
Embedded
Real-Time
Operating
System
Design
RTOS.X: Theory, Analysis, Performance and Portability

First Edition

Greg P. Semeraro, PhD

Fairport, NY USA

Copyright © 2024 by GPS Engineering Consulting, LLC
All rights reserved. No part of this publication may be reproduced, distributed,
or transmitted in any form or by any means, including photocopying, recording,
or other electronic or mechanical methods, without the prior written permission
of the GPS Engineering Consulting, LLC, except in the case of brief quotations
embodied in critical reviews and certain other noncommercial uses permitted by
copyright law. For permission requests, write to the GPS Engineering
Consulting, LLC at the address below.

GPS Engineering Consulting, LLC
18 Royal Birkdale Court
Penfield, NY 14526

Preface

This text is the result of more than thirty years of designing hardware, Field
Programmable Gate Array (FPGA) logic, System-on-Chip (SoC) components,
low-level firmware, and software for embedded, real-time systems, as well as expe-
rience in advanced microarchitecture research and design. That unique experience
provides the context for the real-time operating system (RTOS) design presented
and analyzed in this text. The text brings together all these perspectives resulting
in a comprehensive description of not only what an RTOS is and how to design it,
but also why decisions should be made in one way or another. The results is that
this text provides a comprehensive guide through the design of an RTOS with
detailed explanations and justifications for all design decisions along the way. In
this way, the reader can appropriately adapt the RTOS concepts presented to
real-time applications, and, more importantly, design additional features and ca-
pabilities into the RTOS which leverage the underlying knowledge of the design
trade-offs presented.

This text will focus on the RTOS kernel, that is, the core components and
fundamental internal data structures of a complete and fully functional RTOS.
The RTOS design presented in this text can be used as-is for many real-time ap-
plications and embedded products on the four hardware platforms presented. The
RTOS can also be used as a foundation upon which a more feature-rich RTOS can
be designed, if the principles and concepts presented are carried through to the
RTOS extensions as well. Additionally, the RTOS can be used as a basis for port-
ing to a hardware platform other than the four described in the text. The source
code and RTOS architecture are specifically designed to support different hard-
ware platforms by localizing and paying special attention all hardware-specific
aspects of the RTOS design.

Objectives

Simply put, the objectives of this text are to provide an understanding of the
principles guiding the design of an RTOS and an understanding of the detailed
software design and implementation of an RTOS adhering to these principles.
These principles are also essential to the design of real-time applications, there-

v

vi

fore providing a level of understanding that can be leveraged in many application
domains. A common misconception is that having the knowledge and skills to
design and develop software or even embedded firmware is all that is needed to
design real-time software or firmware. The issue is that real-time applications
include all the logic and complexity of other software but also include temporal
constraints and requirements on top of all that. In addition, real-time applica-
tions include the complexities of multi-threaded software. These additional issues
make real-time application design and development challenging. Understanding
the underlying design of the RTOS significantly reduces this complexity by pro-
viding an additional perspective. In the process of learning about the design of an
RTOS, the reader will be able to design better, more efficient and, (more impor-
tantly) more correct real-time applications as well as analyze and debug real-time
applications more efficiently and easily.

An important distinction between a traditional desktop or server operating
system and a real-time operating system is that the former must be general-
purpose and must do many things well, whereas an RTOS is, to a certain degree,
specialized. That is, an RTOS contains features and capabilities that allow it to
support a wide range of special-purpose, real-time applications but it does not
attempt to support general-purpose applications. Real-time applications do not
need all the features available in a general-purpose operating system, and even
for those features that are common, real-time applications need guarantees in
temporal performance that only an RTOS can provide. This text describes the
features of an RTOS that are necessary to support the vast majority of real-time
applications and explains how additional features can broaden the range of real-
time applications that the RTOS can support even further while still maintaining
real-time characteristics. This is important because the temptation is to add
general-purpose operating system features to the RTOS to make its use broader;
it is important to understand the characteristics of an RTOS to know when adding
features can make the result no longer a real-time operating system. This is
especially true when it comes to input / output peripherals; nearly all real-time
applications will need to interact with peripheral devices, but not all peripherals
can be readily supported by an RTOS without the RTOS losing the ability to
meet temporal guarantees.

In this text four microprocessor / microcontroller hardware platforms and
development environments will be fully described, and the RTOS developed can
be used on each of these platforms. An interesting feature of the RTOS is that
very little of the software that comprises the RTOS is specific to the platform
on which it is running. This means that although the development is specific
to the platforms, it is a simple matter for the RTOS to be migrated or ported
to another microprocessor or microcontroller. To achieve this port, only the
hardware-specific code (clearly discussed in the text) needs to be ported. The
rest of the RTOS code simply needs to be compiled for the target device.

Although most real-time applications can be adequately supported by an

vii

RTOS with simple scheduling and process management algorithms, there are
some applications which can benefit from more sophisticated approaches. In this
text those advanced algorithms will be described and developed as well. In most
cases, the overhead associated with these advanced techniques is not significant,
allowing these sophisticated algorithms to be included in the RTOS even for appli-
cations which do not initially require them but might require them in the future.
That said, there are instances where a trade-off must be made to include advanced
scheduling or advanced process management algorithms when they are not always
needed, simply because of the additional code space that the algorithms require.
It is therefore important to understand how these advanced algorithms can be
used and when they can provide a benefit to a real-time application.

For critical software development (which an RTOS certainly is) an important
aspect is the ability to validate that the design and implementation is correct and
to be able to perform regression testing whenever that critical software is changed.
To that end, a validation methodology and test suite will be developed so that
full confidence in the RTOS can be achieved. This is especially important when
developing something as complex, critical and largely obscured from the real-time
application development that it supports. It is important that the development,
testing, and debugging of the real-time application be done knowing that the
underlying RTOS is known to be correct independent of the application that it is
running.

Lastly, the temporal performance of an RTOS must be known for it to be
properly used in a real-time application. Proper design approaches result in best
performance but it must also be possible to quantify the RTOS temporal perfor-
mance accurately. In this text the philosophy, means, and techniques to perform
this performance analysis will be discussed so that any RTOS (even a port to
another hardware platform) can be assessed quantitatively, objectively and accu-
rately.

Skills Required

This text is intended for upper-division or graduate students of computer science,
software engineering, computer engineering, or practicing engineers with similar
background and education. It is assumed that the reader has full knowledge of
the C programming language and can successfully design and develop moderately
complex C applications that contain multiple modules with many related and dis-
parate functions. It is also assumed that the reader understands how parameters
are passed to functions in C applications as well as global, local, and automatic
variable semantics.

In addition, the reader should be familiar with at least one assembly language.
It is not necessary to know any of the specific assembly languages used in this
text as only small assembly language fragments will need to be written. It is
important that the reader have a solid understanding of how assembly language

viii

programs are written, as well as knowledge of at least one processor organization
and understanding of hardware stacks and how they are used. All other hardware-
specific information will be presented in the text and will pose no difficulties for
most readers.

A working knowledge of pointer-based, high-level data structures (lists, queues,
trees, etc.) is also required. These data structures will be developed, and are in-
tegral to the operation of the RTOS; prior knowledge of data structure design
and development is not required but a solid understanding of how each of these
structures is used and an understanding of their advantages and disadvantages
is required. It is also important that the reader understand multi-threaded soft-
ware concepts, such as, having experience with moderately complex application
development using Java, POSIX or .NET threads.

Finally, the reader is expected to be able to debug moderately complex C
code without the use of a debugger using only code walk-through analysis and
simple printf() debugging output. Access to and the ability to use a logic
analyzer or oscilloscope can be beneficial (depending on the hardware platform
being used) but is not required (especially if code walk-through analysis skills are
finely honed). The ability to debug C code without a debugger is necessary due
to the very nature of operating system, and especially, RTOS development.

How To Read This Book

This book is organized in a way that allows the reader to choose between four
supported hardware platforms. Once a platform is chosen, the common chapters
and sections of the book should be read along with the chosen platform sections.
The sections pertaining to the other three platforms should be bypassed. If it is
desirable to subsequently study another platform, those sections should be read
at that time. Attempting to study multiple platforms at the same time is not
advised. Until all of the concepts presented are understood in the context of a
single hardware platform, an understanding of other platforms is unlikely to be
easily achieved.

Contents

1 RTOS Fundamentals 1
1.1 Real-Time Embedded Systems . 2

1.1.1 Real-Time Application Examples 5
1.2 RTOS Definition . 14

1.2.1 Essential Services . 15
1.2.2 Tasks . 18
1.2.3 Inter-Process Communication 19
1.2.4 RTOS Actions . 20
1.2.5 Guaranteed Time Delay . 24

1.3 Review Questions . 25

2 RTOS Design and Implementation 27
2.1 Task Control Blocks . 31

2.1.1 TCB Management . 34
2.2 Explicit Task Management . 39
2.3 Time Delays . 41
2.4 Error Handling and Deadlock Detection 42
2.5 Counting (Dijkstra) Semaphores 45
2.6 Binary Semaphores . 46
2.7 Software Events . 47
2.8 Condition Variables . 49
2.9 Message Passing . 50
2.10 Dynamic Memory . 54
2.11 Review Questions . 54

3 Processor Architectural Considerations 57
3.1 Hardware Independence . 57
3.2 Source Code Organization . 58
3.3 Hardware Platforms . 60

3.3.1 Intel x86 . 60
3.3.2 Microchip PIC . 84
3.3.3 Microchip AVR . 101

ix

x CONTENTS

3.3.4 ST-Microelectronics Cortex M0 114
3.4 Context Switching . 134

3.4.1 Timeslice Processing . 137
3.4.2 Context Switching Implementation 142

Intel x86 . 142
Microchip PIC . 145
Microchip AVR . 148
ARM Cortex M0 . 151

3.5 Task Creation . 155
3.5.1 Task Creation Implementation 156

Intel x86 . 157
Microchip PIC . 160
Microchip AVR . 163
ARM Cortex M0 . 166

3.6 Review Questions . 169

4 Testing and Validation 171
4.1 Review Questions . 178

5 Performance Evaluation 179
5.1 Memory Footprint . 180
5.2 Execution Time . 183

5.2.1 Methodology . 184
5.2.2 Results . 189

5.3 Review Questions . 194

6 Advanced Topics 195
6.1 Rate Monotonic Analysis . 196
6.2 Priority Inversion . 199
6.3 Earliest Deadline First Scheduling 203
6.4 Multiprocessor Systems . 206

6.4.1 Multiprocessor Platform . 208
6.5 Review Questions . 210

7 Appendix - Source Code 211
7.1 RTOS-CFG.h . 211
7.2 RTOS.h . 214

Bibliography 217

Index 221

