

DisCharge: A Perspective on Charge Dissipation Layer Testing for Non-Conductive Substrates

Gerald Lopez¹, Glen de Villafranca¹, Grant Shao¹, Meiyue Zhang¹, Andrew Thompson², Aimee Bross Price³

¹University of Pennsylvania, Singh Center for Nanotechnology, 3205 Walnut Street, Philadelphia, PA 19104 USA ²DisChem, Inc., 17295 Boot Jack Rd, Suite A, Ridgway, PA 15853 USA ³The Ohio State University, Nanotech West Laboratory, Institute for Materials Research

The Ohio Union Cartoon Room • Wednesday, April 3, 2019

THE OHIO STATE UNIVERSITY

NAAEBBU MEETING FOR ADVANCED E-BEAM LITHOGRAPHY

- Networking platform for the electron beam lithography (EBL) community
- Time fully dedicated to talk about standing issues in EBL devoid of conference formality and trade show exhibition
- April 6-7, 2020, at Caltech
- www.maebl.org

Motivation

- Glass
- Diamond
- PDMS
- Pattern displacement Distortion
- Charging Concerns: Poor overlay • Stitching error

Non-Conductive Substrates • Fused Silica (Quartz)

EIPBN 2019 BEAMeeting

Approach

- Charge dissipation layer above or below resist.
- Exposure strategy.
- Easier said than done sometimes ...

"Interlayer and Intershot Charging Induced Pattern Distortion on GaAs Substrates Exposed with a High Throughput Shaped Beam Electron Beam Lithography System", A. Bross, R. Davis, T. Toyama, and J. Beene, Proceedings of the 2004 Conference on Compound Semiconductor Manufacturing Technology, Miami FL (2004) Furthest from ground No eSpacer

EIPBN 2019 BEAMeeting

Closest to ground No eSpacer

Charge Dissipation Options

Approach	Specifics	Pros	Cons	Other
Water Soluble Conducting Polymers	eSpacer, AquaSave	 Straightforward on PMMA/ZEP Water removal 	 EXPENSIVE Short shelf life (3 months) Generates particles 	
Metal Coatings	Au, Al, Cr	 Readily available Inexpensive Straightforward 	 Alters resist profile Dose Mixes with HSQ Peeling at high beam current/doses Process complexity 	Must use thermal evaporator or sputterer.
Exposure Strategy	Tool specific	No additional processing	SLOW	

DisCharge by DisChem

- Contains a class of conductive quaternary ammonium compounds (QAC)
- Unique Properties
 - Remains permanently cationically charged independent of pH
 - Are often water soluble
 - Offer extended shelf life at room temperature
 - Tolerate acids and oxidizers

MEETING FOR ADVANCED E-BEAM LITHOGRAPHY

, Inc., 17295 Boot Jack Rd, Suite A, R ⁶⁶⁰³ e-mail: info@disheminc.com

DisCharge Four Point Probe Characterization

Goal:

Study the conductivity of DisCharge H2O at different anti-charging-layer thicknesses

Methodology:

- 1. Create a test vehicle to test the conductivity
- 2. Test sheet resistance of DisCharge H2O at various RPMs for different concentrations

MEETING FOR ADVANCED E-BEAM LITHOGRAPHY

DisCharge Four Point Probe Characterization

Process:

- 1. AMI clean of 25 mm² fused silica (four samples)
- 2. Spin on S1813 positive resist at 3000RPM
- 3. Soft bake 115°C
- 4. Write box pattern on Heidelberg DWL66+ (10mm WH, 50% filter, 200mW LP)
- 5. Develop MF319, 60s w/ manual agitation, water rinse, N2 dry
- 6. Deposit 44 nm Au (Lesker PVD75, e-beam evap, 2 Å/s)
- 7. Liftoff with Microposit Remover 1165 (60°C w/ sonication)
- 8. Spin DisCharge H₂O at 1000, 2000, 3000, and 4000 RPM
- 9. Ensuring that probes are contacting the Au pads, measure current and voltage with a four point probe

Fabrication for Anti-Charging Test Vehicle

HEIDELBERG **INSTRUMENTS**

EIPBN 2019 BEAMeeting

Preliminary Results for DisCharge H2O

Using four point probe thin-sheet approximation: (*t < probe spacing*)

$$= \frac{\pi}{\ln(2)} \left(\frac{V}{I}\right) t = 4.532 \left(\frac{V}{I}\right) t$$

Sample	Sheet Resistivity (Averaged)		
	5.525*10 ⁻⁸ Ωm		
1000 RPM	3.562 Ωm		
2000 RPM	3.944 Ωm		
3000 RPM	9.388 Ωm		
4000 RPM	11.230 Ωm		

Sheet Resistance

Process Integration

- 1. Spin coat and pre-bake resist per protocol
- 2. Allow wafer/sample to cool to room temperature
- 3. Spin coat *DisCharge H2O*. No soft bake required.
- 4. Remove *DisCharge H2O* film using one of the following methods:
 - Spin Rinse Removal: While spinning at 3000 RPM for 60 seconds, rinse with DI water or IPA
 - Sink Rinse Removal: Rinse with running DI water for 30-60 seconds
 - Solvent Rinse Removal: Rinse with steady stream of IPA for 30-60 seconds
- 5. Dry sample using N₂ blow dry
- 6. Develop resist as normal

STS ELIONIX

lischem

ADVANCED LITHOGRAPHY

300 nm PMMA 950 A4 on 1mm PDMS on bulk Si

300 nm mr-PosEBR on Glass Slide

200 nm ZEP520A on Glass Slide

300 nm CSAR62 on Glass Slide

ZEP520A 300 nm Line Space Patterns atop Fused Silica

HSQ on Fused Silica

00000,000000000.00000 Mag Det Beam TLD-S 20.0 kX DO kV

Compatibility Summary

•00 · 000 · 0000 · 00000000000000000 · 0000 · 0000 · 000 00° 000° 000° 100000° • ° 00000° • ° 00000° • ° 0000 • 000 • 000 * 00000 P000 +000 00'000'000" "00000' .0000 100 *0000000 *0000 *000 *000 0000 .00004000 •••••• 0,0 +0000 0000 ° 00000 ° ° 0000000000 ° ° 00000 ° ° 0000 •000 • 000 ••••••••••••••••••••••• 00+00+000 ...0000 00,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Beam Mag Det Tilt FWD 5 µm 0.0° 00 kV 20.0 kX TLD-S 4.730

DisCharge H2O Compatible EBL Resists

anisole solvent) resist)

19

- **CSAR 62** (positive resist containing poly (α methylstyrene-co-chloromethacrylic acid methyl ester), plus an acid generator in anisole solvent)
- **mr-PosEBR** (acrylate-based positive resist in
- **ZEP520A** (positive resist in anisole solvent)
- **PMMA** (polymethyl methacrylate positive resist)
- **HSQ** (hydrogen silsesquioxane negative inorganic

DisCharge H2O Incompatible EBL Resists

ma-N 2400 (negative organic novolak resist)

EIPBN 2019 BEAMeeting

Summary

- Presented our work on DisCharge by DisChem
- Demonstrated electrical conductivity and efficacy in charge dissipation
- Shown to be compatible with several commercially available positive resists and a negative resist (HSQ)

MEETING FOR ADVANCED E-BEAM LITHOGRAPHY

, Inc., 17295 Boot Jack Rd, Suite A, R ⁶⁶⁰³ e-mail: info@disheminc.com