 programme of stud Dis^{2}

 identify and describe the propertiesof 2-D shapes, inellding the number of sides and symmetry in a vertical lineidentify and describe the properties of 3-D shapes, including the number of edges, vertices and faces
identify 2-D shapes on the surface of 3-D shapes, for example a circle on a cylinder and a triangle on a pyramid
 Year 3 programme of study:
draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations pnkdescribe themTORY SCHOOL recognise that angles are a property of shape or a description of a turn identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle
identify horizontal and vertical lines and pairs of perpendicular and parallel lines.

Year 4 programme of study:

compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes
identify acute and obtuse angles and compare and order angles up to two right angles by size
identify lines of symmetry in 2-D shapes presented in different orientations complete a simple symmetric figure with respect to a specific line of symmetry.

Year 5 programme of study:

identify 3-D shapes, including cubes and other cuboids, from 2-D representations know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles draw given angles, and measure them in degrees identify: angles at a point and one whole turn (total 360o) angles at a point on a straight line and $1 / 2$ a turn (total 1800) other multiples of 900 use the popprifs of rectanglesto deduce related facts and find missing lengths and angle distinguish between regular and irregular polygons based on reasoning about equal sides and angles.

Year 6 programme of study:

draw 2-D shapes using given-dimensions and angles recognise, describe and build simple 3-D shapes, including making nets compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quad filaterals, and regular polygons
illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius recognise angles where they meet at a'point, are on a straight line, or are vertically opposite, and find missing angles.

