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Abstract

Landscape genetics is a burgeoning field of interest that focuses on how site-specific

factors influence the distribution of genetic variation and the genetic connectivity of

individuals and populations. In this manuscript, we focus on two methodological

extensions for landscape genetic analyses: the use of conditional genetic distance (cGD)

derived from population networks and the utility of extracting potentially confounding

effects caused by correlations between phylogeographic history and contemporary

ecological factors. Individual-based simulations show that when describing the spatial

distribution of genetic variation, cGD consistently outperforms the traditional genetic

distance measure of linearized FST under both 1- and 2-dimensional stepping stone

models and Cavalli-Sforza and Edward’s chord distance Dc in 1-dimensional landscapes.

To show how to identify and extract the effects of phylogeographic history prior to

embarking on landscape genetic analyses, we use nuclear genotypic data from the

Sonoran desert succulent Euphorbia lomelii (Euphrobiaceae), for which a detailed

phylogeographic history has previously been determined. For E. lomelii, removing the

effect of phylogeographic history significantly influences our ability to infer both the

identity and the relative importance of spatial and bio-climatic variables in subsequent

landscape genetic analyses. We close by discussing the utility of cGD in landscape

genetic analyses.
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Introduction

The goal of landscape genetics is to infer how micro-

evolutionary forces operating within and among natu-

ral populations are influenced by details of the current

environmental context in which they occur. While the

integration of landscape ecology and inter-individual

relatedness is a fundamentally new endeavour (Manel

et al. 2003; Storfer et al. 2007), understanding the

mechanisms by which intervening landscape features

influence the genetic connectivity of populations has
nce: Rodney J. Dyer, PhD, Fax: 01 804 828 0503;

r@vcu.edu
been a topic of interest for some time (e.g. Spielman &

Smouse 1976; Sokal et al. 1991; Taylor et al. 1993; Baer

1998). In studying the processes that affect inter-popu-

lation genetic connectivity, neutral markers are the

genetic data of choice. These data sets have been use-

ful for investigating the relative influence that ecologi-

cal and spatial variables, either separately or in

combination, have on estimates of genetic differentia-

tion (or realized gene flow). For example, in combina-

tion with spatial proximity, biotic and abiotic

landscape features such as management history (Holz-

hauer et al. 2006), forest configuration (Cushman et al.

2006) and ecological distance (Geffen et al. 2004) have

all been shown to influence genetic covariance among
� 2010 Blackwell Publishing Ltd
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populations. Insights from neutral genetic markers into

how permeable contemporary landscape features are to

migration and gene flow also have diverse applications

in conservation biology. These include the identifica-

tion of key dispersal corridors linking fragmented

native habitats (Peakall et al. 2003; Epps et al. 2007)

and routes or mechanisms of invasion by exotic species

(Estoup et al. 2004), as well as distinguishing the

effects of metapopulation processes from bottleneck-

induced divergence in fragmented landscapes (Zellmer

& Knowles 2009).

As a field, landscape genetics has seen rapid method-

ological progress on two fronts: the formulation of pre-

dictive landscape resistance hypotheses and distance

metrics (e.g. Cushman et al. 2006; McRae 2006; Wang

et al. 2008) and the development of statistical methods

linking genetic and landscape data (Murphy et al. 2008;

Balkenhol et al. 2009; Cushman & Landguth 2010). In

this study, we focus on two methodological issues rele-

vant to the predictive power of landscape genetic mod-

els: the selection of a genetic distance metric when

dealing with data sets based upon populations and the

inclusion of scale-appropriate historical demographic

hypotheses. Using individual-based stochastic simula-

tions, we examine the relative performance of a genetic

distance metric based on the principle of conditional

independence derived from Population Graphs (Dyer &

Nason 2004) in relation to both linearized FST and Cav-

alli-Sforza & Edwards (1967) chord distance Dc under

1- and 2-dimensional stepping stone models of isolation

by distance (IBD). These simulated data were analysed

using multiple regression on distance matrices (MRDM;

after Legendre et al. 1994). We then examine an empiri-

cal data set from the Sonoran Desert endemic plant

Euphorbia lomelii V.W. Steinm (Euphorbiaceae), a species

for which we have a detailed description of deep-time

and post-Pleistocene phylogeographic history across the

entire species range (Garrick et al. 2009). We show that

incorporating phylogeographic information in land-

scape genetic models can improve the inference con-

cerning the identity and relative importance of spatial

and ecological factors acting on genetic connectivity.

Finally, we show how estimated genetic covariance can

be mapped back onto the landscape to facilitate the

development of subsequent, and more specific, land-

scape genetic hypotheses and analyses.
The case for conditional genetic distance

A classic paradigm for relating gene flow to the spatial

separation of populations is that of IBD (Wright 1943,

1946). Under this model, if dispersal is limited relative

to the geographic distance between populations then a

general increase in genetic differentiation will be associ-
� 2010 Blackwell Publishing Ltd
ated with increasing inter-population distance. Most

traditional approaches for identifying IBD are based on

genetic distances calculated in a pairwise manner for all

population pairs. Often, transformations are applied

(e.g. Slatkin 1993; Rousset 1997) so that the resulting

genetic distance has an expected linear relationship

with spatial distance under homogeneous 1- or 2-

dimensional stepping stone models of migration.

Genetic distances are then regressed on spatial dis-

tances representing different models of inter-population

connectivity. While innumerable studies have success-

fully investigated the process of IBD using this

approach, tests based on pairwise genetic distance,

including FST (and its relatives) and Dc, nevertheless

suffer from at least two potential problems that may

limit their power and accuracy for landscape genetic

inferences.

First, in stepping stone models of IBD (Kimura &

Weiss 1964), gene flow between distant populations is

likely to involve intervening populations and, in reality,

is probably often far more complicated than simple

stepping stone frameworks. Indeed, the field of land-

scape genetics specifically focuses on how landscape

heterogeneity influences ongoing gene flow, and so only

in the simplest systems will genetic distances calculated

for pairs of populations independently of all others

directly reflect gene movement. In contrast, a genetic

distance metric that simultaneously takes the genetic

covariance of all populations into account may provide

a more sensitive measure for understanding how gene

flow interacts with spatial and ecological landscape

variables. In this manuscript, we argue that the sensitiv-

ity of analyses linking gene flow to these variables will

be improved if pairwise genetic distances are condi-

tioned on the multilocus genetic characteristics of the

full set of sample populations.

A second issue potentially limiting the utility of pair-

wise genetic distance for landscape genetic analysis is

that the theoretical relationship between genetic dis-

tance (including linearized FST) and the spatial separa-

tion of populations is linear only when gene flow across

the landscape is a homogeneous function of spatial dis-

tance. This assumed homogeneity conflicts with a basic

tenet of landscape genetics that the movement of

migrants is influenced by ecological variables (e.g. suit-

able habitat, dispersal corridors, topography) whose

spatial distributions are decidedly heterogeneous. While

significant correlations between pairwise genetic dis-

tance and spatial distance are nevertheless observed,

the predictive power of the spatial distance metric (and

consequently other ecological predictor variables in the

model) may be enhanced if the genetic distance

between population pairs is estimated conditional upon

the entire network of populations.
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Not previously used in a landscape genetic context is

conditional genetic distance (cGD or graph distance), a

component of Population Graphs (Dyer & Nason 2004).

A Population Graph is a network modelled from the

conditional genetic covariance structure among popula-

tions analysed simultaneously. Population pairs

exchanging migrants will exhibit significant conditional

covariance and will be connected in the network by

edges whose length is inversely proportional to the

genetic covariance between the populations. Con-

versely, populations not directly exchanging migrants

are likely to exhibit conditional independence and are

not connected to each other in the network by edges, as

the absence of direct gene flow allows them to proceed

on evolutionary trajectories that are independent given

the set of intervening populations through which they

exchange migrants. Across the entire Population Graph,

cGD is estimated as the length of the shortest (geodesic)

path connecting pairs of populations. Relative to tradi-

tional measures of pairwise genetic distance, including

FST and Dc, cGD is expected to be more sensitive as it

is calculated based upon the differences in genetic

covariation associated with both direct and indirect con-

nectivity (gene flow) among populations, making it

potentially better suited for use in landscape genetic

modelling.
The case for scale-appropriate historical
demographic hypotheses

Landscape genetic studies have focused primarily on spa-

tial and ecological variables influencing migration and

gene flow. However, when inference is based on popula-

tion-level data (cf. individual-based assignment tests),

genetic differentiation reflects both historical and contem-

porary patterns of genetic connectivity and so variables

reflecting historical demography too may offer substan-

tial predictive power. For example, in Pinus flexilis, Latta

& Mitton (1997) showed a high degree of divergence

among populations measured by mtDNA and RAPD

markers. However, additional genetic information from

allozymes and cpDNA markers based upon a larger sam-

ple of populations suggested that the populations on the

east and west slopes of the Rocky Mountains may have

been colonized from separate sources, with the moun-

tains themselves acting as an historical source of vicari-

ance. It just happened that the sampled populations

straddled a zone of secondary contact, which was the

underlying cause of genetic disequilibrium, and so it was

coincidental that the observed differentiation was also

arrayed along an ecological gradient.

In addition to illuminating the role of deeper-time

processes influencing genetic connectivity, Latta and

Mitton’s study underscores two perhaps unappreci-
ated benefits of incorporating information on historical

demography in landscape genetic studies conducted

at large spatial scales. First, when independent geo-

logical, paleoclimatic or paleoecological data indicate

that biogeographical processes such as vicariance and

range expansion have influenced past gene flow, their

inclusion as predictor variables can only enhance the

precision of landscape genetic models (e.g. Latta 2006;

Sork & Smouse 2006). Here, the term precision is

used in a statistical context, meaning that models that

have taken into consideration these historical pro-

cesses will provide more accurate landscape genetic

inferences. Second, inferences about the effects of

specific spatial or ecological variables on genetic con-

nectivity can be more accurate when they are condi-

tioned on historical demographic factors. If ecological

and historical effects are independent, then inclusion

of historical variables in landscape genetic models

should have no effect on the correlation between the

ecological variables and the genetic response variable.

If, in contrast, the effects of ecological and historical

factors are themselves correlated, then we need to ask

how much of the correlation between ecology and

genetic connectivity remains after accounting for his-

tory. Failure to do so is likely to result in spurious

inference as to the influence of contemporary ecologi-

cal factors on gene flow.
Methods

Simulations models: pairwise Fst and Dc vs.
conditional graph distance

To determine the relative statistical resolution of differ-

ent genetic distance metrics for quantifying among-pop-

ulation structure for landscape genetic purposes, we

performed a battery of individual-based Monte Carlo

simulations following Dyer (2007). During each simula-

tion, three population pairwise genetic distances were

estimated: (i) Rousset’s (1997) linearized FST,

(FST ⁄ (1 ) FST); hereafter denoted simply as FST), a com-

mon metric for landscape genetic analyses, (ii) Cavalli-

Sforza & Edwards (1967) chord distance, Dc, which has

been shown to perform well with microsatellite data

(Nei et al. 1983; Takezaki & Nei 1996, 2008), and (iii)

conditional genetic distance (cGD). Because cGD is less

well known than FST and Dc, and a focus of this study,

we briefly summarize Dyer & Nason (2004) in describ-

ing how a Population Graph is obtained and how cGD

is calculated from it.

In constructing a Population Graph, the genetic data

are initially represented geometrically (following

Smouse et al. 1982) with each independent allele repre-

senting an orthogonal axis in multivariate genetic space.
� 2010 Blackwell Publishing Ltd
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Each individual’s multilocus genotype maps to a point

in this space, with a population represented by its geo-

metrical mean (or centroid) over individuals. Within

this framework, matrices of squared Euclidean dis-

tances among individuals, both within populations and

among populations, can be obtained in the normal man-

ner. The matrix of squared inter-population distances is

transformed into a matrix of inter-population covari-

ances (following Gower 1966; see also Smouse & Peak-

all 1999), with the diagonal elements subsequently

replaced with intra-population variances calculated

from the within-population distance matrices (following

Excoffier et al. 1992). Utilizing graphical modelling

methods (Whittaker 1990; Edwards 2000), this genetic

variance-covariance matrix among populations is

inverted and standardized to obtain a partial correlation

matrix, with the significance of individual partial corre-

lations determined using the simultaneous testing pro-

cedure described in Dyer & Nason (2004). If the partial

correlation between populations i and j is significantly

greater than expected by chance, then an edge is placed

between vertices i and j. A Population Graph is con-

structed by applying this procedure to all possible pop-

ulation pairs, and it is from such a graphical model of

population genetic structure that cGD is obtained as the

shortest path between population pairs.

To evaluate the strength of genetic signal provided

by FST, Dc and cGD, we simulated populations using

the software EASYPOP (version 2.01; Balloux 2001) with

the following parameters. Individuals were arrayed into

populations of size 100. We specifically modelled her-

maphroditic individuals, as is common in plants, but

the results apply generally to any breeding system.

Representative of microsatellite studies, each individual

was randomly assigned diploid genotypes for 12 inde-

pendently assorting loci, each of which could have up

to 20 separate allelic states. All loci were allowed to

mutate at a rate of l = 0.0001 under a single step muta-

tion model. Populations were subject to 1-dimensional

(1DSS) and a 2-dimensional (2DSS) stepping stone mod-

els of gene migration. In the 1DSS model, 36 popula-

tions were simulated, whereas in the 2DSS model 100

populations were simulated in a square lattice, although

only the central 36 populations were analysed. Migra-

tion was symmetric with m = 0.05. Multilocus geno-

types from 20 random individuals per population were

sampled at 250, 500, 1000, 1500, 2000 and 2500 genera-

tions, and then pairwise FST (after Weir & Cockerham

1984), Dc, and cGD were simultaneously estimated from

the same data sets.

Currently, there are several analytical approaches that

could be used for landscape genetic analysis, many of

which were recently reviewed in Balkenhol et al. (2009).

Of the various methods available, we opted to use the
� 2010 Blackwell Publishing Ltd
MRDM approach after Legendre et al. (1994), which

was identified by Balkenhol et al. (2009) as one of the

best analytical frameworks for predicting genetic con-

nectivity. The MRDM approach provides an intuitive

set of methodologies (e.g. regression model estimation)

that allowed us to test the relative performance of alter-

nate genetic encoding strategies (see above) not found

in approaches based upon canonical correspondence

analysis (CCA) or distance-based redundancy analysis

(dbRDA; Legendre & Anderson 1999). Moreover, this

approach lends itself to removing the influences of his-

torical covariates (e.g. working on the residual variation

after partitioning out putative historical factors) much

more easily than with alternative multivariate

approaches. This is not to say that CCA and dbRDA

may not be applicable approaches, indeed they do have

their own benefits, however, for the purposes of testing

relative fit, extracting potentially confounding factors

and building expected response surfaces the MRDM

approach was favoured.

We quantified the fit of the three genetic encoding

metrics under models of IBD using the MRM function

in the R library ecodist (Goslee & Urban 2008). Under

the 2DSS model, linearized FST was fit to the log of

physical distance (after Rousset 1997); genetic and phys-

ical distance was not transformed in other regressions.

A total of 100 replicate runs were performed, and the

difference in the proportion of variance explained

(dR2
FST

= R2
cGD ) R2

FST
; dR2

Dc = R2
cGD ) R2

Dc) by each

genetic encoding metric was recorded. The difference in

the performance of linearized FST, Dc and cGD was

tested using a t-test under a two-tailed null hypothesis

HO:dR2 = 0. All statistical analyses were conducted in R

(R Development Core Team 2005).
Landscape genetic analysis of Euphorbia lomelii

The study species used here is the stem-succulent eu-

phorb Euphorbia lomelii (synon. Pedilanthus macrocarpus).

The species is long lived, arid adapted and pollinated

by hummingbirds (Dressler 1957), with seeds appar-

ently gravity dispersed. For this species, we expect that

the vector of gamete exchange with the greatest poten-

tial for long distance dispersal is pollen. Its range

along the Baja California peninsula extends from the

southern tip of the Cape Region, northward to Bahı́a

de Los Angeles occupying all but the upper third of

the Baja peninsula. On the mainland, E. lomelii popula-

tions are known only from a relatively small area of

the southwest gulf coast of the state of Sonora, Mexico.

In the present study, we focus solely on the peninsular

populations, for which we have sampled 33 distinct

populations (Fig. 1). For the purpose of subsequent

analyses, we will assume that these populations are



Fig. 1 Sampling distribution of Euphor-

bia lomelii populations in Baja California,

Mexico. Right: Sample locations are

indicated with respect to three geo-

graphical regions (North, Central and

Cape Region) defined by two externally

identified sources of vicariance: ancient

trans-peninsular seaways located at the

Isthmus of La Paz (IoL; ca. 3 mya) and

mid-peninsula (MPS; ca. 1 mya). Left: A

hypothetical population tree topology

representing two separate range expan-

sion events as identified in Garrick et al.

(2009): from northern to central Baja

and from south-central Baja into the

Cape Region. Four separate vicariance

and range expansion hypotheses were

represented as phenetic distance matri-

ces to determine the extent to which

phylogeographic history influences both

the fit and interpretation of contempo-

rary landscape genetic models.
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distributed along a 1-dimensional landscape whose

main axis along the peninsula, measuring the distance

between the most distant populations is 835 km in

length. Multilocus genotypic data were generated for

311 individuals based on six co-dominant nuclear loci

(mostly introns), with polymorphism screening con-

ducted via PCR-RFLP assays as described in Garrick

et al. (2008).

Animal phylogeographic studies centred in Baja Cal-

ifornia have identified two major multi-taxon genetic

discontinuities that spatially occur at or near the puta-

tive locations of ancient transient seaways (i.e. mid-

peninsular seaway, MPS, ca. 1 mya, and the Isthmus

of La Paz, IoL, ca. 3 mya; Riddle et al. 2000; Lindell

et al. 2006; Riddle & Hafner 2006). In contrast, some

plants show strong signal of northward post-Pleisto-

cene range expansion (Nason et al. 2002; Clark-Tapia

& Molina-Freaner 2003). Our recent phylogeographic

analysis of E. lomelii (Garrick et al. 2009) revealed (i)

significant IBD along the peninsula, (ii) a strong signal

of southward post-Pleistocene range expansion,

including a distinct, separate relationship between lati-

tude and genetic diversity in the Cape Region, and

(iii) a recognizable signal of spatial genetic discontinu-

ities at or near the putative locations of both MPS

and IoL vicariance events. Furthermore, coalescent

analyses of cpDNA sequences suggested the origin of

mid-peninsular vicariance was consistent with the

hypothesized �1 mya time frame derived from

mtDNA date estimation in side-blotched lizards (Up-

ton & Murphy 1997). It is these historical phylogeo-
graphic patterns that we will attempt to partition

from the data prior to examining factors influencing

gene flow between populations.
Identifying phylogeographic and landscape genetic
effects

We performed GIS least-cost path analysis to identify

the set of predictor variables describing genetic covaria-

tion among our E. lomelii sample populations. Factors

used in the construction of these predictor variables

were of two varieties; a conditioning set of variables

containing the putative set of phylogeographic patterns

identified in Garrick et al. (2009), and set of contempo-

rary bio-climatic factors predicted to influence either

the synchrony of phenology among E. lomelii individu-

als or the movement of pollinators across the peninsular

landscape. Using a stepwise regression approach (Dra-

per & Smith 1981) based upon distance matrices

(MRDM; Legendre et al. 1994), we first removed the

effects of phylogeographic history on the distribution of

genetic variation among populations and then deter-

mined the best model fitting bio-climactic factors to the

residual genetic variation. For the analysis of E. lomelii,

we use the genetic distance metric that showed the

greatest power in the simulations (from above) for a 1-

dimensional stepping stone model. We selected this

migration model based upon the linear distribution of

populations along Baja California (Fig. 1). All pairwise

genetic distance parameters were estimated using

GENETICSTUDIO (Dyer 2009).
� 2010 Blackwell Publishing Ltd
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Three separate classes of hypothesized phylogeo-

graphic processes were used to construct the initial con-

ditioning set of predictor variables: (i) IBD among all

peninsular populations, (ii) southward range expansions

and (iii) spatial discontinuities consistent with historical

sources of vicariance. Prediction matrices for IBD were

estimated from the geographic locations of all popula-

tions. Range expansion was quantified using a phenetic

distance approach. The distribution of genetic diversity

in E. lomelii suggests that there were two geographically

separate post-Pleistocene range expansion events that

proceeded to the south, one originating in the northern

portion of the Baja California peninsula and the other

originating in the region just north of the Isthmus of La

Paz (�25.2�N; Fig. 1). To quantify this process as a pair-

wise distance matrix, we constructed an unrooted bifur-

cating tree (shown in Fig. 1; also see Nason et al. 2002)

on which the phenetic distance between populations

was calculated. Finally, each of the two hypothesized

historical vicariance events (IoL and MPS; Fig. 1) was

represented separately in matrix form using dummy

variables: the distances between pairs of populations in

the same region were assigned no ‘cost’ (0), whereas

populations in different regions were assigned a bound-

ary cost (1). Because these are binary variables, alterna-

tive boundary costs were not investigated because there

would be no net change in the model coefficient (i.e. it

amounts to multiplying by a scaling factor). Analyses

proceeded by first fitting cGD to models with only these

phylogeographic predictor variables in them. The resid-

ual variation from the best-fit model was then used as

the response variable in estimating models related to

present-day landscape ecological variables.

Using GRASS GIS (version 6.2.3; GRASS Development

Team 2004), we estimated least-cost path distances for

the 12 bio-climatic features listed in Table 1. Bio-climatic

layers covering the species range for E. lomelii were

derived from Tile 22 of the WorldClim data sets

(http://www.worldclim.org), with these data resolved at

30-arc seconds of latitude and longitude (�1 km2). For

each landscape factor and population, we defined a cost
Landscape phylogeographic predictors

Euclidean distance (isolation by distance) Southward range

Vicariance at isthmus of la paz (IoL) Vicariance at mid-

(MPS)

Bio-climatic predictors

Elevation Minimum tempera

Maximum temperature (warmest month) Mean diurnal rang

Mean temperature wettest quarter Mean temperature

Precipitation wettest month Precipitation dries

� 2010 Blackwell Publishing Ltd
surface in GRASS using the r.cost function based upon

absolute similarity of the feature, as measured at the loca-

tion of the population. For example, if the feature was

elevation, we defined a cost surface whose values were

positive in proportion to the deviation away from the ele-

vation for the target population. This cost encoding is

consistent with the notion that similarity in local bio-

climatic conditions would lead towards greater syn-

chrony in phenology and thereby increase the opportu-

nity for pollen-mediated gene flow. While the selection of

a distance metric is critical to the subsequent analyses

(see Spear et al. 2010), we believe that the variables

considered here are a conservative set of factors that

influence pollen-mediated gene flow given our under-

standing of the dispersal ecology of E. lomelii.

Using the best metric for quantifying genetic distance

as identified by the simulations, we fit linear models

containing the phylogeographic predictor variables

under a MRDM model (Legendre et al. 1994) employing

a stepwise approach following Draper & Smith (1981) as

above. A total of 10 000 permutations were used to

assess both the significance of terms being added to the

model as well as the final model significance. The residu-

als of the candidate model were then used as the

response variable in the analysis of contemporary land-

scape ecological features. The same stepwise procedures

were used to estimate the best-fit model for describing

the relationship between contemporary landscape fea-

tures and the distribution of genetic variation after

removing the effects of phylogeographic history. Because

of autocorrelation in the raw bio-climatic variables, least

cost paths were examined for potential multicollinearity

as predictor variables in the model estimation. Among

the eight bio-climatic variables, only two of the 28 pairs

of estimated cumulative least cost paths had an absolute

correlation greater than 0.8; the maximum of which was

q = 0.81 between diurnal range and the minimum tem-

perature of the coldest month. All models were fit

assuming a Type I error rate of a = 0.05. To verify that

multicollinearity was not a problem in the estimated

models, we also estimated the variance inflation factor
Table 1 Phylogeographic, topographic

and bio-climatic landscape variables

used to estimate cost resistance surfaces

for Euphorbia lomelii in Baja Californiaexpansions

peninsular seaway

ture (coldest month)

e

driest quarter

t month
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(vif) for each predictor variable the final model; we

assumed that estimated vifi ‡ 10 would indicate poten-

tial problems associated with correlated predictor vari-

ables (Kutner et al. 2004). Finally, all predictors were

standardized to mean zero and unit variance so that the

coefficients of the terms in the model could be compared

with respect to their magnitude and their relative impor-

tance in describing the response variable.
Fig. 2 The difference in the fit of the multiple regression on

distance matrices models (as quantified by dR2) for linearized

FST, chord distance (Dc), or conditional graph distance (cGD).

Models were fit to both 1-dimensional (dark bars) and 2-

dimensional (light bars with cross-hash) stepping stone models

of migration. A positive value of dR2 indicates that models

using cGD performed better than those using FST or Dc. Error

bars represent 95% confidence limits on the mean difference

(dR2).
Estimating a landscape genetic topology

In addition to identifying putative landscape features

that differentially influence genetic covariance, the

best-fit model also provides inferences on the spatial

locations where the particular combination of landscape

features is expected to differentially influence genetic

connectivity. This spatial information can be useful for

guiding subsequent experimental analysis conducted to

test the validity of the fit models. To illustrate, we esti-

mated the predicted response surface for the model fit

to genetic distance conditioned on phylogeographic his-

tory. The values on this surface provide an estimate of

how genetic distance accumulates across the landscape

under the least-cost path model. For example, pairs of

populations separated by a region of high genetic dis-

tance will experience reduced gene flow when com-

pared to population pairs whose intervening landscape

has low expected genetic distance. For simplicity, we

standardized this response surface to be bound by [0,1]

and provide two example transects across the Baja Cali-

fornia peninsula showing the slope of this surface.
Results

Simulations models: pairwise Fst and Dc vs.
conditional genetic distance

The manner in which genetic data are encoded has sig-

nificant effects on our ability to explain the spatial dis-

tribution of genetic variation in 1- and 2-dimensional

stepping stone models. Under a 1DSS model, the differ-

ence in the proportion of variance explained by FST and

cGD (as measured by dR2
FST

) ranged from 0.01 to 0.47

(Fig. 2), with a positive value indicating that models

using cGD performed better than those using linearized

FST. Similarly, cGD, outperformed Dc with dR2
Dc rang-

ing from 0.17 to 0.51 (Fig. 2). In all cases of the 1DSS

model, cGD performed significantly better than models

based upon FST (largest t-test P < 6.6e)16) or Dc (largest

t-test P < 1.1e)61).

The performance of cGD in relation to FST and Dc

under the 2DSS models was both mixed and attenuated.

Across all time steps, cGD performed significantly bet-

ter in explaining the spatial distribution of genetic
variation than FST (dR2FST = 0.03 ) 0.08; t-test P < 2.6e)5

in all cases). However, cGD did not perform as well as

Dc in the 2DSS model (dR2
Dc = )0.11 ) ()0.05); t-test

P < 7e)13; Fig. 2). For all models in which cGD excelled,

the observed difference in the explanatory ability of

cGD vs. the other parameters developed rapidly before

decreasing as the systems tended towards genetic equi-

librium (Fig. 2).

For comparative purposes, examining dR2 does not

provide insights into which of the parameters stabilizes

faster. As a result, we calculated the variance of in R2

for FST, Dc, and cGD across replicate simulations for

each time step. Relative statistical stability in these sta-

tistics is based upon the time at which it takes for each

of the parameters to reach an asymptote and is directly

comparable as identical data sets are being assayed for

each parameter during each time step in the simula-

tions. Across time steps, cGD stabilizes in considerably

fewer generations than either FST or Dc (Fig. 3).
Landscape genetic analysis of Euphorbia lomelii

Using a stepwise selection procedure, the best model fit-

ting phylogeographic variables to genetic differentiation
� 2010 Blackwell Publishing Ltd



Fig. 3 Estimated variance in the fit of the simulation models

for each genetic distance parameter FST, Dc, and cGD. Each

estimate was standardized by its maximum value for compara-

tive purposes. The quicker the variance in a parameter reaches

its asymptote, the more stable the estimator.
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as estimated by cGD was highly significant (F = 22.20;

Pperm = 0.0001; R2 = 0.07). We selected cGD as the pre-

ferred genetic distance metric suggested by the simu-

lations of 1-dimensional landscapes. The initial model

contained two significant phylogeographic condition-

ing variables; IBD and historical vicariance caused by

the isthmus of La Paz (Fig. 1, Table 1). The standard-

ized coefficients on the model were bIBD = 0.41 (Pperm =

0.0007) and bIoL = 0.27. (Pperm = 0.0244) suggesting that

IBD was more important in explaining the cGD than the

vicariance caused by the Isthmus of La Paz. These

results suggest that consideration of historical events or

processes can be critically important and that they can

explain a significant portion of the existing genetic

covariance that would typically be left in landscape

genetic models. In cases where these factors are not

partitioned from the data, it is possible that their effects

will be erroneously attributed to contemporary land-

scape or ecological factors.
Table 2 Significant slope coefficients (and probabilities in parenthesis

ditional genetic distance (cGD) for Euphorbia lomelii. Empty cells repre

found to be significant (at a = 0.05). The column labelled cGD was

removing the effects of known phylogeographic variables, whereas t

graph distances. The order in which the factor is listed represents the

from Table 1 were found to not be significant in the model

Bio-climatic predictors

Precipitation driest month

Maximum temperature warmest month

Mean temperature driest quarter

Elevation

� 2010 Blackwell Publishing Ltd
The residual variation from the model conditioned

on phylogeographic history was then subjected to a

stepwise regression approach using MRDM with the

bio-climatic variables listed in Table 1. Using the same

procedure as above, the best-fit model was highly sig-

nificant (F = 13.57, Pperm = 0.0002, R2 = 0.09) and

included three terms representing both temperature

and precipitation (Table 2). In the final models, the

maximum variance inflation factor (vif) was 2.2, sug-

gesting that the predictor variables fit to the model do

not exhibit multicollinearity to a degree such that we

are concerned with the model selection. To determine

the extent to which conditioning on phylogeographic

history changed the inferences gained, we performed

the same model fitting exercises for raw cGD (i.e.

uncorrected for phylogeography; denoted as cGDucor

below). The best-fit model also contained three bio-cli-

matic variables and was highly significant (F = 22.27,

P = 0.0001), more so than the unconditioned model.

Models fit to cGD or cGDucor both contained terms for

precipitation in the driest month and mean tempera-

ture during the driest quarter. The relative importance

of the precipitation variable (as measured by standard-

ized regression coefficients) was 16% higher for the

uncorrected than the corrected model (e.g. bprecip = 0.47

vs. bprecip; ucor = 0.56) and for the temperature variable

was 30% higher for the uncorrected than the corrected

model (btemp = 0.53 vs. btemp; ucor = 0.75; Table 2). In

the uncorrected model, elevation was a significant pre-

dictor, whereas in the corrected model, maximum tem-

perature in the warmest month was included. Within

models, the predictor with the largest standardized

effect in the uncorrected model was mean temperature

in the driest quarter (b = 0.75), whereas in the cor-

rected model it was the variable describing the maxi-

mum temperature during the warmest month

(b = )0.69). Overall, the conditioning on phylogeo-

graphic history not only changed the relative impor-

tance of bio-climatic predictor variables, but also

changed which subsets of variables were considered
) for multiple regression on distance matrices models fit to con-

sent ecological variables whose inclusion in the model was not

the model fitting bio-climatic variables to graph distance after

he column cGDucor was the model fit to the raw (uncorrected)

order of inclusion in the stepwise model. The remaining factors

cGD cGDucor

0.4720 (0.0007) 0.5641 (0.0001)

)0.6942 (0.0002) –

0.5316 (0.0022) 0.7546 (0.0001)

– )0.4419 (0.0200)
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important in describing the spatial distribution of

genetic covariance.

Fitted response surfaces. The subset of significant bio-cli-

matic factors retained in the corrected model (Table 2)

was used to estimate a predicted response surface

across peninsular Baja. The response surface for the

cGD model (Fig. 4) indicates the extent to which identi-

fied bio-climatic factors are predicted to cause changes

in among-population genetic covariance. Two transects

across this response surface are provided to illustrate

how the identified the spatial locations of putative bio-

climatic factors that interact to influence genetic covari-

ance and by extension gene flow.
Discussion

In this study, we show via simulation of IBD processes

that conditional genetic distance (cGD) represents an
improvement over FST, the pairwise genetic distance

measure traditionally used in landscape genetics in

both 1- and 2-dimensional stepping stone models. Fur-

thermore, we show that Dc, a distance metric known to

perform well with microsatellite loci in other popula-

tion genetic and phylogenetic applications, outperforms

cGD in a 2-dimensional model, whereas cGD provides

better analytical performance under a 1-dimensional

model. However, cGD does appear to stabilize quicker

than either of the remaining parameters following per-

turbation (also shown in Dyer 2007 in comparison with

Fst). In the context of an empirical data set for the eu-

phorb E. lomelii in Baja California, a species whose spa-

tial distribution is generally 1-dimensional, we show

how the influence of appropriately parameterized phy-

logeographic factors can be removed from the data

prior to an analysis of landscape factors, ultimately

resulting in landscape genetic models with clearer

inferences.
Fig. 4 The predicted surface for the

best model describing the distribution

of genetic variation in Euphorbia lomelii

based upon conditional genetic covari-

ance (cGD) after removing the influence

of phylogeographic history. Lighter

regions on the map indicate spatial loca-

tions where the combination of ecologi-

cal factors interact to impede gene flow

(and thus increase cGD between popula-

tions) at a rate greater than darker

areas. The insets graphs depict the slope

of the response surface (dcGD) across

the peninsula and indicate where the

change in genetic covariance because of

the indicated bio-climactic factors would

be greatest. The spatial extent of this

map encompasses the entire species dis-

tribution of E. lomelii.

� 2010 Blackwell Publishing Ltd
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Benefits of conditional genetic distance for landscape
genetic analysis

The results of the IBD simulations performed here pro-

vided several interesting insights into our ability to

quantify spatial genetic structure. First, in both 1DSS

and 2DSS stepping stone models, cGD offers a substan-

tial improvement over linearized FST in statistical power

to detect underlying patterns of IBD. This difference in

power is especially great when migration follows a

1DSS model (Fig. 2). Similarly, cGD outperforms Dc in

1DSS models, however, Dc is better if gene flow pro-

ceeds as a 2DSS model. Second, cGD, FST and Dc also

differ in rate of approach to their final equilibrium

states under a migration-drift process. The simulation

results suggest that stabilization of cGD under IBD is

faster than that for FST or Dc (Fig. 3 and Dyer 2007),

which can be attributed to the fact that cGD is based

upon a simultaneous analysis of the entire data set

whereas the other parameters are estimated in a pair-

wise fashion among populations. While the overall FST

for a set of populations has been reported to stabilize in

fewer than 100 generations (e.g. Crow & Aoki 1984;

Hamilton & Miller 2002), these conclusions are based

on simulations of Wright’s (1931) Island model where

all populations have the potential to exchange genes

every generation thereby attaining equilibrium consid-

erably faster than 1DSS and 2DSS models (e.g. Efremov

2005) where migration is limited to neighbouring popu-

lations. It should be noted that our simulations repre-

sent idealized scenarios in which genetic covariation

among populations is a function only of the dispersal

process, and this dispersal process is homogeneous in

space. We nevertheless expect cGD to perform as well

or better than other genetic distance metrics under more

complicated, real-world conditions in which intervening

landscape features exert heterogeneous influences on

gene flow. Evaluating this prediction should prove to

be a productive area of future research.

An unexpected outcome of our IBD simulations was

that across replicate runs, there was a small fraction of

data sets for which Population Graphs was unable to

provide an estimated topology because of lack of genetic

variance within at least one of the populations. The

estimation of a Population Graph topology, and by exten-

sion cGD, requires a nonzero estimate for all within-

population variances (Dyer & Nason 2004). In some of

the simulations, a population was fixed for alleles, and

thus had no variance and the Population Graph could

not be estimated. The rate at which cGD failed to be

estimated was 5.8% for the 1-dimensional model and

1.2% for the 2-dimensional model. The expected proba-

bility of homogeneous strata within a data set is deter-

mined by the intrinsic genetic variance of the species,
� 2010 Blackwell Publishing Ltd
the number of loci assayed and the number of individu-

als sampled per population. Within-population homo-

geneity is not commonly reported in outbreeding

organisms given the number of markers and sample

sizes typically used. If encountered in real-world data,

one could identify the population or subset of popula-

tions that are homogeneous and exclude them from the

analysis, or genotype additional individuals to achieve

within-population genotypic heterogeneity. In the auto-

mated simulations, however, the occasional homoge-

neous population resulted in cGD being undefined,

whereas estimates of FST and Dc could still be obtained.

It is also of note that parameters estimated in a pair-

wise fashion, such as linearized FST here, will always

have higher variance than a global estimate based upon

the simultaneous analysis of all the data. This is

because each of the pairwise parameters is estimated

from only a subset of the total samples and stochasticity

at the level of the individual will play a greater relative

role. When using estimates of pairwise parameter val-

ues in models such as IBD, we tacitly assume (although

with very little basis) that the individual point estimates

have no variance. Conversely, parameters fit using the

totality of the data, such as cGD, do not suffer from this

problem.
Conditioning landscape genetic analysis on historical
hypotheses

Analysis of the desert euphorb E. lomelii provided two

valuable insights. First, the results support our conten-

tion that the inclusion of predictor variables represent-

ing the influence of phylogeographic history can

increase the accuracy of the landscape genetic infer-

ences. In particular, when genetic covariation was not

conditioned on historical processes the resulting model

contained a putatively spurious ecological factor.

Admittedly, it is difficult to ascertain the relative preci-

sion of this empirical model because the true relation-

ship among the landscape factors is unknown. If a

priori information indicates historical processes have

significantly influenced the structuring of genetic varia-

tion and the effects of these processes are not removed

in landscape genetic analyses, the resulting models,

independent of their fit, will be incorrect. Moreover, it

is also important to note that goodness of fit of a model

does not guarantee that the model is correct (e.g. see

discussion in Dyer & Nason 2004). As a result, we rec-

ommend that one account for information regarding

historical factors as a step prior to mounting a land-

scape genetic analysis. Ultimately, it is the expected

response surfaces that we derive from these models (as

in Fig. 4) that provide value for subsequent experimen-

tal analyses and validation.
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In our example using E. lomelii, we utilized a least-

cost path analysis approach to quantify the bio-climac-

tic distances among sample populations. Currently,

there are several different methodological approaches

available to quantify ecological distances (e.g. McRae

et al. 2008; Pinto & Keitt 2009), which could also have

been used here. Our selection of a single least cost

path was based upon the level of heterogeneity of the

bio-climactic variables on our landscape. In our study,

bio-climactic factors such as maximum temperature

during the warmest month and minimum precipitation

during driest month change at a larger granularity

than site-specific ecological factors such as forest cover

or other habitat suitability measures often used to

quantify animal movement. As recently shown by Ray-

field et al. (2010), single least cost paths show bias in

proportion to the heterogeneity of fragmentation and

relative habitat suitability. For cases where the land-

scape factors are more heterogeneous than those used

in this study, we recommend the use of multiple path

approaches.
Future directions

Population Graphs as a general approach for quantify-

ing how genetic variation is distributed across the land-

scape provides a framework for analyzing the spatial

distribution of genetic variation independent of its over-

all magnitude. In the present context, components of a

Population Graph (e.g. the path length between popula-

tions) have been shown to be an effective measure of

genetic covariation salient to landscape genetic hypothe-

ses. In addition to identifying putative factors influenc-

ing genetic covariance, the results of this work generate

a specific set of landscape genetic hypotheses with

respect to E. lomelii.

Under a homogeneous IBD process, the path lengths

(cGD) and spatial distances separating neighbouring

populations should be approximately proportional. If,

however, migration is heterogeneous, then the rela-

tionship between expected edge length and spatial

separation may be changed in two ways. First, if spo-

radic long distance migration or colonization events

occur then individual populations that are spatially

distant will have relatively small cGD. We refer to the

edges connecting these populations as ‘extended

edges’ because the populations are further apart than

expected based on their genetic covariance. In Garrick

et al. (2009), we used this relationship to identify

potential long distance dispersal events associated

with recent (post-Pleistocene) range expansion in

E. lomelii. Conversely, populations may be spatially

more proximate than expected by their genetic covari-

ance, which we term ‘compressed’ edges. Compressed
edges are expected to occur when features of the

intervening landscape impede migration relative to

other similarly separated populations. The predicted

genetic response surfaces shown in Fig. 4 are de facto

null hypotheses for subsequent landscape genetic and

experimental studies. Using these expectations to

guide sampling allocation, validation of the landscape

genetic models estimated here is the logical next step

to understanding the interaction of gene flow and

landscape features.
Conclusions

In plants, the adult organism is typically sessile with

dispersal occurring via two types of propagules: pollen

and seed. As sources of gene movement across the

landscape, these two modes of dispersal share some

properties while also differing in some important

regards. In common, pollen- and seed-mediated gene

flow are both dependent on dispersal mechanisms

extrinsic to the plant, be they biotic or abiotic, such that

the spatial dimension of gene flow is determined not

only by geographical distance but by features of the

intervening landscape that influence the movement of

pollen and seed dispersal vectors. Consequently, land-

scape genetic analysis of the mechanisms underlying

genetic connectivity in plants has to consider not only

the availability of habitable environments for the plant

species itself, but also factors influencing the permeabil-

ity or resistance of the landscape to dispersal vectors,

typically animals or wind.

An important point, if the movement of dispersal vec-

tors is nonrandom with respect to landscape variation

in habitat variables, it can generate significant positive

correlations between genetic distance and ecological

distance in plants that may be difficult to interpret. For

example, seed dispersers may move preferentially

between habitat patches of a certain type, resulting in

habitat-specific patterns of genetic connectivity that

reflect the behaviour of the dispersers, not adaptation of

the migrants. It is interesting to contrast this against the

observation that effective seed migration necessarily

requires successful establishment, and hence adaptation

to the new environment. As a consequence, seed migra-

tion coupled with successful germination should be

more likely occur when the environments of the source

and receiving populations are similar than when they

are dissimilar. In this case, significant correlations

between genetic distance and ecological distance may in

fact be indicative of local adaptation, not of the genetic

markers, but of the migrants themselves. These two

alternative explanations for genotype-environment asso-

ciations (i.e. dispersal biology of the animal vector vs.

locally adapted plant populations) may be difficult to
� 2010 Blackwell Publishing Ltd
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tease apart without conducting reciprocal transplant or

laboratory germination experiments. However, biophys-

iological modelling (cf. correlative species pres-

ence ⁄ absence-based niche modelling) may provide a

framework for removing the potentially confounding

influence of animal behaviour (see Kearney & Porter

2009).

Pollen and seed also possess fundamental genetic

differences relevant to their affects on gene dispersal

(Petit et al. 2005). Pollen is haploid and seed diploid so

that, given equal migration rates, pollen contributes

one-third and seed two-thirds to total nuclear gene

flow. Gene flow in maternally inherited markers, in

contrast, is related to seed migration alone. These dif-

ferences in genetic content and dispersal contribute to

predictable differences between nuclear and maternally

inherited markers in the extent of population genetic

differentiation that can be linked to the relative rates of

pollen and seed flow (Ennos 1994; Hamilton & Miller

2002). Also important, pollen-mediated gene flow

occurs only between established populations so that

variables (such as elevation) related to synchrony or

asynchrony in flowering across the landscape may

often be important predictors of genetic connectivity

(as suggested in our data). However, in addition to

migration, seed movement also contributes to the colo-

nization of open habitat with effects on genetic connec-

tivity depending on both the number of founders and

the genetic correlation among them (Whitlock &

McCauley 1990). Through time, these factors can signif-

icantly influence how genetic variation is distributed

across the landscape.

As demonstrated in the E. lomelii data, conditioning

landscape analyses on known historical demographic

processes aid in our ability to successfully identify and

characterize the relationship among landscape features

to which the organism is responding. For this plant spe-

cies, the most important factors were related to temper-

ature extremes and precipitation, both of which

contribute to increasing phenological synchrony. In this

landscape, and others whose dimensionality tends

towards linearity, analytical methods based upon condi-

tional genetic covariance extracted from the Population

Graph framework appear to provide more robust model

estimation.
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