Embedded Real-Time Operating System Design

RTOS.X: Theory, Analysis, Performance and Portability

Syllabus (1)

	Topics	Text	Milestones
1	Course Description and Objectives, Prerequisite Skills	Preface	Background Material
<u>2</u>	RTOS Overview	Section 1.2	Foundation Concepts
<u>3</u>	Boot Process & Development Environment	Section 3.3	Boot Mode and Development Environment
4	Processor Architecture (1)	Section 3.3	CPU Registers and Addressing Models
<u>5</u>	Processor Architecture (2)	Section 3.3	Addressing Modes and Debugging
<u>6</u>	Critical Hardware Resources	Section 3.3	Interrupt Processing

Syllabus (2)

	Topics	Text	Milestones
<u>7</u>	RTOS Fundamentals	Chapter 1	Multitasking, Timeslice and Semaphores
<u>8</u>	RTOS API Definition (1)	Chapter 2	RTOS.h header file
<u>9</u>	RTOS API Definition (2)	Chapter 2	RTOS.h header file
<u>10</u>	Real-Time Embedded Systems	Section 1.1	Sample RTOS Use Cases
<u>11</u>	RTOS Requirements	Section 2.1	RTOS Temporal Requirements
<u>12</u>	RTOS Internals	Section 2.1.1	RTOS.c Design / Architecture

Syllabus (3)

	Topics	Text	Milestones
<u>13</u>	Task Control Block & Task Context	Section 2.1	Primary RTOS Data Structures
<u>14</u>	Context Switching (1)	Section 3.4	Fundamental Operations and Sequences for Context Switching
<u>15</u>	Context Switching (2)	Section 3.4	Detailed Mechanics of Performing a Context Switch between Tasks
<u>16</u>	Counting ("Dijkstra") Semaphores	Section 2.5	Full Implementation of Counting Semaphores
<u>17</u>	Binary Semaphores & Software Events	Section 2.6 Section 2.7	Full Implementation of Software Events and Binary Semaphores
<u>18</u>	Condition Variables & Message Passing	Section 2.8 Section 2.9	Full Implementation of Condition Variables and Message Passing
<u>19</u>	Process Management	Section 2.2 Section 2.3	Full Implementation of Process Management and Ancillary Functions

Syllabus (4)

	Topics	Text	Milestones
<u>20</u>	Error Handling	Section 2.4	Handling Errors and Detecting Deadlock
<u>21</u>	Hardware Independence	Section 3.1	How and Why an RTOS should be Portable
<u>22</u>	Validation	Chapter 4	Test Suite to Validate that the RTOS is correct
<u>23</u>	Performance Assessment	Chapter 5	RTOS Temporal Performance Assessment
<u>24</u>	Priority Inheritance	Section 6.2	Priority Ceiling Protocol Theory and Application
<u>25</u>	Earliest Deadline First Scheduling	Section 6.3	EDF Scheduling Theory and Application
<u>26</u>	Multiprocessor Systems	Section 6.4	How the RTOS would operate on multiprocessor platform

ISBN: 979-8-9904006-4-1 (PDF)

Copyright © 2024 by GPS Engineering Consulting, LLC

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the GPS Engineering Consulting, LLC, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the GPS Engineering Consulting, LLC at the address below.

GPS Engineering Consulting, LLC 18 Royal Birkdale Court Penfield, NY 14526