

CAPYBARA MILK REPLACER 1,2,3

TYPICAL ANALYSIS (Powder)

Protein	42%
Fat	24%
Carbohydrate	22%
Ash	6%
Moisture	4%
Energy (ME)	20 MJ/kg

INGREDIENTS: Whole milk solids, whey protein, casein, vegetable oils, omega-3 and omega-6 fatty acids, stabilised vitamin C, vitamins and minerals.

PACK SIZE: 5kg Net.

DIRECTIONS FOR USE: To make 1 litre of milk mix 190g of powder with 870ml of preboiled warm water. Add about half of the water first, mix to a paste then make up to 1 litre with remaining water and mix thoroughly. An electric whisk can be used for mixing.

Feed Impact Colostrum Supplement to new-borns that did not receive sufficient maternal colostrum.

TYPICAL COMPOSITION PER LITRE OF PREPARED MILK

Protein	83g	Vitamin E	14mg	Folic Acid	1.0mg	Sodium	500mg
Fat	49g	Vitamin K	1.0mg	Vitamin B ₁₂	19µg	Magnesium	80mg
-Omega 3	1.4g	Vitamin C	520mg	Biotin	80µg	Zinc	5.1mg
-Omega 6	3.4g	Thiamine	7.1mg	Choline	130mg	Iron	5.5mg
Carbohydrate	42g	Riboflavin	1.9mg	Inositol	100mg	Manganese	3.1mg
Energy (ME)	3.9MJ	Niacin	29mg	Calcium	2.2g	Copper	0.8mg
Vitamin A	470µg	Pantothenic Acid	11mg	Phosphorus	1.6g	lodine	100µg
Vitamin D ₃	4.6µg	Pyridoxine	2.4mg	Potassium	1400mg	Selenium	25µg

FEED VOLUME: Estimates of feed volume are based on the animal being maintained in a thermoneutral environment with milk as the major source of food. Feed volumes may be reduced as intake of solid food increases. Milk volume in ml per day for an animal of body weight W kg is given by the basal metabolic rate for Rodentia⁴, with an energetic multiplier of 2.2:

2.2 x 244W^{0.669}

Body Weight (g)	Feed Volume (mL/day)	Body Weight (g)	Feed Volume (mL/day)	Body Weight (g)	Feed Volume (mL/day)
800	120	2200	235	3600	325
1000	140	2400	250	3800	340
1200	160	2600	260	4000	350
1400	175	2800	275	4500	380
1600	190	3000	290	5000	400
1800	200	3200	300	5500	430
2000	220	3400	315	6000	450

GROWTH & DEVELOPMENT: Typical birth weight is 1.5 – 2.0 kg. Average daily weight gain is about 50-100g per day until weaning at 3 months (approx. 8kg body weight)³.

REFERENCES

- 1. Oftedal, I.T. & S.J.Iverson. (1995). Comparative analysis of non-human milks. In *Handbook of Milk Composition*. Academic Press
- 2. Nelson, W. L., Kaye, A., Moore, M., Williams, H. H., and Herrington, B. L. (1951). Milking techniques and the composition of guinea pig milk. J. Nutr. 44, 585-594.
- 3. Moreira, J. R., Ferraz, K. M. P., Herrera, E. A., & Macdonald, D. W. (Eds.). (2012). Capybara: biology, use and conservation of an exceptional neotropical species. Springer Science & Business Media.
- 4. Hayssen V. & R.C. Lacey (1985). Basal Metabolic Rates in Mammals. Comp. Biochem. Physiol. Vol 81A, No.4:741-754.