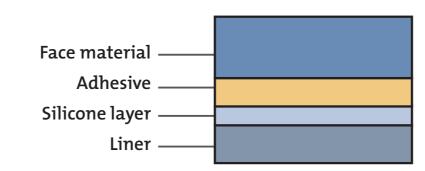

DIE-CUTTING BASICS

CUTTING UNIT / CYLINDERS

 \emptyset bearer rings – \emptyset magnetic zone Gap = European standard = 0.480 mm (0.0189") US standard = 0.483 mm (0.019")

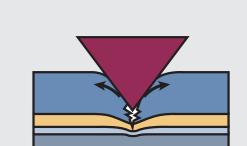
Proper cylinder dimensions


Circumference ≥ width Circumference < width

Recommendations

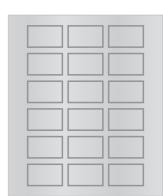
- Use an **adjustable anvil roller** (e.g., Wink SmartGap) for variable gap adjustment
- Install **pressure gauges** (e.g., Wink ForceControl) for continuous monitoring of cutting pressure

LABEL STOCK


- Paper bursts easily and can be cut with a wider blade angle, while soft filmic materials need (almost) full penetration and sharper angles
- Abrasive facestocks increase tool wear, thus special coatings like MCR are recommended
- Extreme **adhesives** (e.g. hotmelt) require non-stick coating
- **Liner** type & thickness determine die height

Die-cutting = compressing

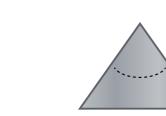
The cutting tool has to cut through the face material and the adhesive layer, without damaging the liner material.


The die blade compresses the face material until it bursts.

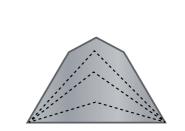
FLEXIBLE DIES

SUPER CUT

Basic versions


Every flexible die is custom-made $\alpha = \text{cutting angle}$ for the desired application. $\alpha = \text{cutting angle}$ $\alpha = \text{cutting angle}$

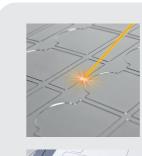
The combination of cutting unit/cylinders and label material determines the die specifications.


SuperCut 90 Standard adhesive

and thermal papers

H = die height

SuperCut 70 Films such as PE 85, PP, PET; also paper materials



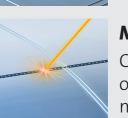
SuperCut Special Special films and other

difficult materials

Finishing options

- For maximum performance and longer lifetime
- Flexibility, tolerance and magnetic adhesion of the dies are not impaired

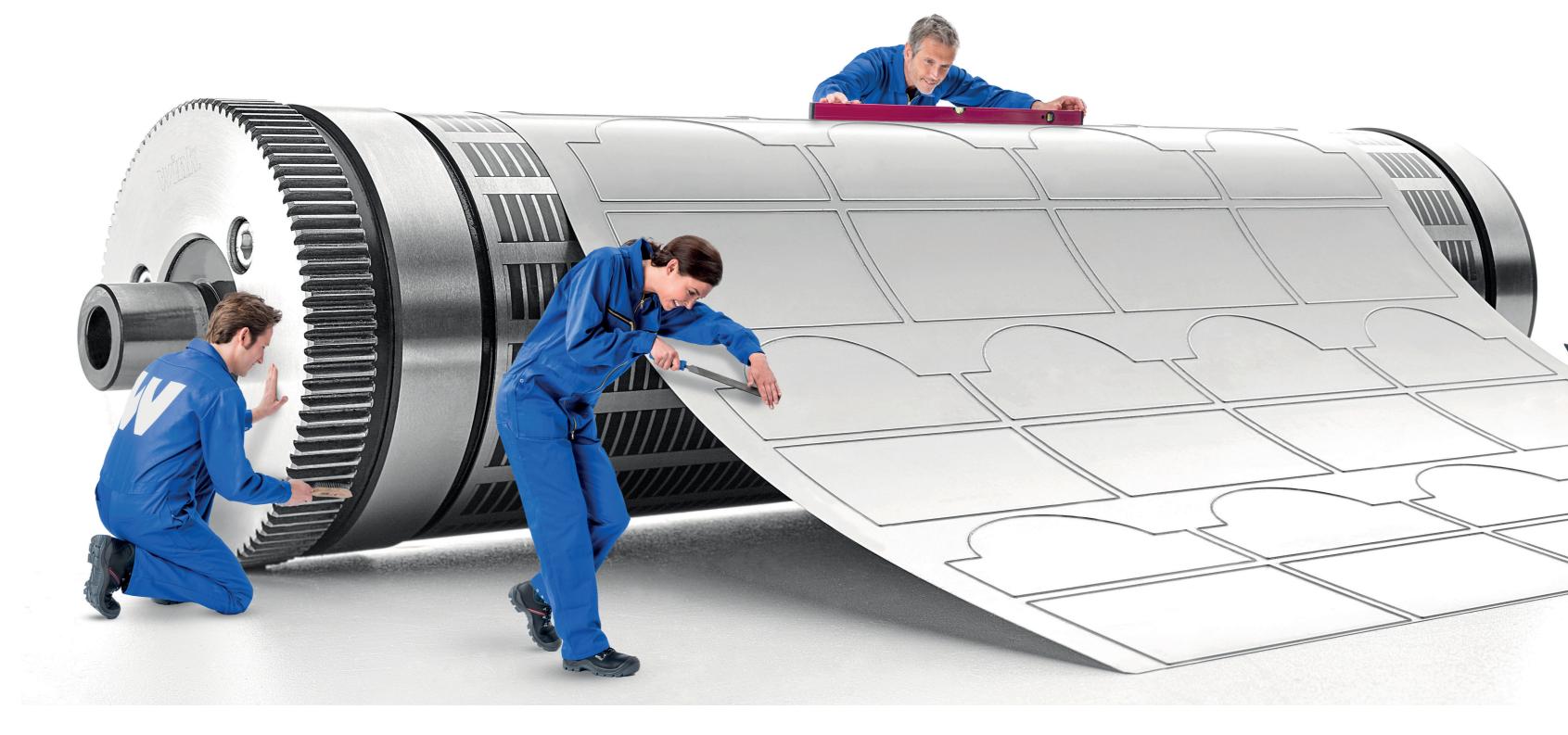
Laser hardening Cutting through


of filmic materials

MCR coating Abrasive facestocks (thermal paper,

opaque white, etc.)

MCR + Laser


Cutting-through of very abrasive materials; long runs

ABC of Die-Cutting

For more detailed information, please see our free "ABC of Die-Cutting" brochure.

The guide describes possible causes of unsatisfactory cutting results and how you can avoid or remove these problems.

CARE INSTRUCTIONS

Careful handling

- Never bend a flexible die or put it down on the blades.
- Always clean cylinders and reverse side of the die with certified cleaners before usage.
- Only use special die lifters to remove dies.
- Lift cylinders into and out of the machine carefully.
- Increase cutting pressure very slowly.

Safe storage

- Remove all ink and adhesive residues after usage.
- Oil tools with acid-free oil before storing.
- Store the dies in file hangers or in the original cardboard
- tubes/packages. • Keep certificate of quality and the cutting sample.

Flawless conditions

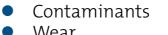
- Measure the gap regularly.
- Check bearers, bearings, pressure rollers and gears regularly.
- Ensure that bearings and shafts are running free from backlash.
- Pay attention to adequate pressure between magnetic and anvil cylinder.

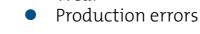
TROUBLE-SHOOTING

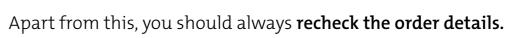
When cutting problems occur, always check these points first:

Cutting unit / cylinders

- Contaminants / Wear
- Pretension / cutting pressure
- Gap (Clearance)
- Circumference-width relation




Material


- Type and composition of the material Liner thickness
- Application (kiss-cutting and/or cutting-through etc.)

