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Abstract

One recognizes five types of pairs of categorical premises (PCPs) – only three out
of  the  five  types  entail  logical  conclusions  (LCs)  and  thus  generate  valid
categorical arguments (VCAs), some of which are the usual valid syllogisms (VSs).
(George Boole and Lewis Carroll obtained these results.) One argues, (using set
relabelings), that all VCAs of the same type are equivalent. (This result was stressed
out by L. Carroll in his Symbolic Logic book.) As a consequence, Barbara, Darii
and Darapti may be chosen as the representatives of the three types of VCAs. One
generalizes the three PCP types to sorites that entail an LC. (Again, L. Carroll
dealt with such generalizations.) All the above results are obtained on a set model
for  the  terms  appearing  in  the  PCPs  or  sorites.  In  the  case  of  n-1  premises
containing n terms, the modeling universal set U is partitioned in  2n subsets, and
any LC pinpoints to just one of these 2n subsets. Thus, in particular, for categorical
syllogisms, n=3, (where the three syllogistic terms are denoted S,P,M, and their
complementary sets in U are S',P',M'), the middle term M, (or M'), is very much
part  of  the  LC,  and  eliminating  the  middle  term  from  the  LC  weakens  the
conclusion which will then refer to two of the 8 subsets partitioning U. To make M
and M' appear in a symmetric way in the PCPs, one extends the number of PCPs to
64 from the usual 36 - where the A,E,O,I quantifiers are applied only to the terms
S,P,M. Consequently, the eight M-P premises form a cube of opposition, and the
eight M-S premises form another cube of opposition. 
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1. Introduction
The syllogistic terms S,P,M, non-S (S'), non-P (P'), non-M (M') are modeled as sets,
and any universal, (resp. particular), premise empties, (resp. lays set elements into),
two subsets out of the 8-subset partition of a universal set U: U=MSP+MS'P+MSP'
+MS'P'+M'SP+M'S'P+M'SP' +M'S'P', (where the union of disjoints sets is denoted
by  a  plus  sign,  S',P',M'  are  the  complementary  sets  in  U  of  the  S,P,M  terms
respectively,  and MSP:=  M∩S∩P,  etc.)  By definition  a  categorical  syllogism is



made of a PCP to which one tacks a 3rd statement, an (S,P)-conclusion, i.e., one of
the categorical operators, (or quantifiers), A,O,E,I applied to the ordered pair (S,P).
If the conclusion is truly entailed by the PCP one has a VS, otherwise the syllogism
is invalid. There are 36 distinct PCPs expressed via only the S,P,M terms and the
categorical operators A,O,E,I applied to pairs of these 3 terms. For example four of
the six M-S premises are A(M,S)=All M is S, meaning MS'=Ø, O(M,S)=Some M is
not S, meaning MS'≠Ø, E(M,S)=No M is S, meaning MS=Ø, I(M,S)=Some M is S,
meaning MS≠Ø. One can say that these 4 premises are “acting on M”. Interestingly,
the next two premises are “acting on M'”: A(S,M)=All S is M, meaning SM'=Ø, and
O(S,M)=Some S is not M, meaning SM'≠Ø. One sees that A(S,M) and O(S,M) act
on  M'  exactly  how  E(M,S)  and  I(M,S)  act  on  M.  Indeed,  by  obversion
A(S,M)=E(M',S),  (one  may  use  the  shorthand  E'  for  E(M',S),  see  below),  and
O(S,M)=I(M',S), (one may use the shorthand I'). If one wants symmetry between
the  M  and  M'  “actions”,  one  has  to  introduce  two  more  S-premises:
A(M',S)=E(M',S'), (one may use the shorthand A'), and O(M',S)=I(M',S'), (one may
use the shorthand O'),for a total of eight M-S premises which may be grouped in
two squares  of  opposition,  one acting  on M,  A(M,S),  E(M,S),  I(M,S),  O(M,S),
(shorthand A,E,I,O),and the other  one acting on M',   A(M',S),  E(M',S),  I(M',S),
O(M',S),  (shorthand  A',E',I',O').  The  two  squares  together  make  a  cube  of
opposition, with universal premises on the top face of the cube, and the particular
premises on the bottom face. The M-P premises are treated analogously,  and by
always listing the P-premise first, one can understand that a PCP such as AE' means
A(M,P)E(M',S)=A(M,P)A(S,M)  which  are  Barbara's  premises.  We'll  use  this
extended set of 64 PCPs  to distinguish, as George Boole and Lewis Carroll did
before,  only  three  types  of  VCAs,  some  of  which  are  the  usual  VSs.   Via  set
relabelings, which are similar to syllogism reduction, we'll show that within each
type, all the VCAs are equivalent.

2. The Karnaugh map for n=3 (drawn for subsets instead 
 of  truth  values)  and  the  five  types  of  PCPs     

S'P'M SP'M SPM S'PM

S'P'M' SP'M' SPM' S'PM'

                                                             Fig. 1

The universal set U is graphed as a rectangle – but the left and right borders of the
rectangle are glued together to  generate  a cylinder,  so that S'PM and S'P'M are
adjacent, and S'PM' and S'P'M' are adjacent, too – as in the usual 3-circle Venn
diagram.  Since the 8 subsets of Figure 1 are the “elementary” subsets of U, one
calls them just subsets; no other set will be a “subset”. On this  Karnaugh map one
can see that any universal premise empties  two “horizontal subsets” located either
on the M or the M' row, and its contradictory particular premise places set elements
in  at  least  one of  the  same  two “horizontal  subsets”   emptied  by the  universal



premise.  For  example,  Barbara's  PCP,  A(M,P)A(S,M),  contains  two  universal
premises,  acting  one  on  M and  the  other  on  M'  This  is  the  first  type  of  PCP
(according to both Boole and Carroll). The premises mean MP'= Ø, SM'=Ø, i.e., 4
subsets are emptied on Fig. 1, thus reducing S to S=SPM and P'  to P'=S'P'M' –
which, after eliminating M, translate to the LCs A(S,P) and resp. A(P',S') – the latter
being equal, via contraposition, to  A(S,P).  Using existential import (ei) on S, and
resp. P' one gets the ei LC I(S,P) – Barbari, and the no name ei LC I(S',P'). The
same  results  are  easily  found  via  a  “tree  like  method”  which  eliminates,  (i.e.,
closes),  any  subset  (i.e.,  branch),  emptied  by  a  universal  premise:  S=SM
+SM'=SM=SPM+SP'M=SPM and P'=P'M+P'M'=P'M'=SP'M'+S'P'M'= S'P'M'. This
amounts - for all 8 PCPs containing two universal premises acting one on M and the
other on M' - to the general rule of starting two trees, one for each letter other than
the middle terms M and M'. Note that after finding the LC in either the graphical or
tree like way,  the middle  term elimination  consists  in  “just  do not  mention  the
middle term” – and by so doing, the usual LC wording refers to a column of the
Karnaugh map instead of only one subset of it. (The above “tree method” is similar
with Carroll's  “Method of subscripts”; he  solved sorites either by the subscripts'
method or by a “tree method”. ) 
The second type of PCP that entails an LC contains  16 PCPs, with  one universal
premise plus one particular premise, both acting on the same row (either M or M').
Darii's PCP, A(M,P)I(M,S), is an example. The LC is SPM≠Ø,  and results either
from Fig. 1, since I(M,S), MS≠Ø, places set elements on either SP'M or/and SPM,
but A(M,P),  MP'=Ø, by emptying S'P'M and SP'M “forces” I(M,S) to definitely
place its element(s) only on SPM. Or, one may start a (very short) tree with the non-
empty set specified by the particular premise MS=MSP+MSP'=SPM≠Ø.
The third type of PCP that entails an LC, contains  8 PCPs having  two universal
premises acting on the same row. Darapti's PCP,  A(M,P)A(M,S), meaning MP'=Ø
and MS'=Ø, is an example of such  a PCP. From Fig. 1 it is clear that the LC is
M=SPM, which, via ei on M, produces the ei LC I(S,P). Alternatively, one should
start the tree with M=MP+MP'=MP=MPS+MPS'=SPM. Note that, Boole 1847, on
pages 35 to 41, introduces and discusses four classes of PCPs and their LCs. The
first three of George Boole's and Lewis Carroll's types,  (Carroll, 1977, p.126, Table
IX.),  can  be  viewed  as  the  same  as  the  PCP types  described  above  –  whose
representatives  respectively  may  be  chosen Barbara,  Darii  and  Darapti.  Boole
divided his fourth class into subclasses of PCPs – these subclasses do not entail any
LCs and are equivalent with the the following types 4 and 5 PCPs. Type 4: has 16
PCPs containing two particular premises which do not entail any LCs. Type 5: no
LCs may be drawn either, from the 16 PCPs containing one universal premise plus
one particular premise, acting one on  M and the other one acting on M', or vice
versa. These are the only five types of PCPs possible. They have been figured out,
by and large, by George Boole since 1847. Carroll uses the types 4 and 5 PCPs as
examples  of  fallacies.  Carroll,  and  also  Boole  1847,  pp.34-35,  embrace  the
existence of VCAs: “The Aristotelian canons, however, beside restricting the order
of the terms of a conclusion, limit their nature also;—and this limitation is of more
consequence than the former. We may, by a change of figure, replace the particular
conclusion of bramantip, by the general conclusion of barbara; but we cannot thus



reduce to rule such inferences,” (aka LCs) “as Some not-Xs are not Ys. Yet there are
cases in which such inferences may lawfully be drawn, and in unrestricted argument
they are of frequent occurrence. Now if an inference of this, or of any other kind, is
lawful in itself, it will be exhibited in the results of our method.” Then, on pages 35
to 41, using equations to eliminate the middle term, Boole notices and discusses his
4 classes of PCPs and their LCs or lack thereof. Here are his conclusions on pp. 39-
40: “The lawful cases of the first class comprehend all those in which, from two
universal premises, a universal conclusion may be drawn. We see that they include
the premises of barbara and celarent in the first figure, of cesare and camestres in
the second, and of bramantip and camenes in the fourth. The premises of bramantip
are included, because they admit of an universal conclusion, although not in the
same figure. The lawful cases of the second class are those in which a particular
conclusion only is deducible from two universal premises. The lawful cases of the
third class are those in which a conclusion is deducible from two premises, one of
which is universal and the other particular. The fourth class has no lawful cases.“
Carroll has no use for the moods and figures of valid syllogisms: “The writers, and
editors, of Logical text-books which run in the ordinary grooves – to whom I refer
by the (I hope inoffensive) title “The Logicians”, “elaborately discussed no less
than  nineteen  different  forms  of  Syllogisms  –  each  with  its  own  special  and
exasperating Rules, while the whole constitutes and almost useless machine,  for
practical purposes”. And, in the posthumously published Part II of  his Symbolic
Logic book: “As to syllogisms, I find that their 19 forms, with about a score of
others which they  have ignored, can all be arranged under three forms, each  with a
very simple Rule of its own”. In conclusion, the VCA are partitioned into three
classes, each class being generated by the PCPs from the types 1, 2, and 3 above. In
the next section one will show that inside each of the three VCA types, any VCA
may be recast or reformulated, via a relabeling transformation of the sets S,P,M,
into,  respectively,  the  sets  S',P',M',  as  any other  VCA  of the  same  type,  which
makes all VCAs equivalent with  one of the  three representatives chosen one per
VCA  type.  For  example  Barbara,  Darii  and  Darapti,  may  be  chosen  as
representatives. In particular, the VCA\VS set whose LCs have one of the formats
A(P,S), O(P,S) or I(S',P') may be recast, via a set relabeling as VSs. 

3.  VCAs EQUIVALENCIES VIA SET RELABELINGS

One way of seeing that the VCAs of the same type are all equivalent, is to write the 
eight VCAs of type 1 as E(S*, M*)E(M*', P*), where the * stands for complement 
or no complement, (i.e., ' or nothing). Thus S* ∈ {S, S'}, M* ∈ {M, M'}, P* ∈ {P,P'}),
the eight VCAs of type 3 as E(S*, M*)E(M*, P*), and the 16 VCAs of type 2 as 
I(S*, M*)E(M*, P*) and  E(S*, M*)I(M*, P*).  (One can notice that, e.g., I(S, 
M)E(M, P'), Darii/Datisi, and  E(S', M)I(M, P), Disamis/Dimaris, have the same 
LC: SMP≠Ø.) Since it is arbitrary which set one denotes by M and which one 
is called M', and similarly which one is called S or S', and resp., which one is 
called P or P',  it follows that all VCAs of the same type are equivalent.



Another, more detailed way of seeing that the VCAs of the same type are all 
equivalent, is to group the 64 PCPs which entail at least one LC and thus generate 
VCAs, into 8 sets, numbered from 1 to 8, made of 4 PCPs per set (and generating 6 
VCAs per set – including the ei VCAs). Below, the first PCP in such a set of four 
PCPs always belongs to type 3 PCP, the following two belong to type 2 PCP and the
last one to  type 1 PCP. We'll say that each of such a four PCPs set is “bound to” a 
same subset of U: the four PCPs do not act at all on the subset of U on which they 
are all “bound”, but act on some of its “neighbours” in the Karnaugh map. One may
use the shorthand notation for PCPs with the convention that one lists first the P-
premise and then the S-premise. Thus to each of the 8 subsets of U one “attaches” a 
set of four PCPs “bound” to it, and on one column one lists the four PCPs, and on 
the second column their LCs:
1. VCAs “bound to” the subset S'P'M:
EE=E(M,P)E(M,S)                 M=S'P'M. If M≠Ø: I(S',P'), No name
IE=I(M,P)E(M,S)                         S'PM≠Ø or  O(P,S), No name 
EI=E(M,P)I(M,S)                      SP'M≠Ø or O(S,P),  Ferio/Festino/Ferison/Fresison
EE'=E(M,P)E(M',S)                     S=SP'M, P=S'PM', E(S,P),   Celarent/Cesare
                                        O(S,P) if S≠Ø, Celaront/Cesaro; O(P,S) if  P≠Ø, No name

2. VCAs bound to the subset SP'M:
EA=E(M,P)E(M,S')                M=SP'M. If M≠Ø: O(S,P),  Felapton/Fesapo
IA=I(M,P)E(M,S')                        SPM≠Ø or I(S,P), Disamis/Dimaris
EO=E(M,P)I(M,S')                       S'P'M≠Ø or I(S',P'), No name
EA'=E(M,P)E(M',S')                     P=SPM', S'=S'P'M, A(P,S)=A(S',P'),   
                                                     I(S,P) if P≠Ø, Bramantip' (the prime refers to M' 
                                                      in P=SPM'); I(S',P') if S'≠Ø, No name

3. VCAs bound to the subset S'PM:
AE=E(M,P')E(M,S)                M=S'PM. If M≠Ø: O(P,S),  No name
OE=I(M,P')E(M,S)                       S'P'M≠Ø or I(S',P'), No name
AI=E(M,P')I(M,S)                        SPM≠Ø or I(S,P),  Darii/Datisi
AE'=E(M,P')E(M',S)                     S=SPM, P'=S'P'M', A(S,P),  Barbara
                                                    I(S,P)  if S≠Ø, Barbari;  I(S',P')  if P'≠Ø, No name

4. VCAs bound to the subset SPM:
AA=E(M,P')E(M,S')                M=SPM. If M≠Ø: I(S,P), Darapti
OA=I(M,P')E(M,S')                       SP'M ≠Ø or  O(S,P), Bocardo
AO=E(M,P')I(M,S')                       S'PM≠Ø  or  O(P,S), No name
AA'=E(M,P')E(M',S')                    S'=S'PM, P'=SP'M', E(S',P'),  No name 
                                                 O(P,S) if S'≠Ø, No name; O(S,P) if  P'≠Ø,  No name

M' row VCAs:
5.  VCAs bound to the subset S'P'M':
E'E'=E(M',P)E(M',S)                 M'=S'P'M'. If M'≠Ø: I(S',P'),  No name
I'E'=I(M',P)E(M',S)                         S'PM'≠Ø or O(P,S),  No name
E'I'=E(M',P)I(M',S)                         SP'M'≠Ø or O(S,P), Baroco



E'E=E(M',P)E(M,S)                       S=SP'M', P=S'PM, E(S,P),  Camestres/Camenes
                                O(S,P) if S≠Ø, Camestros/Camenos; O(P,S) if  P≠Ø,  No name

6. VCAs bound to the subset SP'M':
E'A'=E(M',P)E(M',S')                M'=SP'M'. If M'≠Ø: O(S,P),  Felapton'/Fesapo'
I'A'=I(M',P)E(M',S')                        SPM'≠Ø or I(S,P), Disamis'/Dimaris'
E'O'=E(M',P)I(M',S')                       S'P'M≠Ø or I(S',P'),  No name
E'A=E(M',P)E(M,S')                        S'=S'P'M', P=SPM, E(S',P)=A(P,S), No name    
                                                 I(S,P) if P≠Ø,  Bramantip, I(S',P') if S'≠Ø, No name

7. VCAs bound to the subset S'PM':
A'E'=E(M',P')E(M',S)                M'=S'PM'. If M'≠Ø: O(P,S),  No name
O'E'=I(M',P')E(M',S)                        S'P'M'≠Ø or I(S',P'),  No name
A' I'=E(M',P')I(M',S)                        SPM'≠Ø or I(S,P),  Darii'/Datisi'
A'E=E(M',P')E(M,S)                        S=SPM', P'=S'P'M, A(S,P)=A(P',S'),  Barbara'
                                                   I(S,P)  if S≠Ø, Barbari';  I(S',P')  if P'≠Ø, No name

8. VCAs bound to the subset SPM':
A'A'=E(M',P')E(M',S')               M'=SPM'. If M'≠Ø: I(S,P), Darapti'
O'A'=I(M',P')E(M',S')                       SP'M' ≠Ø or O(S,P), Bocardo'
A'O'=E(M',P')I(M',S')                       S'PM≠Ø  or O(P,S),  No name
A'A=E(M',P')E(M,S')                        S'=S'PM', P'=SP'M, E(S',P'),  No name 
                                                 O(P,S) if S'≠Ø, No name; O(S,P) if  P'≠Ø,  No name

One can now define a “relabeling group” acting on the above VCAs sets 1,2,..., 8. 
Let p:= P↔P', s:=S↔S', m:=M↔M'. One can see that compositions of s,p,m 
generate a commutative group G with eight distinct elements:1,s,p,m,sp,sm,pm, 
spm. Obviously 1=s2 =p2=m2= (spm)2  = (ms)2  =(ps)2= (pm)2.. This group acts on  the
above VCAs sets 1,2,...,8, as follows:
p(1)=3, p(2)=4, p(5)=7, p(6)=8;  s(1)=2, s(3)=4, s(5)=6, s(7)=8; m(1)=5, m(2)=6, 
m(3)=7, m(4)=8. (The m relabeling transforms Barbara into Barbara' and vice-
versa, Darapti into Darapti' and vice-versa, etc.)
One can check that {G(1)}= {G(2)}= …={G(8)}= {1,2,3,...,8}. This shows that any
VCA from any of the three VCA types can be recast as any other VCA of the same 
type. For example, spm(E'E')=AA=A(M,P) A(M,S)=E(M,P')E(M,S') which are 
Darapti's premises. This means that the premises E'E'=E(M',P)E(M',S)=A(P,M) 
A(S,M), become Darapti's premises after an spm relabeling. 

4.   Categorical syllogisms' squares and cubes of opposition

In general, one may say that the purpose of listing all immediate inferences between
the A,O,E,I statements from the opposition square is to know how to optimally use 
more than one of these statements as premises: for example one shouldn't try to use 
both A and O when they contradict each other (which is always), and it is not ideal 
or economical to list both A and I as premises if A already implies I (which happens,



e.g., if both terms appearing in A are non-empty).  The statements usually listed at 
the vertices of the square of opposition are A(S,P), E(S,P), I(S,P), O(S,P), Beziau 
(2012, 2017). In an enlarged, M↔M' symmetrical version, the categorical 
syllogisms use eight P-premises  A(M,P),  E(M,P), I(M,P), O(M,P),  A(M',P),  
E(M',P), I(M',P), O(M',P), and eight S-premises, A(M,S),  E(M,S), I(M,S), O(M,S), 
A(M',S),  E(M',S), I(M',S), O(M',S), (which will both be shortened to A,E,I,O,A', 
E',I',O'). One sees that the P-premises, (resp. S-premises), form two squares  of 
opposition, one acting on M and the other one acting on M'. Equivalently, one may 
replace the eight P-premises, (resp. S-premises), by a cube of opposition, the front 
face of the cube being the square of opposition acting on M, and the back face of 
the cube  being the square of opposition acting on M’. The top, (resp. bottom), face 
of each cube contains the universal, (resp. particular) premises. As in the previous 
section, we'll consider only the modern squares and cubes of opposition – the 
Aristotelian ones having the unwanted feature that, e.g., the contradictory, (aka the 
negation), of A(M,P) & M≠ Ø, (where M≠ Ø adds from the start an existential 
import (ei) extra premise about M), is not O(M,P) but [O(M,P) v M=Ø] – see 
Westerstahl 2009. Thus in the modern square of opposition A(M,P), E(M,P) are not 
contraries any more (unless one adds M≠Ø!); instead when both are true it results 
that  M=Ø (but not that P=Ø!). Analogously, when E(M,P) and E(M',P) are both 
true then P=Ø; when A(M',P) and  E(M',P) are both true then M'=Ø; when A(M,P) 
and A(M',P) are both true then P'=Ø. One may replace P by S in the previous phrase
and obtain, respectively, conditions for M, S, M' and S’ being empty sets. This 
shows that on each edge of the top faces of the premises’ two cubes of oppositions 
one has two universal premises which when both true amount to an empty set 
constraint (ESC). Vice-versa, when M = Ø, then  both A(M,P) and E(M,P) are true, 
(since the empty set is included in every other set, and its intersection with any 
other set is empty, too), and their respective contradictory statements, O(M,P), 
I(M,P), are both false.  E(M,P) means M P', or PM', or, equivalently, 
MP:=M∩P= Ø.  The classical square of opposition imposes the condition that both 
M and P be non empty, and this validates all the square's well known  immediate  
implications, Beziau (2012, 2017). By contrast, in the “modern square of 
opposition” one does not commit to M ≠ Ø and/or P ≠ Ø and thus one knows only 
that A and O, (resp. E and I), are contradictory statements. Also if A(M,P) is true, 
then P = Ø implies M = Ø, but not vice-versa.
Note that one can work with a hexagon of opposition, Beziau (2012, 2017), by 
adding to the square the statements Y:=I  O, and W:=A  E. When M is empty, then∧ ∨
A,E,W are true and I,O,Y are false. When the classical hexagon of opposition 
applies, i.e., M ≠ Ø and P ≠ Ø, then, A being true implies that I and W are also true, 
while E,O,Y are all false. Vice-versa, if E is true, then O and W are also true, while 
A,I,Y are all false. Both cases mean that existential import is warranted since A 
implies I and E implies O. Starting with any particular statement in {Y,I,O}, being 
true, just implies that its respective contradictory statement from {W,E,A} is false, 
while the sets appearing both in the particular statement, and in its contradictory 
universal statement, are non empty.
From a syllogistic perspective the immediate inferences available in a cube of 



opposition do not matter much since any syllogism or poly-syllogism (or sorite) 
chooses just one statement from the eight available.

5.   Sorites

Using the same notations as those from the beginning of Section 3, the three types
of PCPs which generate VCAs may be immediately extended to sorites of the same
type:

Type 1. The premises of the “Barbara type” Aristotelian/Goclenian sorite:

SOR1:=E(S*, M1*)E(M1*', M2*)E(M2*', M3*)...E(Mn*', P*)=A(S*, M1*')A(M1*', 
M2*') A(M2*', M3*')...A(Mn*', P*')
LC1:   S*=S*M1*'M2*'M3*'...Mn*'P*'  (the  Aristotelian logical conclusion)
LC2:   P*=P*Mn*...M3*M2*M1*S*'=P*M1*M2*M3*...Mn*S*' (the  Goclenian logical
conclusion of the same premises. This explains why, e.g., Barbara has two different 
LCs.)

Type 2. The premises of the “Darii type” sorite are:

SOR2:=E(S*, Mx*)E(M1*, My*)E(M2*, My*)...I(Mx*, My*)...E(Mi*, My*)E(Mi+1*,   
                 Mx*)... E(Mn*, My*)E(Mx*, P*)
LC:   Mx*My *S*'M1*'M2*'M3*'...Mi*'Mi+1*'...Mn*'P*' ≠Ø

Type 3. The premises of the “Darapti type” sorite are:

SOR3:=E(S*, M*)E(M1*, M*)E(M2*, M*)...E(Mi*, M*)E(Mi+1*, M*)...         
                 E(Mn*, M*)E(M*, P*)
LC:   M*=M*S*'M1*'M2*'M3*'...Mi*'Mi+1*'...Mn*'P*'  with, if M*≠Ø, some of the 
many ei LCs being  S*'M1*'M2*'M3*'...Mi*'Mi+1*'...Mn*'P*' ≠Ø, I(S*',P*'), etc.

Note that each of the three types sorites admits “Darapti decorations”, i.e., a Darapti
type sequence of premises may be added using any term/letter as the “base” - 
exactly as the term (or letter) M was used as the “base” of SOR3 - the Darapti type 
3 sorite above.
For example, if to SOR1 one adds Darapti decorations of length=1 on S*, M1*', and 
P*', respectively, and a Darapti decoration of length=3 on M2*', i.e., if one adds  
these premises:
E(S*, Mn+1*)E(M1*', Mn+2*)E(M2*', Mn+3*)E(M2*', Mn+4*)E(M2*', Mn+5*)E(P*', 
Mn+6*), then one obtains a sorite which has just one LC not two. This LC is an 
“extension” of LC1: 
S*=S*M1*'M2*'M3*'...Mn*'P*'Mn+1*'Mn+2*'Mn+3*'Mn+4*'Mn+5*'Mn+6*'.
For the Goclenian reading of SOR1 one needs to add, as Darapti decorations of the 
same lengths as above, e.g., these premises:
E(S*', Mn+1*)E(M1*, Mn+2*)E(M2*, Mn+3*)E(M2*, Mn+4*)E(M2*, Mn+5*)E(P*, Mn+6*),
and then, again, one obtains a sorite which has just one LC not two. This LC is an 
“extension” of LC2: 
P*=P*M1*M2*M3*...Mn*S*'Mn+1*'Mn+2*'Mn+3*'Mn+4*'Mn+5*'Mn+6*'.



Analogously,  Darapti decorations of the same lengths as above may be added to 
SOR2 via adding these premises:
E(S*', Mn+1*)E(M1*', Mn+2*)E(M2*', Mn+3*)E(M2*', Mn+4*)E(M2*', Mn+5*)E(P*', 
Mn+6*). Then one obtains a sorite whose LC is an “extension” of the SOR2 LC: 
Mx*My *S*'M1*'M2*'M3*'...Mi*'Mi+1*'...Mn*'P*'Mn+1*'Mn+2*'Mn+3*'Mn+4*'Mn+5*' 
Mn+6*'.
One may add Darapti decorations to a Darapti type sorite, SOR3, via adding, e.g., 
these premises:
E(S*', Mn+1*)E(M1*', Mn+2*)E(M2*', Mn+3*)E(M2*', Mn+4*)E(M2*', Mn+5*)E(P*', 
Mn+6*). Then one obtains a sorite whose LC is an “extension” of the above SOR3 
LC: 
M*=M*S*'M1*'M2*'M3*'...Mi*'Mi+1*'...Mn*'P*'Mn+1*'Mn+2*'Mn+3*'Mn+4*'Mn+5*'Mn+6*'
One thus sees that to any term/letter appearing in the LC of a sorite of types 1, 2 or 
3, one may add a “Darapti decoration”, i.e., a (no matter how long) Darapti type 
sequence of premises with that letter as the “base”, exactly as the term (or letter) M 
was the “base” of SOR3 - the Darapti type 3 sorite listed above.
      If represented on a subsets' Karnaugh map with enough variables, the LCs of the
above SOR1 and, resp., SOR3 say that S*, P* and, resp., M* were reduced by the 
universal premises to just one, possibly not empty, partition subset of the universal 
set U. The LC of SOR2 affirms about just one partition subset of the universal set U
that it is not empty. (How to construct Karnaugh maps for any number of variables, 
starting from an n=2 Karnaugh map and then repeatedly using mirror images – first 
towards the right, then towards the bottom of the page, is shown on Figures 3.1-3.4 
at davidbonal.com.)

5.   Conclusions

Discarding the syllogistic moods and figures, syllogistic axioms and inference rules,
and valid syllogism rules, in favour of a pure set model of the syllogistic terms, 
greatly simplifies the categorical syllogisms' presentation. Compare, e.g., with other
expositions: Alvarez and Correia 2012, Mineshima, Okada, Takemura 2012, 
Avarez-Fontecilla 2016, (or Lukasiewicz  1957). One has shown that the middle 
term M always appears in any LC – since the LC always refers to just one subset 
out of the eight U subsets. Only by losing some information one may recast the LC 
in the traditional way as referring to a two subset column. Possible LC examples 
from each of the three VCA classes  are S=SPM, SPM≠Ø, M=SPM, as LCs for 
Barbara, Darii and Darapti, respectively. With some loss of information they 
translate into the usual A(S,P), I(S,P), and, via existential import on M, I(S,P). Also,
using just set relabelings, instead of syllogism reduction, one has shown that the 
VCAs of the same type are equivalent: any VCA (or VS) can be recast (or 
reformulated) as any other VCA of the same type. Thus, e.g., Barbara, Darii and 
Darapti may be chosen as representatives of the three VCA classes. 
      This way of presenting the categorical syllogisms was started by George Boole 
and perfected by Lewis Carroll/Charles Lutwidge Dodgson. I think that it is more 
than regrettable that “the Logicians” stubbornly filled out the logic textbooks,  for 



more than a century, with presentations of categorical syllogisms which make less 
sense, while being much more complicated.
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