
1

Merritt Chandler 8/27/2021

Creating Exceptions
Est. Learner Time: 3 hours 45 min

Terminal LOs:

• Examine whether to throw an existing exception or implement a new exception for a given error case
• Write code that appropriately transforms exceptions by chaining or translating exceptions given a scenario (new LO)

o Explain how and when to chain (or wrap) an exception to hide implementation details from the caller (combined LOs)
o Explain how and when to translate exceptions to intentionally drop details of original cause of exceptions (combined

LOs)
o Explain why making custom exceptions can be helpful in the debugging process

• Create custom exceptions
o Design and implement an exception class hierarchy for a code base
o Understand that it is a good practice to provide an Exception subclass with the same public constructor signatures as

the base java.lang.Exception class
o Design and implement an exception that describes an error case specific to a service
o Produce a unique serialVersionUID when creating a new exception type
o Outline the public constructors of the Exception class

• Define error cases
o Explain how to define error cases given a set of requirements

2

Merritt Chandler 8/27/2021

Introduction:

Review Link:

Est. Learner Time: 10 min

Slide
Number

Visual Content/Text/Assets Text Notes

1

What is an Exception?

Decorative image: Blue screen of death

Remember: an exception is an error. It denotes
something that "didn't follow the rules". There are
several common times when a method may hit an issue
causing it to throw an exception. Fatal errors include
anything that causes your program to unexpectedly stop
running. The infamous Windows "blue screen of death" is
an example of a fatal system error in the Windows
operating system that could not be caught and handled.
Improper arguments or invalid data are other reasons to
throw an exception, indicating that your method has not
received the proper input.

An example of an exception is
a ResourceUnavailableException. This indicates that the
method could not reach a resource it expected to find,
for example, if the connection to a required database is
lost. Anything else that causes the method to deviate
from the way it was designed should also throw an
exception. Java includes and makes use of a variety of
pre-defined exceptions in the JDK but as you are
developing your code you may find a need for your own,
custom exceptions. Please refer to the lesson on
exception handling for the pre-defined exceptions.

2 In the lesson on exception handling, you learned what an
exception is, and how to handle one. You learned that

3

Merritt Chandler 8/27/2021

exceptions are part of an exception hierarchy, and that
Java exceptions extend the java.lang.Exception class.

3

Show same chart used in Exception Handling
lesson that shows Exception Hierarchy

Built-in exceptions can be Checked or Unchecked
Exceptions, and each have slightly different rules for
handling or propagating.

Remember with checked exceptions the Java compiler
enforces the code to have certain handling rules. For
example, declaring that the method throws the
exception. Unchecked exceptions don’t have those
compiler-enforced restrictions. As you see in the chart,
exceptions rely on inheritance to create a hierarchy of
detail, allowing some exceptions to be general and others
to locate more specific error conditions.

It is an important design choice to identify whether to
handle the exception locally or instead propagate the
exception up to the calling method with logging or other
helpful information.

4

 In this lesson, you will learn to manipulate exceptions and
even create your own. Developers often need to create
their own exceptions when there are exceptions specific
to the workflows or business logic they build. These help
the users or developers understand more about the exact
problems that can come up in the program.

Developers also manipulate or customize existing
exceptions. The same exceptions Java provides may need
special treatment so that you adjust or provide different
information than the exception ordinarily conveys.

5
What’s Next? • Instructional Lesson 1: Transforming Exceptions

• Activity 1: Transforming Exceptions
• Instructional Lesson 2:

4

Merritt Chandler 8/27/2021

Glossary:

• Checked Exceptions – These are exceptions checked by the compiler at compile-time. These are declared in the code as part of method
signatures and represent errors developers should be prepared to manage.

• Unchecked Exceptions – These are exceptions that are thrown at runtime. Because of their nature, they do not have to be declared for
the code to continue. These do not have the same handling or propagation rules as checked exceptions.

• Chaining Exceptions – Using one exception to relate to another exception. Commonly described as wrapping one exception in the
“cause” field of a new exception.

• Translating Exceptions – A type of exception transformation that obscures information. This is usually done for security reasons, so that
information is hidden from users. This does make it more difficult for developers to track down errors, so this is used less often than
chained or other custom exceptions.

5

Merritt Chandler 8/27/2021

Instructional Lesson 1: Transforming Exceptions

Review Link:

Est. Learner Time: 20 min

LOs:

• Examine whether to throw an existing exception or implement a new exception for a given error case
• Write code that appropriately transforms exceptions by chaining or translating exceptions given a scenario (new LO)

o Explain how and when to chain (or wrap) an exception to hide implementation details from the caller (combined LOs)
o Explain how and when to translate exceptions to intentionally drop details of original cause of exceptions (combined

LOs)
o Explain why making custom exceptions can be helpful in the debugging process

6

Merritt Chandler 8/27/2021

Slide
Number

Visual Content/Text/Assets Text Notes

1

 So far, you've encountered exceptions thrown by code
you were calling. You've had to determine how to
proceed when an exception has been thrown. As you
write more complex code, you will be in charge of
deciding what is an error condition and when to throw an
exception.

2

 All exceptions in Java extend java.lang.Exception. Any
class that extends Exception (or a subclass) can be
handled and thrown just like one of the built-in
exceptions. Any new class extending Exception can be
used to respond to error conditions. There are many
reasons why manipulating or customizing exceptions for
your methods is helpful in the debugging process.

• Clarity: Exceptions are situations where your
method is not executing properly. Thus, the more
specific you can make an exception, the easier it
will be to track down what is going wrong in the
code. Project-specific error codes can help trace
an error back to a specific API or feature set. An
API is an integration with a service. You’ll learn
more about using APIs later in the curriculum.

• Detail: Using a custom exception can allow you to
include additional detail or data fields in the
exception itself about what caused an error,
which could also help in resolving the issue.

7

Merritt Chandler 8/27/2021

• Functionality: Custom exceptions can include
utility methods to manipulate specific data
formats and assist in debugging.

• Organization: API-specific exceptions can help
you tell exactly where the exception is coming
from.

• Hide Implementation: In rare cases, you may
wish to use a custom Exception to obscure the
exact file causing your method to throw an
exception. You would want to avoid using an
exception type that would indicate that you're
accessing the file system directly, as this might
pose a security risk by revealing more
implementation details than necessary.

3

Diving Deeper - Detecting Errors For example, imagine a service that manages gym
memberships. Every membership ID follows the pattern
last name followed by 5 digits. If the service receives a
request for ID ombrellaro123, you already know that
won't work, since it only has 3 digits at the end. Instead
of doing any more processing, you can code the program
to throw a new IllegalArgumentException. This way, you
know at the earliest point where something has gone
wrong, which makes it easier to debug the root cause (a
bad input). Imagine instead you tried to process the bad
ID. Something else in the code would fail eventually, but
it could be very far away (logically) from the input to the
service. Connecting the dots back to that bad input could
be difficult.

4

Transforming Exceptions You may find yourself in a situation where it will be useful
to catch one exception and throw a different exception
type. The IllegalArgumentException above may not be
the exception you wish to convey – instead, it might be
better to throw an InvalidMemberIDException.

8

Merritt Chandler 8/27/2021

This often means wrapping the original exception inside a
new one. This could be to hide an implementation, as
described in the previous section. It might also be to
provide clarity, detail, functionality, or organization in a
situation that the error case is detected by catching an
exception, rather than testing for an error condition.

Exception messages may need to contain more or
different information than the exception you’re catching.
Or, your application may need to be more secure, so you
may need to monitor and adjust what information your
exceptions convey. There are two strategies to
accomplish this: chaining exceptions and translating
exceptions.

5

Chaining Exceptions Chaining exceptions, or wrapping exceptions, means
using one exception to relate to another exception. This
is commonly described as wrapping one exception in the
“cause” field of a new exception. That means the
exception is actually passed in as an additional
constructor argument.

For example, consider an exception where a method
throws an ArithmeticException because of an attempt to
divide by zero. However, the actual cause of the error is
an I/O error which caused the divisor to be zero. The
code only throws the Arithmetic Exception – so the
developer does not know about the actual cause of the
exception. Chained exceptions are a great solution here.

Wrapping exceptions like this allows each exception to
retain its own stack trace. That allows a developer to see
where the exception originated. If an error might cause
issues in multiple layers of the program, chaining

9

Merritt Chandler 8/27/2021

exceptions helps locate where the error began, as well as
trace its path through the code, even when it’s wrapped.
Chaining exceptions can preserve or even add
information to exceptions.

6

public void setBirthday(int year, in
t month, int day) throws InvalidBirt
hdayException {

 try {

 LocalDate birthday = LocalDa
te.of(year, month, day);

 } catch (DateTimeException e) {

 throw new InvalidBirthdayExc
eption(String.format("One of the Dat
e of Birth components is invalid. Ye
ar: " + year + " Month: " + month +
" Day: " + day), e);

 }

}

public class InvalidBirthdayExceptio
n extends Exception {

 public InvalidBirthdayException(
String message, Throwable cause) {

 super(message, cause);

 }

}

Here’s a simple example. In this code, the setBirthday()
method takes in 3 ints specifying the date of birth and
attempts to construct a LocalDate object. There may be
several reasons why this may fail, for example, if one of
the date of birth arguments is negative. The method
above catches a DateTimeException and throws a new
custom exception called InvalidBirthdayException.

InvalidBirthdayException is defined below.

The InvalidBirthdayException takes in both a String,
message, and a Throwable, cause. Throwable is a
superclass of Exception that implements
the Serializable interface (we'll introduce serialization in
the a later reading). Any exception you pass
into InvalidBirthdayException will be a subclass
of Throwable, so this is a safe way to accept previously
caught exceptions. It also corresponds to the relevant
constructor in the superclass, Exception, which is a good
model to follow when creating your custom exception
class constructors. In the setBirthDay() method, the
original caught DateTimeException is passed in
to InvalidBirthdayException's constructor to provide
details on where exactly the parsing failed.

10

Merritt Chandler 8/27/2021

7

Translating Exceptions While chained exceptions preserve the cause of the
exception, translating exceptions drop the original cause
of the exception. Wanting to do this is rare, because
dropping the cause means losing the original stack trace.
Where chaining exceptions preserves information,
translating exceptions intentionally loses information.

8

 The most common reason to do this is if the original
exception might expose specific, security-sensitive
information, perhaps even a security hole, and you’re
returning the exception to a code base you don’t own.
This may happen with database exceptions and file IO
exceptions, by revealing the specific storage systems or
versions being used – especially if these have known
vulnerabilities. Since translating the exception loses all
previous stack trace information, it is important to log
enough information to know where the translated
exception was thrown from, so that the developer can
track down the error.

9

public class ItemAccessUtilty {

 private Logger logger;

 // Constructor and other methods
omitted

 /**

 * Retrieves a record from some
unspecified datastore.

 * @throws RecordAccessFailedExc
eption when attempt to access data f
ails

 */

This is an example of a translated exception. The
method getRecord() catches the
original AmazonDynamoDbException, an exception
thrown from accessing a database. However, imagine in
this case that there are business and security reasons not
to expose the fact that an Amazon database is being
used. The message from
the AmazonDynamoDbException is logged, then a
custom RecordAccessNotFoundException is thrown with
a message that gives the calling routine a chance to
handle the exception but does not disclose the details of
the original exception for security reasons.

11

Merritt Chandler 8/27/2021

Activity 1: Transforming Exceptions

Est. Learner Time: 30 min

Activity Explanation: NEW ACTIVITY. Can we build something that practices transforming exceptions? Both chaining and translating? This should
be pretty low-Blooms, we should tell them to “transform the following exception using X info” I think.

 public Record getRecord() throws
RecordAccessFailedException {

 //

 try {

 Record record = getItemF
romDynamoDbDatabaseAndConvertToRecor
d();

 } catch (AmazonDynamoDbExcep
tion e) {

 logger.log(Level.INFO, e
.getMessage(), e);

 throw new RecordAccessFa
iledException ("The record could not
be accessed.");

 }

 return record;

 }

}

10 Knowledge Check

https://code.amazon.com/packages/ATACurriculum_LessonPlan_CreatingExceptions/blobs/C2022Feb/--/prework/prework_1_try_quiz_overview_of_throwing_and_writing_exceptions.yaml

12

Merritt Chandler 8/27/2021

• TLO: Write code that appropriately transforms exceptions by chaining or translating exceptions given a scenario (new LO)

Instructional Lesson 2: Designing Custom Exceptions

Review Link:

Est. Learner Time: 30 min

TLO:

• Create custom exceptions

o Design and implement an exception class hierarchy for a code base
o Understand that it is a good practice to provide an Exception subclass with the same public constructor signatures as the base

java.lang.Exception class
o Design and implement an exception that describes an error case specific to a service
o Produce a unique serialVersionUID when creating a new exception type
o Outline the public constructors of the Exception class

• Define error cases
o Explain how to define error cases given a set of requirements

13

Merritt Chandler 8/27/2021

Slide
Number

Visual Content/Text/Assets Text Notes

1

Defining Exceptions In the a prior lesson, you modified exceptions that
already exist. In this lesson, you will design your own.

When designing a class or method, it is important to
look at how it can fail as well as how it handles the
happy path. Ask the following questions:
1. What can possibly go wrong? What are the edge
cases that you might need to check or handle?
Include possible scenarios that might make your
method fail, and how your method should respond.
2. Should the method handle or throw an exception?
3. If the method should throw an exception:
 a. Is there an existing exception that covers the
situation? If so, use it!
 b. Does it make sense to add any additional details
to the exception? You may want to create a custom
exception.
4. Plan to include enough information in the
exception via the exception type, exception message,
additional fields, or the wrapped original cause
exception for another developer to diagnose the
error condition if it occurs.

2
 Custom exceptions are useful in Java because they

allow a developer to add methods or attributes that
are not part of the standard Java exceptions. These

14

Merritt Chandler 8/27/2021

might include specific ways of handling an error or
provide specific error messages.

3

Naming the Exception Exceptions should be named clearly and to help you
and other developers interpret what is going on
quickly. The format name SomethingException,
including Exception at the end of the name, is a
widespread convention. For example,
InvalidBirthdayException from the previous lesson
identifies the problem (InvalidBirthdate) and the fact
that the object is an Exception.

4

Show same chart used in Exception Handling lesson
that shows Exception Hierarchy

Recall that Exceptions all extend the base Exception
class. Java has two types of Exceptions, Checked
Exceptions and Unchecked Exceptions. When building
your own exception, you must determine where it fits
in the exception hierarchy.

Remember that Checked exceptions must be
explicitly handled or propagated, as enforced by the
Java compiler. Checked exceptions are included as
part of a method’s call signature, informing other
users which checked exceptions must be handled.
When designing your own exceptions, it makes sense
to use a checked exception if there’s a good way to
manage or recover from the error in the code.
Otherwise, why enforce the handling of the error if
there’s nothing that can be done with a catch block?

One of the most common use cases for checked
exceptions is to inform a caller their request is invalid.
These are often associated with 4xx response codes.

Unchecked exceptions do not explicitly require
handling or propagation, and are propagated by
default. Because unchecked exceptions can occur

15

Merritt Chandler 8/27/2021

unexpectedly, there’s no need to include them in the
method signature.

The primary downside of unchecked exceptions is
that our caller is far less aware of which unchecked
exceptions our code might throw, and is not forced to
handle them when they occur. As such, unchecked
exceptions are less useful than checked exceptions if
we expect our caller to manage or recover from an
error.

Only use unchecked exceptions when encountering
an issue that the caller can’t recover from, or when
the unexpected occurs. Here are common cases for
throwing unchecked exceptions:

• Programming errors, like indexing beyond the
size of an array or accessing data from a null
pointer

• Attempting to access an unavailable resource
or dependency

• Arithmetic errors, like attempting to divide by
0.

Note that these are issues that are difficult to recover
from. The request the caller made is valid, but an
unexpected error occurred within the code or service
when the request was handled.

Always consider whether an existing exception class
is available before creating your own. See if a
standard Java RuntimeException subclass is suitable
for the use case before writing a custom unchecked
exception.

16

Merritt Chandler 8/27/2021

Follow any conventions or standards of the
development team when developing custom
exceptions. Some teams at Amazon write custom
checked exceptions that inherit from a common
service-specific base class.

In a larger programming project, there might be many
services interacting with one another. Each service
might have its own base Exception subclass, which
may in turn inherit from a global base exception.

5

It’s best to name exceptions so they are consistent
with the code they reside in. This code resides in the
AtaCreatingExceptions package. That uses a base
Exception subclass for the package called
AtaBaseException. This will be used in the activity for
this lesson as well. AtaBaseException is a checked
exception. Therefore, all of the subclasses are
checked exceptions. Any issue must be handled so
that the program can continue.

Within this package is a client library, used to call
information about users and resources they access.
Imagine building a service that requires customers to
login in before using its features. This diagram
illustrates one possible hierarchy. AtaBaseException
has 3 subclass exceptions. Each represents types of
error conditions:

• AtaUserException – This is thrown if a user
unexpectedly exists or unexpectedly doesn’t
exist.
• AtaCustomerNotFoundException – This is

thrown if the user does not appear to
exist in the system (maybe the data was
entered inaccurately).

I’ve gotten all this
from the current
reading. However,
our learners are
not currently
trained on
DynamoDB – we
get that in the
next phase. I think
we can modify
this exception
class to create
something not
built as a DB, but
it might be a pain,
so please modify
if this does not
work.

17

Merritt Chandler 8/27/2021

• AtaUserAlreadyExistsException – This is
thrown when a duplicate user exists but
the system is trying to create a new one.

• AtaResourceException – This is thrown if an
error associated with a resource (for
example, a file) occurs.

• AtaAccessException – This is thrown if the
user doesn’t have privileges for the requested
operation. Each user can access their own
data, but not all users can access someone
else’s data.

5

serialVersionUID

public class AtaCustomerNotFoundExcepti
on extends AtaUserException {

 private static final long serialVer
sionUID = 1952705374572855798L;

 private String username;

Every custom exception will include a private static
final long constant, serialVersionUID. This is because
the Java Exception class implements the interface
Serializable. This is essentially a specific number
created just for the current exception class’s design.
It is used when exceptions are passed back from
server to client. This number ensures all codebases
have compatible versions of the class. You’ll learn
more about Serializable later, but it’s important to
use here when declaring custom exceptions.

When you declare the custom exception, it looks
something like this:

Don’t worry, you won’t have to create a crazy long
number yourself. You do need to declare the
serialVersionUID explicitly, but IntelliJ can calculate
the parameter value for you. To do this, go to
IntelliJ’s Preferences, then Editor, Inspections, Java,
and Serialization Issues. There should be an option
for “Serializable class without serialVersionUID.”
There you will find the option to check a box and click

18

Merritt Chandler 8/27/2021

“OK.” This will make IntelliJ tell you when a
Serializable class is missing the serialVersionUID field,
and it will allow you to generate the field in the IDE’s
interface.

6

package com.amazon.ata.creatingexceptio
ns.prework;

public class AtaCustomerNotFoundExcepti
on extends AtaUserException {

 private static final long serialVer
sionUID = 1952705374572855798L;

 private String username;

 /**

 * Constructs exception with userna
me.

 * @param username - username repre
senting customer ID

 */

 public AtaCustomerNotFoundException
(String username) {

 super("User with " + username +
" cannot be found.");

 this.username = username;

 }

 /**

As a developer, you are working on a customer
lookup method using username as the search
parameter. You have identified a common error
scenario: the customer not found in the existing data.
When this occurs, there are two unrecoverable errors
that could occur:

• A method could return a null string that a
calling method might not support

• The search engine might keep looking for a
customer that is never found.

Several recovery options exist for this situation. One
is to have the software prompt the customer to
create a new account if it doesn’t exist. Another is to
display an error message requesting the customer re-
enter the account ID. In either case, the developer
worked with the product manager and determined
that this is not the job of the lookup algorithm.
Instead, the program should throw a
AtaCustomerNotFoundException to inform the calling
method that a customer-facing recovery action
should occur. The customer facing user interface then
calls it’s own customer lookup and can handle it from
there.

Custom Exceptions can contain additional fields as
needed. This one includes the customer ID field,
username.

Code came from
the current
lesson. Please
modify if this is
overtly service-y. I
don’t see it but I
may be missing
something.

The scenario,
however, is API-y.
I have modified it
to remove the API
bits but it sounds
a little weird now.
I’m open to
something better.

19

Merritt Chandler 8/27/2021

 * Constructs exception with userna
me, message and cause.

 * @param username - username repre
senting customer ID

 * @param message - Description of
the error encountered, in this case the
requested customer could not be found.

 * @param cause - The Exception tha
t caused this exception to be thrown. U
sed in Exception chaining.

 */

 public AtaCustomerNotFoundException
(String username, String message, Throw
able cause) {

 super("Username " + username +
" cannot be found. " + message, cause);

 this.username = username;

 }

 /**

 * Constructs exception with userna
me and message.

 * @param username - username repre
senting customer ID

 * @param message - Description of
the error encountered, in this case the
requested customer could not be found.

 */

 public AtaCustomerNotFoundException
(String username, String message) {

20

Merritt Chandler 8/27/2021

 super("Username " + username +
" cannot be found. " + message);

 this.username = username;

 }

 /**

 * Constructs exception with userna
me and cause.

 * @param username - username repre
senting customer ID

 * @param cause - The Exception tha
t caused this exception to be thrown. U
sed in Exception chaining.

 */

 public AtaCustomerNotFoundException
(String username, Throwable cause) {

 super("User with " + username +
" cannot be found.", cause);

 this.username = username;

 }

 public String getUsername() {

 return username;

 }

}

7 Constructors

Exceptions typically announce that the error has
occurred. They don’t really handle any details about

21

Merritt Chandler 8/27/2021

Show picture of the code above – point these out in
the code. I’m thinking we’ll show this side by side
with numbers indicating the places in the image
where these items are defined.

the error – that’s done in the catch block. However,
the Exception class does need to define constructors.
Define as many of the following as are relevant to
your custom exception. Compare this to the
AtaCustomerNotFoundException:

1. Exception() – this constructs a new exception
without a cause. It does not provide a
message, so it’s not that helpful on its own.
The AtaCustomerNotFoundException
includes
AtaCustomerNotFoundException(String
username), which includes the class field and
username. This does not accept a message or
cause, but identifies the exception.

2. Exception (String message) – This constructs a
new exception with a specified detailed
message. AtaCustomerNotFoundException
has AtaCustomerNotFoundException(String
username, String message). This accepts a
username and a message.

3. Exception (Throwable cause) – This
constructs a new exception with the specified
cause, but the default message is null. In
AtaCustomerNotFoundException, you see
AtaCustomerNotFoundException(String
username, Throwable cause). This accepts
only a username and a cause.

4. Exception (String message, Throwable cause)
– This constructs a new exception with the
specified message detail and cause.
AtaCustomerNotFoundException offers
AtaCustomerNotFoundException(String
username, String message, Throwable cause).

22

Merritt Chandler 8/27/2021

This accepts all the standard Exception
arguments, along with the custom username
field.

Exception classes may have simple getters, but it is
rare for them to have any other methods. This is
because handling the exception is done by the code
using the exception rather than the exception class
itself.

8

Declaring the New Exception

@Test

public void searchUser_customerNotFound
_exceptionThrownWithExpectedMessage() {

 try {

 customerNotFound();

 } catch (AtaCustomerNotFoundExcepti
on e) {

 Assertions.assertEquals("The cu
stomer was not found.", e.getMessage(),
"Wrong Exception message");

 }

 // code not shown that would cause
the test to fail if the Exception didn’
t get thrown

}

/**

 * Simple method to ensure a AtaCustome
rNotFoundException can be thrown.

The customerNotFound() method tries out the new
exception. This declaration throws
AtaCustomerNotFoundException. The JUnit test then
asserts the message contents, and uses a try catch
block to verify the Exception message.

23

Merritt Chandler 8/27/2021

 * @throws AtaCustomerNotFoundException
- Stores the username ID

 * and informs the caller ID that it wa
sn't found with associated message.

 */

public void customerNotFound() throws A
taCustomerNotFoundException {

 throw new AtaCustomerNotFoundExcept
ion("badusername", "The customer was no
t found.");

}

9 Knowledge Check Questions 3 & 4

10
What’s Next? In this lesson, you learned to create your own custom

exceptions. Return to the LMS to practice creating
your own exceptions in code!

https://code.amazon.com/packages/ATACurriculum_LessonPlan_CreatingExceptions/blobs/C2022Feb/--/prework/prework_2_try_quiz_understanding_exceptions.yaml

24

Merritt Chandler 8/27/2021

Activity 2: Creating Exceptions

Est. Learner Time: 15 min

Activity Explanation: MIGRATE EXISTING ACTIVITY. If this will work – and I think it will. It doesn’t seem to be service heavy.

• TLO:
o Create custom exceptions
o Define error cases

• Instructions: https://code.amazon.com/packages/ATAClassroomSnippets_U3/blobs/heads/C2021Aug/--
/src/main/java/com/amazon/ata/creatingexceptions/prework/README.md

• Code Snippets: https://code.amazon.com/packages/ATAClassroomSnippets_U3/trees/heads/C2021Aug/--
/src/main/java/com/amazon/ata/creatingexceptions/prework

Activity 3: TBD

Est. Learner Time: 60 min

Activity Explanation: TBD.

• TLO:

o Examine whether to throw an existing exception or implement a new exception for a given error case
o Create custom exceptions
o Write code that appropriately transforms exceptions by chaining or translating exceptions given a scenario

Lesson Wrap-Up:

• Est. Learner Time: 30 min
• Questions: (link or actual questions)

https://code.amazon.com/packages/ATAClassroomSnippets_U3/blobs/heads/C2021Aug/--/src/main/java/com/amazon/ata/creatingexceptions/prework/README.md
https://code.amazon.com/packages/ATAClassroomSnippets_U3/blobs/heads/C2021Aug/--/src/main/java/com/amazon/ata/creatingexceptions/prework/README.md
https://code.amazon.com/packages/ATAClassroomSnippets_U3/trees/heads/C2021Aug/--/src/main/java/com/amazon/ata/creatingexceptions/prework
https://code.amazon.com/packages/ATAClassroomSnippets_U3/trees/heads/C2021Aug/--/src/main/java/com/amazon/ata/creatingexceptions/prework

25

Merritt Chandler 8/27/2021

• Summary Prose: Errors in code are inevitable. Developers must determine the best way to recover from errors. Using and handling
existing exceptions properly provides a foundation that works for many errors. However, developers must often transform errors to
provide a more useful message or recovery path. In addition, there are cases where creating a customized exception makes sense. A
seasoned developer must examine code to determine whether existing exceptions provide a path forward, or whether it’s better to
transform or customize an exception for special circumstances. Regardless, understanding exceptions and handling them appropriately
in your code will help you create more flexible and useful programs less prone to failure.

