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Abstract We isolated and characterized 17 tetranucleo-
tide microsatellite loci in the American alligator, Alligator
mississippiensis. Loci were screened across 27 individuals
from one population and shown to be polymorphic with the
number of alleles per locus ranging from 2 to 12. Poly-
morphic information content ranged from 0.2 to 0.85, and
observed heterozygosity ranged from 0.185 to 0.889. One
locus showed significant deviation from Hardy—Weinberg
equilibrium, and one pair of loci showed evidence of
linkage.
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American alligators (Alligator mississippiensis) are of
ecological and commercial importance throughout their
range in the southeastern United States. After having
declined severely in the 1960s due to unsustainable harvest
practices, their populations have largely rebounded due
to improved management. However, on-going research is
critical to developing conservation strategies focused at
the appropriate spatial scale. Central to this endeavor is
determination of population genetic structuring both within
habitats and across the species’ range (Davis et al. 2001a,
b; Ryberg et al. 2002). Highly variable microsatellites can
provide detailed insights into many facets of population
biology, individual dispersal, and genetic neighborhood
sizes.

Most microsatellite markers in American alligators
reported to date contain dinucleotide repeat motifs (Glenn
et al. 1998; Davis et al. 2002). Generally speaking, such
loci are stutter-prone (i.e., Taq error causes slippage during
amplification), such that discrimination between some
heterozygous versus homozygous genotypes, and determi-
nation of absolute allele sizes, can be difficult (DeWoody
et al. 2006). These scoring errors can also lead to problems
with dataset continuity among years for long-term projects.
Here we report the development of tetranucleotide micro-
satellite loci. This marker set contributes additional
resolving power for studies concerned with parentage
analysis and population structure. Here we describe 14
previously unreported markers, and present complete
information for the three new markers reported in Lance
et al. (2009).
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Table 1 continued

H, Hg PIC

Size

Clone N k

size
(bp)
213

Dye  Repeat(s) T.

GenBank
accession

number

Primer sequence 5’ — 3/

Locus

range

(bp)
4 213-229 0.519 0.599 0.543

in cloned
allele

HEX (AAGG)5 TD55 27

JQO82119

Ami 246 U CTA GCC AAA AAT GTC TTA AT

Ami 246 L

CAGTCGGGCGTCATC AAA GCA GAA TAA ACC CTA GA

4 202-214 0.741 0.654 0.572

HEX (ATCC)11 TD60 200 27

JQO082120

Ami 247U  CAGTCGGGCGTCATCA TGG CTC GTT GTC TAC ATA CT

Ami 247 L

ATA GTG TGG GCT GTT TTT TA

Sequences that introduce sites for the universal fluorescent primer are italicized. Underlined bases are shared between the universal and locus-specific primer. ‘Dye’ refers to the fluorescent dye

used for genotyping. Repeats in cloned Allele describe microsatellite characteristics. T, corresponds to highest annealing temperature in the touchdown PCR profile (LN indicates longer
extension time). Clone size is the size of the cloned allele. N is number of individuals genotyped. k is observed number of alleles. Size range indicates the observed distribution of alleles per

locus. H, and H, are observed and expected heterozygosity, respectively, and PIC is polymorphic information content

* Significant deviation from Hardy—Weinberg equilibrium after sequential Bonferroni correction

 Loci in significant linkage disequilibrium after sequential Bonferroni correction

Genomic DNA was extracted from blood drawn from an
alligator from Rockefeller Wildlife Refuge, Louisiana,
using a proteinase K digestion. Following Glenn and
Schable (2005), DNA was serially enriched twice for
microsatellites using three probe mixes (mix 2 = (AG);,,
(TG)12, (AAC)g, (AAG)s, (AAT) 2, (ACT) 2, (ATC)g; mix
3 = (AAAQ)s, (AAAG)s, (AATC)g, (AATG)s, (ACAG)g,
(ACCT)s, (ACTC)g, (ACTG)s; mix 4 = (AAAT)s, (AA
CT)s, (AAGT)g, (ACAT)g, (AGAT)g). Briefly, DNA was
digested with Rsal (New England Biolabs) and simulta-
neously ligated to double-stranded SuperSNX linkers
(SuperSNX24 Forward 5-GTTTAAGGCCTAGCTAGCA
GCAGAATC and SuperSNX24 Reverse 5-GATTCTG
CTAGCTAGGCCTTAAACAAAA). Linker-ligated DNA
was denatured and hybridized to biotinylated microsatellite
oligonucleotide mixes, and then captured on magnetic
streptavidin beads (Dynal). After discarding unhybridized
DNA, remaining DNA was eluted from the beads, ampli-
fied in polymerase chain reactions (PCR) using the forward
SuperSNX24 primer, and cloned with TOPO-TA Cloning
Kits (Invitrogen). Clones with inserts were sequenced
with M13 forward and reverse primers using the BigDye
Terminators v3.1 (Applied Biosystems) on an ABI-377-96
sequencer. Sequences were assembled and edited in
Sequencer v4.1 (Genecodes) and exported to Ephemeris
v1.0 for microsatellite searching. Primers were designed
using Oligo v6.67 (Molecular Biology Insights). A 5
modification was added to one primer in each pair (CAG
tag 5-CAGTCGGGCGTCATCA-3’) to allow use of a 3rd
fluorescently labeled primer (CAG tag) in PCR.

Forty-eight primer pairs were tested using DNA from
seven alligators from Rockefeller. Amplifications were
performed in 12.5 pl volumes (10 mM Tris pH 8.4, 50 mM
KCl, 25.0 pg/ml bovine serum albumin, 0.4 uM unlabeled
primer, 0.08 uM tag-labeled primer, 0.36 uM universal
dye-labeled primer, 2 mM MgCl,, 0.15 mM dNTPs, 0.5
units JumpStart Tag DNA Polymerase (Sigma), and
2040 ng DNA) using an ABI thermal cycler. Touchdown
thermal cycling programs (Don et al. 1991) encompassing
a 10°C span of annealing temperatures ranging between
65-55, 60-50 or 55-45°C were used (see Table 1). Cycling
parameters were 21 cycles of 96°C for 20 s, highest
annealing temperature (decreased 0.5°C per cycle) for 20 s,
and 72°C for 30 s; and 15 cycles of 96°C for 20 s, lowest
annealing temperature for 20s, and 72°C for 30 s.
Amplicons were run on an ABI-3130x1 sequencer and sized
with Naurox size standard prepared as in DeWoody et al.
(2004), except that unlabeled primers started with GTTT.
Results were analyzed using GeneMapper v4.0 (Applied
Biosystems). Seventeen primer pairs amplified high quality
products that showed polymorphism.

We further assessed variability of these loci in a popu-
lation sample of 27 alligators from the Joseph W. Jones
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Ecological Research Center, Newton, Georgia. Conditions
and characteristics of the 17 loci are given in Table 1. We
estimated number of alleles per locus (k), observed and
expected heterozygosity (H, and H.) and Polymorphic
Information Content (PIC) using CERVUS v3.0 (Marshall
et al. 1998). We tested for null alleles in MicroChecker
v2.2.3 (van Oosterhout et al. 2004) and found no evidence
for them. Deviations from Hardy—Weinberg equilibrium
(HWE) and linkage equilibrium were assessed using
GENEPOP v4.1 (Rousset 2008). One locus, Ami244,
showed significant deviation from HWE after sequential
Bonferroni correction (P = 0.002). After sequential Bon-
ferroni correction, one of the 136 possible locus pairs
showed non-random association of alleles (Ami 235 and
Ami 243; P < 0.001). Taken together, this new set of
microsatellite loci expands the ‘molecular toolbox’ avail-
able to conservation biologists for generating management-
relevant information for A. mississippiensis. To this end,
we are using these loci to examine fine-scale population
structure and landscape-level barriers to dispersal in one
portion of the species’ range.
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