Risk graph and evaluation Safety classification

Performance Level (PL) according to ISO 13849

PFH: Average probability of a hazardous failure per hour MTTF_d: Mean Time to Failure (dangerous) DC: Diagnostic coverage

MTTF _d for each channel		DC	
	MTTF _d (in a)		DC in %
low	3 to < 10	none	< 60
medium	10 to < 30	low	60 to < 90
high	30 to < 100	medium	90 to < 99
impossibel	100 or more	high	99 or more

Structure Hardware Fault Tolerance Safety requirements Comparisons of parameters to standards

Safety structures, HFT 1001

XooY: X: Number of channels for switch-off Y: Number of existing channels

1001: One-channel structure HFT = 0 (Cat: B to 2) 1002: Two-channel structure

HFT = 1 (Cat: 3 and 4) 1003, 2003:

Multi-channel structure HFT > 1

HFT: Hardware Fault Tolerance Cat: Categories according ISO 13849 Safety comparisons: Switch in the safe state Voter: Logic that follows the majority

Safety Integrity, Standard Comparison PFH, PFD, Requirements

Safety Integrity (Type B) according to IEC 61508				SIL / PL (ISO 13849)	
	HFT				
SFF	0	1	2	SIL	PL
< 60%	-	SIL 1	SIL 2	1	b, c
60% - < 90%	SIL 1	SIL 2	SIL 3	2	d
90% - < 99%	SIL 2	SIL 3	SIL 4	3	е
99% - < 99%	SIL 3	SIL 4	SIL 4	4	-

1003

2003

Requirement according to IEC 61508, Type B (partly unknown failure performance) Comparison SIL / PL (IEC 61508 / ISO 13849)

SIL	PFH(d)	PFD(d)	Critical values (IEC 61508)	
	in 1/h	on demand	SIL Safety Integrity Level	
1	< 10 ⁻⁵	< 10 ⁻¹	SFF Safe Failure Fraction	
2	< 10 ⁻⁶	< 10 ⁻²	PF Failure Probability	
3	< 10 ⁻⁷	< 10 ⁻³	PFH PF per hour	
4	< 10 ⁻⁸	< 10 ⁻⁴	PFD PF on demand	

Monitoring principle:

Safe controls and networks

Safe programmable logic controller

- 1. Complete system (PLC)
 - decentralized
- local control

-
- 2. Safe CPU (1002) with switching device

3. Safe bus systems (Faults/Measures)

Terms & Abbreviations Contact

SIL Safety Integrity Level	Classification of the safety integrity according to IEC 61508 und IEC 62061
PL Performance Level	Classification of safety-related functions to fulfil a safety requirement
Category	Classifcation of resistance to faults according and ISO 13849
PFH Probability Failure per Hour	Dangerous failure rate per hour (= λ_{DU} , in 1/h)
PFD Probability Failure per Demand (Low Demand)	Failure probability in relation to the number of demands
λ Failure Rate	Indicated in fit
MTTF Mean Time to Failure	Mean time until the occurrence of a fault (=1/ λ)
fit Failure in Time	Failures in 10 ⁹ hours
DC Diagnostic Coverage	Diagnostic coverage (percentage of detected faults during a test
SFF Safe Failure Fraction	Fraction of the safe failure rate to the entire failure rate.
HFT Hardware Failure Tolerance	Critieria for immunity from failures
CCF Common Cause Failure	Failures that occur due to a common cause

innotec GmbH

Heinrich-Wildung-Weg 3 D-21224 Rosengarten Tel.: +49 (0)4105-1559182 Fax: +49 (0)4105-1559183 info@innotecsafety.de www.innotecsafety.de

innotec GmbH

Salurner Straße 16 A-6020 Innsbruck Tel.: +43 (0)512-583320 Mobil: +43 (0)664-73031 881 info@innotecsafety.com www.innotecsafety.at

CONTROL SYSTEMS · DRIVES · NETWORKS · RAILTECH-NOLOGY · MACHINES · PLANTS · ELEVATORS · TRANSPORT-SYSTEMS · SOFTWARE · ORGANISATION · DOCUMENTATION

Parameters Formulas **Calculations**

Failure distribution

2. Parameters

Safe Failure Rate (SDFF), Diagnostic Coverage (C)

MTTF, λ, 1-channel, 2-channel Systems with diagnosis (according to EN 62061)

 $MTTF = \frac{1}{\sum \lambda}$ $\lambda_i = \lambda_1 + \lambda_2 + \ldots + \lambda_n$

- Common Cause Failures (CCF) ß:
- Proof testing interval T1:
- T2: Diagnosis testing interval
- S1, S2: Subsystems

V-Model Methods & Organisation

V Model, Development Life Cycle

SRS: Safety Requirement Specification Validation: Proof that the requirements are correct. Verification: Proof that the requirements are correct implemented

Methods & Organisation

FMEA	Failure mode and effects analysis
- System-FMEA	Analysis of failures within the system (e.g. using hard or software)
- Process-FMEA	Analysis of failures that occur within the pro- cess (e.g. production, maintenance or change)
Calculation of RPZ Risk Priority Number	Product of 3 rating numbers (e.g. risk, probability, severity)
Fault Tree (FTA, Fault Tree Analysis)	Presentation of failure structures failure scenarios
Simulation	Examination using a model (also mathematical) to allow a conclusion about the actual situation
Calculation (of the parameters)	Mathematical calculation of the parameters for safety classification (e.g. HFT, λ , CCF, DC, PFH and PFD)
Safety lifecycle	Consideration of all phases of a product (e.g. concept, development, production, testing, during service, maintenance, change, after service
Safety Assessment	Examination of the quality assuring measures within an organisation

SafetyFirst

The essentials of safety engineering

- Risk assessment
- Safety classifications
- References between standards
- Safety parameters
- Maschines
- Plants
- Controls
- Sensors and actuators
- Drive systems
- Bus systems
- Definitions
- **Formulas**

innotec