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Abstract

Context Landscape genetics can identify habitat

features that facilitate or resist gene flow, providing

a framework for anticipating the impacts of land use

changes on dispersal of individuals. To inform man-

agement, a better understanding of how inferences

derived from one study region are applicable to other

regions is needed.

Objectives We investigated the manner in which five

landscape variables correlated with gene flow among

Plethodon mississippi populations in two study

regions. We compared order of importance, direction

(facilitation vs. resistance of gene flow) and scale of

effect, and functional relationships of variables within

each study area.

Methods In forests in Mississippi and Alabama,

USA, we tested individual-based genetic distances

derived from microsatellite genotypes against effec-

tive distances caused by agriculture, hardwoods, pine,

manmade structures, and wetlands that were opti-

mized for both scale and transformation using max-

imum likelihood population effects modeling.

Results Of the landscape variables, agriculture and

wetlands ranked at the top of both study areas’ models.

In both forest regions, agriculture was consistently

associated with resistance, whereas pine was inferred

to facilitate gene flow. However, we found region-

specific differences in effects of wetlands, hardwoods,

and manmade structures. Configuration of the latter

landscape variables differed between forest regions,

which may explain the contrasting outcomes.

Conclusions Our results underscore the value of

metareplication in revealing which components of

landscape genetics models may be consistent across

different portions of a species’ range, and those that

have context-dependent impacts on gene flow. We

also highlight the need to consider habitat configura-

tion when interpreting the results of landscape genet-

ics analyses.

Keywords Gene flow � Herpetofauna � Land use �
Metareplication � Optimization

Introduction

All species have areas of preferred habitat interspersed

with areas of sub-optimal or unsuitable habitat (i.e., a
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matrix; Fahrig and Merriam 1985). In order to

maintain genetic connectivity among local popula-

tions that reside within different habitat patches,

individuals must be able to traverse the intervening

matrix. However, such areas are increasingly altered

by anthropogenic influences (Jules and Shahani 2003).

Modifications of natural areas are occurring at an

accelerating rate due to the direct effects of a growing

human population and expansion of urban areas. This

is compounded by indirect effects such as alteration of

natural disturbance regimes, introduction of exotic

species, and climate change (Vitousek et al. 1997;

Schmitz et al. 2015; Parisien et al. 2016). As a result,

areas that were previously comprised mostly of

suitable habitat have become increasingly ‘‘hostile’’

to free movement. This change in the permeability of

the habitat matrix can lead to long-term isolation

among small populations and random loss of genetic

diversity due to the predominance of drift over

selection (Keyghobadi 2007). As inbreeding becomes

unavoidable in small isolated populations, this can

give rise to inbreeding depression. In turn, these

negative effects on individual fitness further diminish

population size and growth rate (Allendorf et al.

2013). Indeed, these population-level changes can

interact with other threatening processes (e.g., rapid

changes in the abiotic environment, or emergence of

wildlife disease) leading to local extinction (Gilpin

and Soulé 1986), and by extension, an overall

reduction in a species’ long-term viability (Sork and

Waits 2010).

Knowledge about the relationship between organ-

isms and their environments is a cornerstone of natural

resource management. Wildlife conservation must

consider the consequences of population isolation in

the design of protected area networks and corridors,

and this requires an understanding of the effect of

specific landscape features on dispersal of individuals,

and gene flow among populations. For decades,

techniques such as capture-mark-recapture and radio

telemetry have been used to gain such insights (e.g.,

Ovaska 1988; Riecken and Raths 1996). These

methods are valuable, but do have some notable lim-

itations. For example, capture-mark-recapture studies

are time and labor intensive, and data points are

acquired only from individuals that are re-encountered

(Berry et al. 2004). Furthermore, the probability of

recapturing marked individuals that have dispersed

large distances is very low, creating an observation

bias toward detection of short-distance dispersal

events (Koenig et al. 1996). Similarly, radio telemetry

and passive integrative transponder tagging are also

time and labor intensive, and often involve expensive

equipment such that data are typically obtained from

relatively few individuals (Hebblewhite and Haydon

2010; Connette and Semlitsch 2015). While these

methods can provide high-resolution information on

fine-scale movement, given that all data are usually

acquired from a single cohort of individuals, capture-

mark-recapture and radio telemetry usually provide

only a short temporal snapshot. Accordingly, infer-

ences may be influenced by abnormal environmental

conditions, and thus could be unrepresentative (Bailey

et al. 2004).

In principle, a robust understanding of how indi-

viduals perceive and move through a habitat matrix

would be drawn from a large number of individuals

sampled over a range of spatial and temporal scales,

with at least two tiers of temporal insights: those

reflecting very recent dispersal events (i.e., within the

past generation or two), and those based on the

accumulated effects of many generations of repeated

movement. Molecular approaches have been used for

these purposes, using individual-based comparisons of

multilocus genotypes to determine recent dispersal,

and population-based allele frequencies to detect the

effects of repeated movement over time (e.g., Sun-

nucks 2000; Epps et al. 2013, 2018). When employing

a landscape genetics approach, molecular data can be

used to estimate genetic distances between individuals

or populations, which may then be compared to

corresponding distances based on the permeability of

intervening heterogeneous habitats (Manel et al.

2003). For example, in an early landscape genetics

study of gene flow among European roe deer in a

fragmented landscape, Coulon et al. (2004) found an

ecologically informed ‘‘resistance distance’’ that

maximized use of wooded corridors provided a

significantly better fit to inter-individual genetic

distances based on microsatellite data than straight

line distances, showing that roe deer dispersal is

strongly tied to wooded areas.

Today, landscape genetics studies have become

more analytically advanced, but the same basic

principles apply. That is, the hypothesized resistance

to dispersal caused by landscape variables such as land

cover, topography, or bioclimatic measures (i.e.,

potential predictor variables) is tested against
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empirically derived genetic distances (i.e., the

response variable) to determine which landscape

features most strongly resist (or facilitate) gene flow.

Findings from these investigations can be used to plan

for the impacts of recent and future land use changes

upon an individual’s ability to disperse, thereby

providing spatially explicit guidance for conservation

management (e.g., Cleary et al. 2017).

There are many spatial data types available for

landscape genetics analyses, but of these, land cover

classifications, presence or absence of roads, and

topographic data are among the most commonly used

(Zeller et al. 2012). The decision to include a given

landscape variable in analyses and the associated

choices regarding its hypothesized resistance to gene

flow are typically informed by expert opinion and

literature reviews (Beier et al. 2008). While these

approaches have value, they may overlook relation-

ships that are counterintuitive given the current

understanding of a species’ natural history (e.g.,

Peterman et al. 2014). An additional source of

potential bias relates to idiosyncrasies associated with

the chosen study region. Indeed, understanding the

transferability (i.e., applicability to other areas) of

landscape genetics models is critical to their use in

conservation (Keller et al. 2014), and as such,

metareplication is a powerful approach for distin-

guishing between site-specific vs. species-wide

processes.

In order to minimize biases due to oversimplifica-

tion of models or erroneous a priori assumptions,

optimization can be performed on model parameters.

For instance, the geographic scale at which individuals

perceive habitat quality can be variable and difficult to

ascertain (Mayor et al. 2009). A large scale may apply

to some landscape features, where a small scale is

relevant to others (e.g., if a road 500 m away impedes

movement owing to its far reaching effects, but a pine

ridge has little impact until it is within 100 ms). In the

past, the same scale has been applied to all landscape

variables under consideration (McGarigal et al. 2016).

However, a more suitable approach would be to

consider several alternative geographic scales for each

landscape variable in order to determine the appro-

priate fit (Galpern et al. 2012; McGarigal et al. 2016;

Wan et al. 2017; Zeller et al. 2017). Another approach

to model optimization focuses on the functional

relationship between a landscape variable and its level

of resistance. To date, the most typical functional

relationship between gene flow and landscape variable

has been negative and linear (e.g., greater amounts of

agriculture between two individuals correlate with less

gene flow). However, several studies, including those

with genetic response variables (Cushman 2006;

Zeller et al. 2017) and with physical animal tracking

(Trainor et al. 2013; Keeley et al. 2017), have found

support for non-linear functional relationships

between landscape variables and resistance to move-

ment. For instance, in the above example, a precipi-

tous reduction in gene flow may be observed only

when the amount of agriculture between two individ-

uals reaches moderate levels. Accordingly, transfor-

mations of functional relationships can be beneficial.

Replicated empirical analyses, or metareplications,

have the ability to determine how transferable land-

scape genetics models are across a species’ range.

Metareplication study design requires replicate study

areas that at least partly differ in land use character-

istics (e.g., contrasting habitat configurations), so as to

enable conclusions about how the focal species

responds to landscape variables generally (Johnson

2002). Importantly, when researchers compare the

best-fit optimizations of model parameters (e.g.,

geographic scale and function) that are independently

derived frommultiple study areas, cases exist in which

even relatively minor changes in local environmental

conditions can alter the influence that a given

landscape variable has on gene flow owing to

‘‘threshold or connectivity effects’’ (see Cushman

et al. 2011; Shirk et al. 2014). Through replicated

analyses, limiting factors such as presence of human

disturbance (Reddy et al. 2019), patch size of

disturbed areas (Shirk et al. 2014), habitat connectivity

(Castillo et al. 2016), and land cover heterogeneity

(Vergara et al. 2017) have been found to affect how

landscape variables contribute to resistance or facil-

itation of gene flow. For this reason, metareplication in

landscape genetics is particularly powerful for extend-

ing the scope of insights that can be gained.

In this study, we conducted separate landscape

genetics analyses of a terrestrial salamander in two

southeastern deciduous forests within Mississippi and

Alabama, USA, to understand the extent to which

inferences drawn from one location are transferable to

the other, and to examine the effect of optimization on

transferability. Given that even simulated stochastic

data would likely result in models with some differ-

ences, we focused on broad-scale similarity, along
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several different axes for which comparisons are

possible. Specifically, we asked if the landscape

variables that were assessed (1) show a similar rank

or order of importance (particularly with respect to the

most influential variables), (2) have the same direction

of effect (i.e. facilitate vs. impede gene flow), (3) have

the same or similar scale of effect, and (4) exhibit the

same or similar functional relationship.

Methods

Focal species and study regions

The present study focused on a species distributed

throughout eastern Mississippi and western Alabama,

the Mississippi slimy salamander (Plethodon missis-

sippi Highton 1989). Plethodontid salamanders are

low-mobility, ecologically specialized taxa that have

several life history traits that make them well-suited

for landscape genetics studies. These salamanders

inhabit cool, moist environments, and exhibit direct

development, meaning their offspring do not need an

aquatic environment to metamorphose into the adult

form (Petranka 1998). Without the need to disperse to

aquatic environments for reproduction, it is hypothe-

sized that they disperse very little over their lifetimes,

which may cause genetic differentiation among pop-

ulations over a relatively small geographic area.

Furthermore, due to P. mississippi’s short generation

time (females and males reach sexual maturity in two

years and three years respectively; Highton 1962), the

effect on dispersal by changes in the landscape may be

detected over relatively short time scales.

The geographic range of P. mississippi spans the

63,131 ha Holly Springs National Forest (HSNF) in

northern Mississippi, and the 73,653 ha Bankhead

National Forest (BNF) approximately 190 km to the

east in northern Alabama. These two forest regions

encompass similar land use types, with both contain-

ing bottomland hardwood forests, forested wetlands,

upland pine and silviculture, agricultural fields and

pastures, and manmade structures such as roads,

buildings, and parking lots. While composition of

these forest regions is similar and both are managed by

the U.S. Department of Agriculture Forest Service

(USFS), they differ in that only BNF includes a large

protected Wilderness area (over 10,000 hectares) and

roughly 1400 ha of old growth (USFS 2004, 2012).

Population sampling

Tail tip tissues were collected from 113 P. mississippi

individuals at 19 locations in HSNF in northern

Mississippi, and 110 individuals at 20 locations in

BNF in northern Alabama (Fig. 1). Sampling loca-

tions were chosen to span the entirety of each of the

two forest regions, and spaced approximately 8 km

apart. At least five individuals were sampled at each

location. Because P. mississippi is a completely

terrestrial species that is likely continuously dis-

tributed, population units cannot be readily delimited

a priori. Accordingly, we conducted individual-based

analyses (Shirk et al. 2018).

Genetic analysis

Genomic DNA was extracted from tail tips using a

DNeasy Blood and Tissue kit (Qiagen, Valencia CA,

USA) following manufacturer’s recommendations.

Individuals were genotyped using eight microsatellite

loci described by Spatola et al. (2013; see Supple-

mentary Material for PCR amplification conditions,

allele-calling approaches, and quality control mea-

sures). At three locations in HSNF and one location in

BNF we collected 9–11 individuals. These four

sample sets were tentatively assumed to each represent

panmictic groups for the purpose of testing for null

alleles, Hardy–Weinberg Equilibrium, and linkage

disequilibrium, using Genepop v 4.2 (Raymond and

Rousset 1995). Based on the full genetic dataset, the R

(R Core Team 2019) package PopGenReport (Ada-

mack and Gruber 2014) was used to quantify percent

missing data, number of alleles per locus, and mean

allelic richness in each forest region. An examination

of overall population structure within each forest

region was performed via genotypic clustering, using

STRUCTURE v. 2.3.4 (Prichard et al. 2000; see

Supplementary Material for details of STRUCTURE

analysis). Also within each forest region, we used

GenAlEx v. 6.503 (Peakall and Smouse 2012) to test

for spatial autocorrelation using 999 permutations,

999 bootstrap replicates, and tests for heterogeneity.

For these analyses, a distance class (i.e., bin size) size

of 3 km was chosen to encompass the smallest

distances between sampling locations, which were

greater than 3 km.

To determine pair-wise individual-based genetic

distances within each forest region, we conducted a
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principal components analysis (PCA) and calculated

Euclidean distance between the first 64 axes of the

ordination using the ade4 package (Dray and Dufour

2007) in R. The use of Euclidean distances derived

from a representative number of PCA axes (i.e., axes

that, in total, represent a large portion of the variation

found within a dataset) has been shown to perform

better than others when genetic structure is weak and

low sample sizes are low (Shirk et al. 2017). Pairwise

genetic distances among individuals from the same

sampling location were removed from further analy-

ses, to avoid skewing landscape genetics models.

Landscape analysis

To examine the extent to which land use type

influences gene flow, we initially classified spatial

data into six distinct land use classes: agriculture,

hardwoods, pine, manmade structures, wetlands, and

water, using multi-spectral raster files from the NASA

Landsat 8 satellite (see Fig. 2, left panel; see Supple-

mentary Material for details regarding classification).

Upon identification of correlation between the wetland

and water land use classes, wetlands (but not water)

were retained for further analysis. We used the final

maps to calculate for each landscape variable amount

of habitat, patch density, correlation length, clumpi-

ness, patch cohesion, and an aggregation index using

the software FRAGSTATS v 4.2 (McGarigal et al.

2012). We then conducted a series of univariate

moving window analyses on the classified images

using five separate kernel sizes for each land use class

with the PLAND calculation in FRAGSTATS (see

Fig. 2, middle panels). Each pixel in the resulting

maps (a total of five maps for each land use class)

reflected the percent of a given land use class within

100, 250, 500, 750, and 1000 m (i.e., if a 100 m square

surrounding a given pixel is completely made up of

agriculture, that pixel would be given a value of 100).

These values were then transformed using the eight

transformations found in the R package ResistanceGA

(named and illustrated in Fig. 2, right panels; also see

Peterman 2018). We calculated transformed values

using max = 100 and shape = 2 as ResistanceGA’s

genetic algorithm optimization method would be

computationally restrictive in our large study areas.

Fig. 1 Sampling locations of P. mississippi within Holly Springs National Forest (HSNF) and Bankhead National Forest (BNF). Five

or more individuals were sampled at each of 19 locations in HSNF, and 20 locations in BNF
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Using the gDistance package (van Etten 2017) in R,

we computed pairwise random-walk distance between

individuals for each map, resulting in 45 distance

calculations for each land use class. We also created a

raster file that had a uniform pixel value of one to

calculate a random-walk distance that would represent

the geographic distance between points and could be

used to test for isolation by distance (IBD) (Emel and

Storfer 2012). To remove the effect of geographic

distance from our land use class random-walk calcu-

lations, we performed a series of simple linear

regressions of the uniform pixel distance and each

random-walk calculation using the lme4 package in R

(Bates et al. 2015). The residuals from these linear

regressions were then used in model testing.

Model testing

To optimize each land use type for both transformation

and scale, we ran a series of univariate maximum

likelihood population effects (MLPE) models (Clarke

et al. 2002). These linear random effects models

account for the lack of independence between pairwise

comparisons. This method was the most robust among

seven regression-based model selection methods

tested using inter-individual landscape genetics sim-

ulations (Shirk et al. 2018). Univariate models were

ranked using corrected Akaike Information Criterion

(AICc; Hurvich and Tsai 1989). The most strongly

supported scale and transformation of each land use

class (i.e., that with the lowest AICc score) was used

for final model testing.

We tested several hypotheses of resistance with

MLPE models (Table 1). Each model included the

geographic distance variable derived from a uniform

raster, as well as a combination of land use variables.

Models were then ranked using AICc. Summaries of

the best-fit models were examined to determine the

sign of effect for each model component (i.e., each

landscape variable). A positive sign of effect indicated

Landsat 8
30m x 30m
Satellite 
Imagery Pine

Agriculture

Hardwoods

Manmade

Wetlands

100

250

500

750

1000

a.

b.

c.

d.

e.

f.

g.

h.

Spatial Data Landscape Variables Scale Transformation

Fig. 2 Depiction of landscape classification and optimization

for scale and transformation. Landsat 8 imagery was classified

into five landscape variables. Each variable was tested for five

scales (100, 250, 500, 750, and 1000 m) and eight transforma-

tions ((a) monomolecular, (b) reverse monomolecular, (c) in-

verse monomolecular, (d) inverse-reverse monomolecular,

(e) ricker, (f) reverse ricker, (g) inverse ricker, and

(h) inverse-reverse ricker) and a linear relationship, for a total

of 45 univariate tests per landscape variable. The transformation

graphs show the relationship between the original resistance

value (i.e., a value 0–100, indicating the percent of the given

landscape variable within 100, 250, 500, 750, or 1000 m) on the

x-axis, and the new resistance value as a result of transformation

on the y-axis
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that the variable resisted gene flow, whereas a negative

sign of effect indicated the variable facilitated gene

flow (Row et al. 2017).

Results

Genetic analysis

Multilocus genotypes were produced from 113 of 114

individuals in HSNF with 1.7% missing data, and 107

of 109 individuals in BNF with 4.1% missing data.

One individual in HSNF and two individuals in BNF

were excluded from the dataset because they repeat-

edly failed to amplify at greater than two loci. The

locus 402 failed to amplify reliably in BNF, and was

therefore removed from analysis in BNF but not

HSNF. The locus B8DRY was found to be monomor-

phic in HSNF but not BNF, so it was removed from

analysis in the former forest region only. Loci within

the HSNF dataset had 4–32 alleles with a mean allelic

richness of 14.5, and loci within BNF had 10–29

alleles with a mean allelic richness of 18.9. Tests for

departures from HWE showed all loci were in HWE

except one (QWZ) in HSNF and one (43 M) in BNF.

Tests for linkage disequilibrium and null alleles found

no linkage, and only one possibility of null alleles

(43 M) in BNF. QWZ was in HWE in BNF, and

43 M was in HWE and showed no indication of null

alleles in HSNF, therefore both loci were kept in the

dataset. STRUCTURE analysis supported K = 1

cluster in HSNF, and K = 1 cluster in BNF (see

Table S4 for mean log likelihood and delta K scores);

Evanno et al.’s (2005) method used in STRUCTURE

HARVESTER (Earl and vonHoldt 2012) calculates a

delta K value which by definition cannot be calculated

for K = 1, therefore we relied on the highest mean

estimated log likelihood, following Pritchard et al.

(2000). There was significant spatial autocorrelation

within both forests (test for heterogeneity p\ 0.001),

with the x intercept at 7.38 km in HSNF and 16.28 km

in BNF (Figures S2 and S3). The 64 axes of ordination

generated through PCA explained 93.75% and 90.70%

of the variation in HSNF and BNF respectively.

Landscape analysis

Kappa statistic calculations of the supervised classi-

fications for HSNF and BNF were 0.85 and 0.86

respectively (see Table S5 for rates of commission and

omission by class). Supervised classification of the

Landsat 8 imagery and subsequent analysis with

FRAGSTATS revealed HSNF and BNF have several

similarities in the amount and distribution of land-

scape variables as well as a number of differences

(Table 2). There are similar amounts of hardwood,

manmade, and wetland areas in both forests. However,

in HSNF, pine patches are ten times more abundant

and the patches are denser than those in BNF. HSNF

pine patches also had a higher correlation length,

Table 1 Maximum likelihood population effects models and AICc scores and delta (D) AICc values

Model name Variables included Holly Springs

National Forest

Bankhead

National Forest

AICc DAICc AICc D AICc

Full model Geographic Distance, Agriculture, Manmade, Pine, Hardwood, Wetlands 29467 0 25809 0

Isolation by distance Geographic Distance 30089 620 26324 515

Modified habitat Geographic Distance, Agriculture, Manmade 29870 401 25990 181

Moderate habitat Geographic Distance, Pine, Agriculture 29879 410 25937 128

Forest cover Geographic Distance, Pine, Hardwood, Wetlands 29914 445 26192 383

Agriculture Geographic Distance, Agriculture 29952 483 26018 209

Manmade Geographic Distance, Manmade 29991 522 26249 440

Pine Geographic Distance, Pine 30025 556 26269 460

Hardwood Geographic Distance, Hardwood 29954 485 26209 400

Wetlands Geographic Distance, Wetlands 29893 424 26104 295

The lowest AICc scores for each forest are in bold
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which is a measure of the distance an individual could

travel and remain in a single patch when dropped in a

random location and traveling in a random direction

(McGarigal et al. 2012). The amount of agriculture in

HSNF was higher than in BNF, but the patches were at

similar densities and correlation lengths. Areas con-

taining manmade structures were considerably denser

in BNF, however in HSNF they had a higher average

correlation length, suggesting manmade structures in

HSNF are mainly roads, and in BNF they are more

commonly buildings and paved lots. Hardwood

patches were denser in HSNF, but had a higher

correlation length in BNF, and wetlands in BNF had a

much higher correlation length than in HSNF.

Model testing

The full model had the lowest AICc and was thus the

best-fit model for both forests, indicating all of the

tested landscape variables contribute to the genetic

distances found in P. mississippi (Table 1). The rank

of model components differed between forests

(Table 3), with agriculture and wetlands the top two

components for both forests and the remaining vari-

ables contributing less to P. mississippi genetic

distance variability. Agriculture, pine, and hardwoods

had the same sign of effect in both forests, with

agriculture and hardwoods resisting gene flow of P.

mississippi and pine facilitating gene flow. In HSNF,

manmade structures correlated with facilitation of

gene flow, whereas in BNF they correlated with

resistance to gene flow. The opposite was true for

wetlands, which correlated with resistance to gene

flow in HSNF and facilitation of gene flow in BNF

(Table 4).

Univariate tests for scale and transformation

resulted in few similarities between the forests

(Fig. 3). Only one landscape variable, pine, was

optimized to the same transformation (inverse-reverse

ricker). The presence of pine on the landscape

consistently correlated with increased gene flow in

both forest regions. In HSNF, gene flow was at its

highest when 20% of the area within 1000 m was

comprised of pine. As the amount of pine increased

within the 1000 m area, correlation with facilitation of

gene flow decreased until the amount of pine reached

80%, at which point facilitation of gene flow

Table 2 Comparison of habitat amount (km2), patch density (number of patches per 100 ha), correlation length, Clumpiness Index,

patch cohesion, Aggregation Index for Holly Springs National Forest (italics) and Bankhead National Forest (bold)

Landscape type Amount of habitat Patch density Correlation length Clumpiness Index Patch cohesion Aggregation Index

Hardwood 1339.41 14.04 353.68 0.59 93.24 68.73

1382.44 9.96 912.92 0.59 97.52 79.60

Pine 2230.41 17.22 562.51 0.61 95.53 76.65

236.40 6.41 211.13 0.69 89.43 71.51

Agriculture 958.83 8.03 295.24 0.69 92.13 74.53

271.55 4.10 258.56 0.73 92.09 75.42

Manmade 291.75 1.42 5511.04 0.53 98.80 55.50

311.57 10.66 3838.83 0.51 98.61 56.48

Wetlands 245.30 11.59 91.31 0.41 73.57 43.67

441.08 17.71 279.73 0.55 89.24 62.20

Table 3 Rank and model coefficients for each landscape

variable in the most supported maximum likelihood population

effects model for each forest region

Holly Springs NF Bankhead NF

Wetlands 0.91 Agriculture 1.14

Agriculture 0.69 Wetlands - 0.48

Hardwoods 0.65 Manmade 0.47

Manmade - 0.43 Pine - 0.40

Pine - 0.25 Hardwoods 0.26

As the models have been optimized to both scale and

transformation separately for each forest region, model

coefficients in HSNF cannot be directly compared to those

found in BNF. However, the overall rank-ordering of variables

provides a means for comparison
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exponentially increased. The scale at which this

occurred in BNF was 750 m.

Only one landscape variable, agriculture, was

optimized to the same scale (500 m) in both study

areas. Agriculture correlated with resistance to P.

mississippi gene flow in both study regions. The

transformation, or function of the relationship between

gene flow and the amount of agricultural land, differed

between forest regions. In HSNF, the area within 500

m comprised of 20% agriculture correlated with the

highest resistance, and the lowest amount of resistance

was seen when 80% of the surrounding area was

agriculture. Conversely, in BNF, correlation with the

lowest resistance to gene flow occurred when 20% of

the surrounding landscape was agricultural.

The largest difference in scale was found in

wetlands, with HSNF optimized to 1000 m and BNF

optimized to 100 m. Wetlands in HSNF correlated

with resistance to gene flow, with increasing resistance

from 20 to 100% wetlands within 1000 m. In contrast,

wetlands in BNF correlated with facilitated gene flow

at a scale of 100 m with increasing facilitation with an

increasing presence of wetlands.

The manmade structures landscape variable

showed the largest difference in transformation, with

HSNF optimized to an inverse ricker transformation

and BNF optimized to a ricker transformation. In

HSNF, manmade structures correlated with facilita-

tion of gene flow, whereas in BNF, manmade struc-

tures correlated with resistance to gene flow. However,

facilitation is at its lowest when manmade structures

comprise 20% of the landscape in HSNF, and resis-

tance is at its highest when manmade structures

comprise 20% of the landscape in BNF.

Hardwoods correlated with resistance to P. missis-

sippi gene flow in both forest regions, however both

the scale and function (i.e., transformation) of their

effect was different. The scale of effect in HSNF was

at 500 m, with increasing resistance from 20 to 100%

of the immediate area consisting of hardwoods. In

BNF, the scale of effect was at 100 m, showing

decreasing resistance from 0 to 80% hardwoods.

Discussion

In this study, landscape genetics models for the

Mississippi slimy salamander were evaluated in each

of two forest regions that are qualitatively similar in

many respects (e.g., forest types, land uses, manage-

ment). This metareplication allowed us to understand

the extent to which landscape genetics inferences are

transferable to neighboring regions. Indeed, due to the

general similarity between the two forest regions, the

present study represents a case where transferability is

potentially quite high. Nonetheless, we recognize that

at least some differences between the best-fit land-

scape genetics models are likely given that there are

many alternative ways in which discordance can arise

(cf. only a single path to complete congruence), and

even the two datasets generated with the same

simulated yet stochastic conditions would likely result

in non-identical results. Accordingly, we focused on

broad elements of model similarity, along several axes

for which comparisons were possible. We found that

in both forest regions, the most strongly supported

MLPE model included all five of the landscape

variables under consideration, indicating they all

influence P. mississippi gene flow in non-negligible

Table 4 Comparison of

scale, transformation, and

sign of effect for Holly

Springs National Forest

(italic) and Bankhead

National Forest (bold)

A negative sign of effect

indicates the variable

facilitates gene flow, and a

positive sign of effect

indicates the variable resists

gene flow

Landscape type Scale Transformation Sign of effect

Hardwood 500 m Inverse ricker ?

100 m Inverse–reverse ricker 1

Pine 1000 m Inverse–reverse ricker -

750 m Inverse–reverse ricker 2

Agriculture 500 m Inverse–reverse ricker ?

500 m Inverse ricker 1

Manmade 250 m Inverse ricker -

1000 m Ricker 1

Wetlands 1000 m Inverse ricker ?

100 m Monomolecular 2
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ways, even if the magnitude of influence is weak for

some. We found that the rank ordering of variable

effects was different between forests, and so the notion

of a single landscape genetics model that is broadly

applicable across the species’ range was not sup-

ported. Notably, wetlands and agriculture were

consistently at the top of the rankings for both regions.

Furthermore, some variables affected gene flow in the

same way across the two forest regions (e.g., agricul-

ture correlated with resistance to gene flow), suggest-

ing some generality in the responses of P. mississippi

individuals to characteristics of the interveningmatrix.

Fig. 3 Comparison of the facilitation or resistance to gene flow

created by land use types in Holly Springs National Forest

versus Bankhead National Forest. Maps illustrate the optimized

scale, transformation, and sign for each land use type to give a

visual representation of the effect of each land use type on gene

flow of P. mississippi
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That said, there were several variables, including some

of large effect (e.g., wetlands), which differentially

affected gene flow, indicating context-dependent

responses that may make extrapolation of landscape

genetics models difficult. Below, we discuss the

variables in descending order of rank of effect, and

compare our findings with those of other relevant

studies. We close by considering some limitations of

our work, and point to future directions for under-

standing the effects of landscape genetics model

optimization upon generating broadly applicable

inferences about how individuals perceive and move

through a habitat matrix.

Based on our data, agriculture was ranked as one of

the top two most influential variables affecting gene

flow in the best-fit landscape genetics models for P.

mississippi in both HSNF and BNF. We found that

agricultural areas correlated with resistance to gene

flow at a relatively intermediate spatial scale of 500 m.

Notably, the most prominent agricultural practices

within both study regions include a rotation of corn,

wheat, and soybeans. In all of these cases, the crops are

grown as monocultures, and harvesting/planting times

are such that there is high probability of bare earth

during spring and fall, which are the most active

seasons for P. mississippi in terms of dispersal of

individuals (Petranka 1998; Salmerón et al. 2016; S.

Burgess personal observation). The lack of vegetative

cover and increased ground disturbance associated

with planting and harvest activities may explain the

resistance to gene flow correlated with agricultural

areas. Abundance surveys of plethodontid salaman-

ders have shown a direct relationship between the

number of individual salamanders and the amount of

herbaceous cover (Riedel et al. 2008) and recent

landscape genetics analyses of marbled newts have

shown an increase in population structure due to

agricultural areas (Costanzi et al. 2018).

Like agriculture, wetlands also ranked in the top

two most influential variables. However, the effects of

wetlands on gene flow differed between the two forest

regions; wetlands within 1000 m correlated with

resistance to gene flow in HSNF, whereas wetlands

correlated with facilitation of gene flow at a much

smaller scale (100 m) in BNF. These contrasting

outcomes may be due to differences in the shape and

connectedness of wetland patches across each forest

region. For instance, in BNF, the correlation lengths of

wetland patches (i.e., a metric of the amount of time an

individual can move forward from a random starting

point in a random direction and stay within the same

patch) are considerably higher than in HSNF. In this

context, simulations by Cushman et al. (2011, 2013)

are particularly relevant, as these authors explored

how the distribution of landscape variables within a

study area impacts their effect on gene flow, finding

the most prominent effects from differences in corre-

lation length and patch cohesion, (i.e., a metric

indicating the physical connectedness of patches).

Thus, our data suggest that in BNF, individual P.

mississippi can move relatively large distances with-

out exiting wetland areas, but not in HSNF. Overall,

our data underscore the idea that if wetlands are well

connected, they facilitate gene flow in terrestrial

salamanders such as P. mississippi.

Our analyses showed that the magnitude of influ-

ence on gene flow of hardwood, manmade, and pine

landscape variables were consistently ranked rela-

tively low in the best-fit MLPE models for both forest

regions. While hardwoods consistently correlated with

resistance to gene flow in both forest regions, the

function of resistance (i.e., the transformation) dif-

fered. Specifically, in HSNF, there was a positive

relationship between amount of hardwoods and

amount of resistance, whereas in BNF, the reverse

was true. As with wetlands, the correlation lengths of

hardwood patches in BNF were higher than in HSNF.

One possible explanation for these relationships is that

P. mississippi typically reside in bottomland hard-

wood forests (Petranka 1998) and thus may be

unprompted to leave. Smith and Rissler (2010)

reported that hardwood dominated understories were

characteristic of ‘‘pristine’’ habitat for terrestrial

heterpetofanuna in Talladega National Forest, Ala-

bama, and the population genetic effects of philopatry

(natal or otherwise) have been reported for plethod-

ontid salamanders in continuously forested habitat

(e.g., P. cinereus; Cabe et al. 2007). Thus, in the case

of P. mississippi, the reduction in gene flow, and

associated apparent ‘‘resistance’’ correlated with hard-

woods in the best fit landscape genetics models, should

not be equated to that caused by agriculture. Indeed,

Richardson et al. (2016) cautioned that even when a

set of landscape variables each show evidence of

resistance, the underlying reasons may be ecologically

different.

In HSNF, we found that manmade structures

correlated with facilitation of gene flow among P.
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mississippi, whereas in BNF they correlated with

resistance to gene flow. These effects were found to be

at different scales and different transformations in

each study area. Notably, patches of manmade struc-

tures in HSNF are considerably less dense, but have a

greater correlation length, suggesting their distribution

across the landscape is more linear (i.e., more roads

than buildings and paved lots). Studies of salamander

gene flow have found variable responses to roads,

showing both resistance to gene flow (Marsh et al.

2008) and no effect (Purrenhage et al. 2009). Our

analysis was unique due to the inclusion of manmade

structures, however our results support separating

roads and other manmade structures in the future to

differentially determine the effect of each land use

type.

Although pine ranked as one of the least influential

landscape variables in each best-fit MLPE model, it

did have the most consistent effect across the two

forest regions (i.e., same sign, scale, and transforma-

tion). This consistent correlation with facilitation of

gene flow by a landscape type that is less than ideal

habitat for P. mississippi (Petranka 1998) may seem

counter to predictions based on the species’ natural

history. However, increased dispersal—and by exten-

sion, gene flow—through moderately hostile habitat

has been reported for salamanders (Wang 2009;

Peterman et al. 2014; Prunier et al. 2014). In each of

the two forest regions studied here, pine is typically

found immediately adjacent to hardwoods and, as a

consequence of being evergreen, provides year-round

canopy cover. Furthermore, a considerable amount of

the pine habitat found in both forest regions is

routinely burnt via prescribed low-intensity fire (USFS

2004, 2012), resulting in a reduction of pine litter,

which has been experimentally shown to increase the

movement of an ambystomatid salamander (Am-

bystoma talpoideum, Moseley et al. 2004). Thus the

combination of these factors—close proximity to ideal

habitat, protection by year-round canopy cover, and

potential to increase movement—may explain the

consistent increase in gene flow found in response to

pine habitat.

Due to the nature of metareplications, there are a

number of potential limitations that arise both during

analysis and in the interpretation of results. Because

the goal of metareplication is to compare the effect of

each landscape variable in multiple areas, researchers

must include in their analysis environmental and

landscape variables that have both the potential to

affect the genetic structure of their study organism

(Keller et al. 2014) and are also present in all study

locations (Short Bull et al. 2011; Castillo et al. 2016;

Vergara et al. 2017). When results are intended to

apply to conservation throughout a species range (Row

et al. 2015) researchers may focus on the inclusion of a

smaller number of landscape variables in an attempt to

strike a balance between the number of parameters

evaluated and the transferability of model inferences.

By focusing on a smaller number of landscape

variables, researchers may fail to identify a landscape

feature that affects gene flow. There is also a potential

source of error in the interpretation of metareplication

results. Because metareplications must, by definition,

occur in separate geographic areas, they inherently

include the potential for erroneous conclusions due to

unidentified phylogeographic breaks between study

areas. Divergent lineages can at times be cryptic,

abrupt, and even counter to morphologic differences

(e.g., Jones and Weisrock 2018). If a phylogeographic

break exists, any inferred location-specific differences

between study regions (e.g., response to a particular

landscape variable) may instead be due to deeply

divergent lineages and separate evolutionary histories.

In the present study, we have prioritized the optimiza-

tion of a limited number of landscape variables to

maintain the ability to compare their effects across

forest regions while attaining detailed information

about the scale and function (i.e., transformation) of

those effects. While the possibility of an unidentified

phylogeographic break exists between P. mississippi

in our two forest regions, both HSNF and BNF lie well

within the range delineated for P. mississippi by

Highton (1989).

Management implications

Through metareplication, we have obtained informa-

tion about the relationships between P. mississippi and

their environment that would not have been apparent

with analysis of a single study area which can be used

to generate management recommendations for the

species. The consistent resistance to gene flow by

agriculture, coupled with the consistent facilitation of

gene flow by pine, indicates that land managers

overseeing multi-use areas could increase P. missis-

sippi gene flow by prioritizing silviculture over

agricultural leasing. Our results also indicate that the
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connectivity of wetland patches (as seen in our

analyses as a high correlation length) is an important

factor in their ability to facilitate P. mississippi gene

flow. Thus, managers should focus efforts on improv-

ing the connectivity of wetlands, potentially through

targeted restoration.
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S, Lourdais O, Trochet A, Le Petitcorps Q, Legrand A,

Varenne F, Grillet P, Morin-Pinaud S, Picard D (2018)

Agricultural landscapes and the Loire River influence the

genetic structure of the marbled newt in Western France.

Sci Rep 8:14177

Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M,

Morellet N, Petit E, Aulagnier S, Hewison JM (2004)

Landscape connectivity influences gene flow in a roe deer

population inhabiting a fragmented landscape: an indi-

vidual-based approach. Mol Ecol 13:2841–2850

Cushman SA (2006) Effects of habitat loss and fragmentation on

amphibians: a review and prospectus. Biol Conserv

128:231–240

Cushman SA, Raphael MG, Ruggiero LF, Shirk AS,Wasserman

TN, O’Doherty EC (2011) Limiting factors and landscape

connectivity: the American marten in the Rocky Moun-

tains. Landsc Ecol 26:1137–1149

Cushman SA, Shirk AJ, Landguth EL (2013) Landscape

genetics and limiting factors. Conserv Genet 14:263–274

Dray S, Dufour AB (2007) The ade4 package: implementing the

duality diagram for ecologists. J Stat Softw 22:1–20

Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a

website and program for visualizing STRUCTURE output

and implementing the Evanno method. Conserv Genet

Resour 4:359–361

Emel SL, Storfer A (2012) A decade of amphibian population

genetic studies: synthesis and recommendations. Conserv

Genet 13:1685–1689

Epps CW, Wasser SK, Keim JL, Mutayoba BM, Brashares JS

(2013) Quantifying past and present connectivity illumi-

nates a rapidly changing landscapefor the African elephant.

Mol Ecol 22:1574–1588

Epps CW, Crowhurst RS, Nickerson BS (2018) Assessing

changes in functional connectivity in a desert bighorn

sheep metapopulation after two generations. Mol Ecol

27:2334–2346

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of

clusters of individuals using the software STRUCTURE: a

simulation study. Mol Ecol 14:2611–2620

Fahrig L, Merriam G (1985) Habitat patch connectivity and

population survival. Ecol 66:1762–1768

Galpern P, ManseauM,Wilson P (2012) Grains of connectivity:

analysis at multiple spatial scales in landscape genetics.

Mol Ecol 21:3996–4009
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Prunier JG, Kaufman B, Léna JP, Fenet S, Pompanon F, Joly P

(2014) A 40-year-old divided highway does not prevent

gene flow in the alpine newt Ichthyosaura alpestris. Con-

serv Genet 15:453–468

Purrenhage JL, Niewiarowski PH, Moore FB-G (2009) Popu-

lation structure of spotted salamanders (Ambystoma mac-

ulatum) in a fragmented landscape. Mol Ecol 18:235–247

R Core Team (2019) R: a language and environment for sta-

tistical computing. R Foundation for Statistical Comput-

ing, Vienna, Austria. http://www.R-project.org

Raymond M, Rousset F (1995) GENEPOP (version 1.2): pop-

ulation genetics software for exact tests and ecumenicism.

J Heredit 86:248–249

Reddy PA, Puyravaud JP, Cushman SA, Segu H (2019) Spatial

variation in the response of tiger gene flow to landscape

features and limiting factors. Anim Conserv

Richardson JL, Brady SP, Wang IJ, Spear SF (2016) Navigating

the pitfalls and promise of landscape genetics. Mol Ecol

25:849–863

Riecken U, Raths U (1996) Use of radio telemetry for studying

dispersal and habitat use ofCarabus coriaceus L. Ann Zool

Fenn 33:109–116

Riedel BL, Russell KR, Ford WM, O’Neill KP, Godwin HW

(2008) Habitat relationships of eastern red-backed sala-

manders (Plethodon cinereus) in Appalachian agroforestry

and grazing systems. Agric Ecosyst Environ 124:229–236

Row JR, Knick ST, Oyler-McCance SJ et al (2017) Developing

approaches for linear mixed modeling in landscape

genetics through landscape-directed dispersal simulations.

Ecol Evol 7:3751–3761

Row JR, Oyler-McCance SJ, Fike JA, O’Donnell MS, Doherty

KE, Aldridge CL, Bowen ZH, Fedy BC (2015) Landscape

characteristics influencing the genetic structure of greater

sage-grouse within the stronghold of their range: a holistic

modeling approach. Ecol Evol 5:1955–1969

Salmerón M, Gbur EE, Bourland FM, Buehring NW, Earnest L,

Fritschi FB, Golden BR, Hathcoat D, Lofton J, Thompson

McClure A, Miller TD, Neely C, Shannon G, Udeigwe TK,

Verbree DA, Vories ED, Wiebold WJ, Purcell LC (2016)

Yield response to planting date among soybean maturity

groups for irrigated production in the US Midsouth. Crop

Sci 56:747–759

Schmitz OJ, Lawler JJ, Beier P, Groves C, Knight G, Boyce DA

Jr, Bulluck J, Johnston KM, Klein ML, Muller K, Pierce

DJ, Singleton WR, Stritthold JR, Theobald DM, Trombu-

lak SC, Trainor A (2015) Conserving Biodiversity:

123

350 Landscape Ecol (2020) 35:337–351

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.R-project.org


Practical Guidance about Climate Change Adaptation

Approaches in Support of Land-use Planning. Nat Area J

35:190–203

Shirk AJ, Landguth EL, Cushman SA (2017) A comparison of

individual-based genetic distance metrics for landscape

genetics. Mol Ecol Resour 17:1308–1317

Shirk AJ, Landguth EL, Cushman SA (2018) A comparison of

regression methods for model selection in individual-based

landscape genetic analysis. Mol Ecol Resour 18:55–67

Shirk AJ, Raphael MG, Cushman SA (2014) Spatiotemporal

variation in resource selection: insights from the American

marten (Martes americana). Ecol Appl 24:1434–1444

Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC,

Landguth EL, Schwartz MK, McKelvey K, Allendorf FW,

Luikart G (2011)Why replication is important in landscape

genetics: american black bear in the Rocky Mountains.

Mol Ecol 20:1092–1107

Smith WH, Rissler LJ (2010) Quantifying disturbance in ter-

restrial communities: abundance-Biomass Comparisons of

herpetofauna closely track forest succession. Restor Ecol

18:195–204

Sork VL, Waits L (2010) Contributions of landscape genetics—

approaches, insights, and future potential. Mol Ecol

19:3489–3495

Spatola BN, Peterman WE, Stephens NT, Connette GM,

Shepard DB, Kozak KH, Selmlitsch RD, Eggert LS (2013)

Development of microsatellite loci for the western slimy

salamander (Plethodon albagula) using 454 sequencing.

Conserv Genet Resour 5:267–270

Sunnucks P (2000) Efficient genetic markers for population

biology. Trends Ecol Evol 15:199–203

Trainor AM,Walters JR, Morris WF, Sexton J, Moody A (2013)

Empirical estimation of dispersal resistance surfaces: A

case study with red-cockaded woodpeckers. Landsc Ecol

28:755–767

U.S. Department of Agriculture Forest Service (2004) National

Forests in Alabama: revised land and resource manage-

ment plan. Region 8, Atlanta, GA, Jan 2004

U.S. Department of Agriculture Forest Service (2012) National

Forests in Mississippi: revised land and resource manage-

ment plan. Region 8, Atlanta, GA, Aug 2014

van Etten J (2017) R package gdistance: distances and routes on

geographical grids. J Stat Softw 76(13):07613

Vergara M, Cushman SA, Ruiz-González A (2017) Ecological
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