menden

Special Shaped Punches

 \& DiesInformation
English Version

Burr Ridge, Illinois 60521
Telephone: 630/655-0888
FAX: 630/655-3012

menden

SPECIAL SHAPES How to Order Specials

Information Needed to Order

What press?

\qquad
Can a standard file hole punch and die be used ? \qquad
What lockdown is used?
(How is the punch or die held in the ring?)
What shape will be used?
(See following sample shapes)
What direction will the shape run ? \qquad
What is the circumference of the ring? \qquad
(Is this a special pattern or repeat?)
What material is being cut? \qquad
Are the punches and dies crowned ?
(Does the top of the punch and die need to be curved ?)
Note! Oversize Punches and
Dies require special rings
menden

SPECIAL SHAPES

Special Shapes for Special Jobs

 for the standard file hole stationCall for Price and Delivery

Accounting Shapes

Miscellaneous Others

SPECIAL SHAPES

meaden

SPECIAL SHAPES

Which triangle to order ?
Upper Left Upper Right
Lower Right .

Order RD-XXX and RP-XXX

SPECIAL SHAPES

radius $=r$

Any combination of a and b is possible as long as both a and b are each less than $.520 "$
= width
($\begin{aligned} & a=.500^{\prime \prime} \\ & b=.375^{\prime \prime} \\ & r=.187^{\prime \prime}\end{aligned}$

$\mathrm{a}=.500 \mathrm{C}$
b = .218"
r = .109"

$\mathrm{a}=.500 \mathrm{C}$
b $=.236^{\prime \prime}$
r = .118"
$\int \begin{aligned} & a=.437^{\prime \prime} \\ & b=.236^{\prime \prime} \\ & r=.118^{\prime \prime}\end{aligned}$

$\mathrm{a}=.406{ }^{\prime \prime}$
b = .062"
r = . $031{ }^{\prime \prime}$
$\mathrm{a}=.375^{\prime \prime}$
$\mathrm{b}=.312^{\prime \prime}$
$r=.156 "$

ग
$\mathrm{a}=.375$
b $=.094{ }^{\prime \prime}$
r = .047"
$\mathrm{a}=.350^{\prime \prime}$
$\mathrm{b}=.125^{\prime \prime}$
r = .062"

$\mathrm{a}=.500{ }^{\prime \prime}$
$\mathrm{b}=.330^{\prime \prime}$
$r=.165^{\prime \prime}$

$a=.500 "$
$b=.282^{\prime \prime}$
$r=.141^{\prime \prime}$
$a=.500 "$
b = . 250 "
r = . $125^{\prime \prime}$

$a=.500 "$
b = .156"
r = . $078^{\prime \prime}$
$\mathrm{a}=.500{ }^{\prime \prime}$
b = . $125^{\prime \prime}$
r = .062"
b = .187"
r = .093"

$a=.437{ }^{\prime \prime}$
b = . $250^{\prime \prime}$
r = . $125^{\prime \prime}$
$r=.031^{\prime \prime}$
$\mathrm{a}=.432^{\prime \prime}$
$\mathrm{b}=.062^{\prime \prime}$
$\mathrm{r}=.031 "$
$a=.415 "$
b = .218"
$a=.406 "$
r = . 109 "
b = . 156 "
r = . 078 "
$\mathrm{a}=.394{ }^{\prime \prime}$
b = .236"
r = . $118^{\prime \prime}$
$a=.394 "$
b = .157"
r = .078"
$a=.394 "$
b = .078"
r = .039"
$a=.375^{\prime \prime}$
$a=.375^{\prime \prime}$
b = . 156 "
$\mathrm{a}=.375^{\prime \prime}$
b = . $125^{\prime \prime}$
r = .062"
$=.125^{\prime \prime}$
r = .078"
$a=.354{ }^{\prime \prime}$
b = .078"
r = .109"
r = .039"
meaden

menden

SPECIAL SHAPES

radius $=$

Any combination of a and b is possible as
$=$ width long as both a and b are each less than $.520 "$

在 $\begin{aligned} & \mathrm{a}=.315^{\prime \prime} \\ & \mathrm{b}=.098^{\prime \prime} \\ & \mathrm{r}=.049^{\prime \prime}\end{aligned}$
$\int \begin{aligned} & \mathrm{a}=.312^{\prime \prime} \\ & \mathrm{b}=.125^{\prime \prime} \\ & \mathrm{r}=.062^{\prime \prime}\end{aligned}$
$\int \begin{aligned} & a=.276^{\prime \prime} \\ & b=.118^{\prime \prime} \\ & r=.059^{\prime \prime}\end{aligned}$
r＝．059＂

在 $\begin{aligned} & a=.265 " \\ & b=.080^{\prime \prime} \\ & r=.040^{\prime \prime}\end{aligned}$
— $\begin{aligned} & a=.250^{\prime \prime} \\ & b=.093^{\prime \prime} \\ & r=.046 "\end{aligned}$
$a=.218^{\prime \prime}$
$b=.156 "$
$r=.078^{\prime \prime}$
$\begin{aligned} & \mathrm{a}=.218^{\prime \prime} \\ & \mathrm{b}=.110^{\prime \prime} \\ & \mathrm{r}\end{aligned}=.055^{\prime \prime}$
b $\begin{aligned} & \mathrm{a}=.200^{\prime \prime} \\ & \mathrm{b}=.120^{\prime \prime} \\ & \mathrm{r}=.060^{\prime \prime}\end{aligned}$

艮 $\begin{aligned} & \mathrm{a}=.118^{\prime \prime} \\ & \mathrm{b}=.078^{\prime \prime} \\ & \mathrm{r}=.039 "\end{aligned}$
$a=.312^{\prime \prime}$
$b=.250 "$
$r=.125^{\prime \prime}$
r＝．125＂
$\mathrm{a}=.312^{\prime \prime}$
b＝．062＂
r＝．031＂
$\mathrm{a}=.276 "$
b＝．094＂
r＝．047＂
$\mathrm{a}=.250^{\prime \prime}$
b＝．156＂
r＝．078＂
$\mathrm{a}=.236{ }^{\prime \prime}$
b＝．156＂
r＝．078＂
$\mathrm{a}=.218^{\prime \prime}$
b＝．062＂
r＝．031＂
$\mathrm{a}=.193^{\prime \prime}$
b＝．093＂
r＝．046＂
－$\quad \begin{aligned} & \mathrm{a}=.186^{\prime \prime} \\ & \mathrm{b}=.092^{\prime \prime}\end{aligned}$
r＝．078＂

SPECIAL SHAPES

Any combination of a and b is possible as long as the diagonal x is less than .520"

a" x b"	$\mathrm{a}^{\prime \prime} \mathrm{x}$ b"	a" x b"
.406" x . 312 "	. 312 " x . $187{ }^{\prime \prime}$. 375 " x . 125 "
.437" x .250"	.236" x .177"	. 312 " x .125"
.312" x . 250 "	. 300 " $\times 167{ }^{\prime \prime}$.265" x . 125 "
. 315 " x .236"	.394" \times.157"	. 250 " $\times 1.25$ "
.276" x . 216 "	. 315 " x .157"	.156" x . 125 "
.469" x . 200 "	. 236 " x . 157 "	. 275 " x $.118^{\prime \prime}$
.458" x . 200 "	. 187 " $\times .156$ "	. 236 " x . 118 "
. 300 " x . 200 "	.187" $\times .140$ "	.250" x . 110 "
.394" x . $197{ }^{\prime \prime}$.197" $\times .138$ "	.156" x . 109 "
. 315 " x .197"	.500" x . 125 "	.200" \times. 100 "
.437" x . 187 "	. 484 " \times. $125{ }^{\prime \prime}$	236 " x .098"

menden

SPECIAL SHAPES

RECTANGLES

= width

Any combination of a and b is possible as long as the diagonal x is less than .520 "

$\begin{gathered} \text { a" x b" } \\ .205 " \text { x .098" } \end{gathered}$	$\begin{array}{r} \text { a" x b" } \\ .375 " \times .062 " \end{array}$	$\begin{gathered} \text { a" x b" } \\ .312 " \times .050 " \end{gathered}$
.375" x .093"	.312" x .062"	. 375 " x .046"
. $312^{\prime \prime}$ x .093"	.250" x .062"	.281" x .046"
.250" x .093"	.218" x .062"	.234"x .046"
. 240 " x .085"	. 125 " x .062"	. 218 " x .046"
.200" x .079"	.375" x .059"	.197" x .039"
1.472" x .078"	.315" x .059"	. 187 " x .039"
.354" x .078"	.275" x .059"	.157" x .039"
. 315 " x .078"	.236" x .059"	$\begin{aligned} & .500 " \mathrm{x} .312 " \\ & \text { with } .065 " \mathrm{R} \end{aligned}$
.236" x .078"	.197" x .059"	$\begin{aligned} & .329 " x .200 " \\ & \text { with } .047 " R \end{aligned}$
.177" x .074"	.176" x .059"	
. 437 " x .062"	.157" x .059"	

SPECIAL SHAPES

Any combination of a and b is possible as long as the diagonal x is less than $.520 "$

110 " x .110"
.187" x .187"

.197" x .197"

.353" x.353"
. $125^{\prime \prime}$ x .125"
. 156 " x .156"

.220" x .220"
.250" x .250"
.421" x .421" with .125 " radius

menden

SPECIAL SHAPES

HALF MOONS

Any combination of a and r is possible as long as a is less than .520 "

$\mathrm{d}=.500{ }^{\prime \prime}$
$r=.250 "$

$\mathrm{d}=.406 \mathrm{\prime} \mathrm{\prime}$
$r=.203 "$

d = .394"
$r=.197{ }^{\prime \prime}$

$\mathrm{d}=.312^{\prime \prime}$
$r=.156{ }^{\prime \prime}$
$\mathrm{d}=.280^{\prime \prime}$
$r=.140^{\prime \prime}$

$$
d=.250 "
$$

$$
r=.125 "
$$

d = .187"
r = .093"

$$
\mathrm{d}=.125 "
$$

r = .062"

menden

SPECIAL SHAPES

CORNER CUTS

Any combination of a and r is possible as
long as a is less than .520 " diameter

r =.218"
r =.032"

SPECIAL SHAPES
 MISCELLANEOUS

Any shape is possible as long as the chad can exit the bottom of the die

T

meaden

SPECIAL SHAPES

OVERSIZE

Standard
File Hole Die

Oversize Die

Double Oversize Die

Note! Oversize Punches and Dies require a special ring

