

Applied Physiology, Nutrition, and Metal

Muscle hypertrophy and strength gains after resistance training with different volume matched loads: a systematic review and meta-analysis.

Journal:	Applied Physiology, Nutrition, and Metabolism
Manuscript ID	apnm-2021-0515.R2
Manuscript Type:	Systematic Review
Date Submitted by the Author:	02-Dec-2021
Complete List of Authors:	Carvalho, Leonardo; Universidade Estadual de Campinas, Junior, Roberto ; UNICAMP Barreira, Júlia; UNICAMP Schoenfeld, Brad; Exercise Science Department, CUNY Lehman College, Bronx, New York, USA, Orazem, John ; Lehman College of CUNY Division of Natural and Social Science Barroso, Renato; Universidade Estadual de Campinas,
Novelty bullets: points that summarize the key findings in the work:	• Muscle hypertrophy is similar irrespective of the magnitude of load, even when volume load is equated between conditions., • Training with higher loads elicits greater gains in 1RM muscle strength when compared to lower loads, even when volume load
Keyword:	strength, training, musculoskeletal, failure, high load, low load
Is the invited manuscript for consideration in a Special Issue? :	Not applicable (regular submission)

- 1 TITLE: Muscle hypertrophy and strength gains after resistance training with different volume
- 2 matched loads: a systematic review and meta-analysis.
- 3 Leonardo Carvalho¹; Roberto Moriggi Junior¹; Júlia Barreira¹; Brad J. Schoenfeld²; John Orazem²;
- 4 Renato Barroso¹
- 5 ¹ Department of Sport Sciences, School of Physical Education, University of Campinas
- 6 (UNICAMP), Campinas, SP, Brazil.
- ² Department of Health Sciences, CUNY Lehman College, Bronx, NY

8 Corresponding author:

- 9 Renato Barroso, Department of Sport Sciences, School of Physical Education, University of
- 10 Campinas, e-mail: rbarroso@unicamp.br; https://orcid.org/0000-0001-8112-662
- 11 Av. Érico Veríssimo, 701 Cidade Universitária Campinas, 13083 851. Office: +55 19 3521-
- 12 6804
- 13 Funding details:
- 14 This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
- 15 CAPES under Grant 2018/23-p4748.

20 ABSTRACT

21	The purpose of this paper was to conduct a systematic review and meta-analysis of studies
22	that compared muscle hypertrophy and strength gains between resistance training protocols
23	employing very low (VLL<30% of 1RM or >35 RM), low (LL30%-59% of 1RM, or 16–35
24	RM), moderate (ML60%-79% of 1RM, or 8 -15RM) and high load (HL≥80% of 1RM, or ≤7
25	RM) with matched volume loads (sets x reps x weight). A pooled analysis of the standardized
26	mean difference for 1RM strength outcomes across the studies showed a benefit favoring HL
27	vs. LL and vs. ML; and favoring ML vs. LL. Results from LL and VLL indicated little
28	difference. A pooled analysis of the standardized mean difference for hypertrophy outcomes
29	across all studies showed no differences between the training loads. Our findings indicate
30	that, when volume load is equated between conditions, the highest loads induce superior
31	dynamic strength gains. Alternatively, hypertrophic adaptations are similar irrespective of
32	the magnitude of load.

33 NOVELTY BULLETS:

•

Training with higher loads elicits greater gains in 1RM muscle strength when

4

35	compared to lower loads, even when volume load is equated between conditions.
36	• Muscle hypertrophy is similar irrespective of the magnitude of load, even when
37	volume load is equated between conditions.
38	Keywords: strength; training; musculoskeletal.
39	INTRODUCTION
40	Current resistance training guidelines recommend the use of loads greater than 65%
41	of maximal dynamic strength (1RM) to optimize muscle hypertrophy and strength gains
42	(2009). More recently, these guidelines have been challenged as emerging evidence indicates
43	that resistance training performed across a spectrum of loadings when carried out with a high
44	level of effort may elicit similar changes in muscle size (Schoenfeld et al., 2015, Jenkins et
45	al., 2016). For example, Ogasawara et al. (2013) demonstrated that resistance training to
46	failure either at 75% or at 30% of 1RM elicited similar muscle hypertrophy, but training at
47	75% of 1RM induced superior strength gains. Subsequently, a systematic review and meta-
48	analysis of the literature on the topic found greater strength gains in favor of high-load

49	training, whereas muscle hypertrophy was similar between conditions (Schoenfeld et al.,
50	2017). Importantly, these findings were specific to training carried out with the number of
51	sets equated between conditions.
52	Volume load (sets x reps x weight) has been proposed as a potentially important
53	variable when evaluating the effect of the training load on muscle adaptations (Schoenfeld et
54	al., 2014). Simply stated, volume load provides a gauge of the total work performed in a
55	given exercise or session. When the number of sets are equated, training with lower loads
56	produces larger volume loads (Morton et al., 2019). This may have an impact on changes in
57	muscle size (Lasevicius et al., 2018, Mitchell et al., 2012, Ogasawara et al., 2013), as there
58	seems to be a dose-response relationship between volume load and hypertrophy (Grgic et al.,
59	2017).

When different loads are compared but volume load is equalized via the performance of additional sets, some evidence suggests that protocols with heavier loads induce greater gains in muscle size and strength compared to lighter loads. For example, Campos et al. (2002) compared the effects of three resistance training protocols with similar

64	volume loads (i.e., 4 x 3-5RM vs. 3 x 9-11RM vs. 2 x 20-28RM) on muscle hypertrophy of
65	untrained men. After 8 weeks of training, the authors observed that higher loads (i.e., 4 x 3-
66	5RM and 3 x 9-11RM) induced greater increases in muscle fiber cross sectional area (CSA)
67	and strength compared to a lower-load protocol (i.e., 2 x 20-28RM). Lasevicius et al.
68	(Lasevicius et al., 2018) employed a within-subject design in which one leg and one arm
69	trained with a very low load (i.e., 20%RM) and the contralateral limb was randomly assigned
70	to one of the three volume load matched conditions: 40%RM, 60%RM and 80%RM. The
71	highest load condition (i.e., 80%RM) showed greater muscle growth and strength gains after
72	12 weeks compared to the lowest load condition (i.e., 20%RM). On the other hand,
73	Schoenfeld et al. (2014) reported no differences in muscle size changes when groups trained
74	with 3 sets of 10RM versus 7 sets of 3RM after of 8 weeks of resistance training with volume
75	load equated. However, the authors found a greater increase in muscle strength in the high
76	load group (i.e., 7 x 3RM). Given the discrepancies in findings, the best way to achieve a
77	consensus from the research is to statistically analyze the pooled results from the body of
78	literature on the topic. Therefore, the purpose of this paper was to conduct a systematic

79	review and meta-analysis of studies that compared site-specific muscle hypertrophy and
80	1RM strength gains between protocols employing different resistance training loads (<60%
81	of 1RM, between 60% and 79% of 1 RM, and >80% of 1 RM). In addition, given the wide
82	range of loads in the lower loads, we performed a subsequent analysis splitting into low and
83	very low loads. In the end, we had the following loading conditions: very low (VLL;<30%
84	of 1RM, or >35 RM), low (LL; between 30% and 59% of 1RM, or 16–35 RM), moderate
85	(ML; between 60% and 79% of 1RM, or 8 -15RM) and high load (HL; ≥80% of 1RM, or ≤7
86	RM) with matched volume loads (sets x reps x weight).
87	MATERIAL AND METHODS

88 Search Strategy

Literature searches were performed on PubMed, Web of Science and Sport Discus
EBSCO databases. Searches included studies published until September 2021 using
combinations of the following keywords: ("resistance training" OR "resistance exercise" OR
"strength exercise" OR "strength training" OR "weight training" OR "weight exercise")
AND ("hypertrophy" OR "body composition" OR "muscle size" OR "muscle thickness" OR

"cross-sectional area" OR "growth" OR "muscle fiber" OR "muscle mass OR strength OR

94

95

1RM") AND ("intensity" OR "load").

96	Two of the authors (L.C. and R.J.M.) independently analyzed study titles and
97	abstracts. Subsequently, they read the full text of studies deemed potentially eligible for
98	inclusion. A third author (R.B.) resolved any discrepancies between the authors as to
99	eligibility. In addition to articles found in the search, reference lists of articles were reviewed
100	to determine the relevance of any undiscovered studies on the topic.
101	Inclusion and exclusion criteria: participants, interventions, comparators and outcomes
102	Studies had to meet the following criteria for inclusion in our review: 1) include
103	healthy human participants, regardless of age and sex; 2) be an experimental trial involving
104	two or more different resistance training loads with volume load matched; 3) employ at least
105	one method of estimating site-specific muscle hypertrophy and/or 1RM testing; 4) have a
106	minimum study duration of 4 weeks; 5) use combined dynamic eccentric and concentric
107	actions in the training protocol. We excluded studies and/or groups that used blood flow
	© The Author(s) or their Institution(s)

108	restriction training from analysis as this method may promote adaptations via different
109	mechanisms than traditional resistance training. We also excluded studies that employed drop
110	sets or periodized loading schemes, as such strategies may confound the effects of
111	manipulating load. In addition, studies with a randomized-controlled trial was not an
112	inclusion criterion.
113	Data extraction

114 Two independent researchers (L.C. and R.J.M.) extracted data from each included study for the following variables: number of participants, age, sex, experimental design, 115 116 muscle hypertrophy measurement, and muscle strength measurement (i.e., 1RM test). We 117 emailed the corresponding author of studies that did not report mean and standard deviation 118 (SD) values of the dependent variables to request relevant data. Two authors (L.C. and R.J.M.) used the Image J software (ImageJ v. 1.43, National Institute of Health, Bethesda, 119 120 USA) to obtain mean and standard deviation data from figures when applicable. Table 1 121 presents the studies included in the analyses.

122 Study quality assessment

123	The methodological quality of the studies was evaluated using the PEDro scale,
124	which is composed of 11 items; each item assesses one aspect of the study. A point was
125	awarded for each item where the study met the specified criteria (with the exception of item
126	1, which is not scored). As per previous work, we removed items 5, 6 and 7 from the scale,
127	given that it is infeasible to blind the subjects and investigators from treatments in supervised
128	resistance training interventions. The highest score on the modified PEDro 8-point scale was
129	7. The qualitative descriptors for the PEDro scale was classified according to Kümmel et al.
130	(2016): excellent (i.e., 6-7), good (i.e., 5), moderate (i.e., 4) and poor (i.e., 0-3). The
131	evaluation was performed independently by two authors (L.C. and R.J.M.). Previous studies
132	have demonstrated acceptable levels of objectivity using the PEDro scale (Maher et al.,
133	2003). In cases of disagreement, a third author (R.B.) was consulted to reconcile differences.
134	Only studies that presented a score \geq 4.0 were included for analyses.

135 Coding of Studies

136	Studies were read by two researchers independently (L.C. and R.J.M.) and entered
137	into a spreadsheet based on the following variables: descriptive information of the
138	participants by group, including sex, training level (resistance trained individuals were
139	considered as those with more than 6 months of uninterrupted training and untrained
140	individuals were those that had not performed any resistance training for at least 6 months
141	before the start of the study), and age (young [18-39 years], middle-aged [40-64 years] or
142	older [65 or more years]); number of individuals in each group; study duration; training load
143	of each protocol (prescribed by % of the 1RM test or by zones of maximum repetitions);
144	number of sets and weekly frequency; measurement mode of muscle hypertrophy (magnetic
145	resonance imaging [MRI], computed tomography [CT], ultrasound modes B and A, and/or
146	biopsy); body region / muscle measured. We classified loads according to four categories
147	according the following criteria: very low (<30% of 1-RM, or >35 RM), low (between 30%
148	and 59% of 1-RM, or 16–35 RM), moderate (between 60% and 79% of 1-RM, or 8 -15RM),
149	and high (\geq 80% of 1-RM, or \leq 7 RM). We compared only protocols that equated effort level
150	(i.e., muscle to failure or not to failure).

151 Statistical analysis

152	For each hypertrophy or strength outcome, the contrast across the different load
153	groups was calculated as the difference in effect sizes (ES), where the ES was determined as
154	the posttest-pretest mean change in each group, divided by the pooled pretest SD, and
155	multiplied by an adjustment for small sample bias (Morris, 2008). ESs were interpreted as:
156	"small" (≤0.20); "moderate" (0.21–0.50); "large" (0.51–0.80); and "very large" (>0.80)
157	(Cohen, 1992). ESs are presented with their respective 95% confidence intervals (95% CI).
158	The variance of the difference in ESs depends on the within-subject posttest-pretest
159	correlation, which was not available from the published data for many of the studies. Among
160	studies for which this correlation could be estimated (back-solving from paired t-test <i>p</i> -values
161	or SDs of posttest-pretest change scores, when presented), the median value was 0.73; the
162	value of 0.75 was used to calculate the variance for all studies.
163	Sensitivity analyses (not presented) were performed using correlations ranging from
164	0 to 0.85; results were consistent with those using 0.75. When studies report multiple effect

165 sizes, one approach is to use study average effect size, which may result in a loss of

166	information. Therefore, a robust variance meta-analysis model, with adjustments for small
167	samples, was used to account for correlated ESs within studies. This meta-analysis model is
168	specifically designed to deal with dependent effect sizes (e.g., multiple strength tests in a
169	single study) (Hedges et al., 2010, Moeyaert et al., 2017, Tanner-Smith et al., 2016). An
170	overall meta-analysis was conducted, separately for the hypertrophy outcomes and strength
171	outcomes and for each paired comparison. In addition, subgroup analyses were performed to
172	explore the effects of training to failure (yes vs. no), and body region (upper vs. lower), when
173	there was a sufficient number of studies for the analysis. Publication bias was checked by
174	examining funnel plot asymmetry and calculating trim-and-fill estimates. The trim-and-fill
175	estimates (not presented) were similar to the main results. Calculations were performed using
176	the robumeta package within R version 4.0.1. All meta-analyses were performed using the
177	robust variance random effects model. Effects were considered statistically significant at $p <$
178	0.05.

179 **RESULTS**

180 Included Studies

181	Figure 1 presents a flowchart of the search carried out according to PRISMA
182	guidelines. Initially, 138,385 articles were identified and after deduplication, 123,358 studies
183	were excluded from the reviewing processes and 14,978 were excluded after title and/or
184	abstract analysis. In total, 49 studies were selected for the full-text reading. Two authors (L.C.
185	and R.J.M.) read these studies completely and, according to our pre-determined inclusion
186	and exclusion criteria, 18 studies ultimately were selected for our review. After reading all
187	articles and reviewing the reference list, 4 additional articles were included for analyses. Two
188	studies presented PEDro score <4 and hence were excluded from analyses. Thus, 20 studies
189	met inclusion for our systematic review and meta-analysis.

190 INSERT FIGURE 1 NEAR HERE

191 Participant characteristics

192	Participants' characteristics are summarized in Table 1. Overall, 480 participants
193	were included in the meta-analysis (Barcelos et al., 2015, Campos et al., 2002, Chestnut and
194	Docherty, 1999, Dons et al., 1979, Holm et al., 2008, Jenkins et al., 2016, Jessee et al., 2018,

195	Lasevicius et al., 2018, Schoenfeld et al., 2014, Taaffe et al., 1996, Kubo et al., 2020,
196	Lasevicius et al., 2019, Vincent et al., 2002, Bemben et al., 2000, Fatouros et al., 2005,
197	Fatouros et al., 2006, Harris et al., 2004, Hortobagyi et al., 2001, Lopes et al., 2017, Pruitt et
198	al., 1995). The number of participants in the studies varied from 10 (Barcelos et al., 2015) to
199	48 (Fatouros et al., 2006). Fourteen studies exclusively examined males (Campos et al., 2002,
200	Chestnut and Docherty, 1999, Dons et al., 1979, Holm et al., 2008, Jenkins et al., 2016,
201	Lasevicius et al., 2018, Schoenfeld et al., 2014, Barcelos et al., 2015, Kubo et al., 2020,
202	Lasevicius et al., 2019, Fatouros et al., 2005, Fatouros et al., 2006, Hortobagyi et al., 2001,
203	Lopes et al., 2017), three exclusively examined females (Taaffe et al., 1996, Bemben et al.,
204	2000, Pruitt et al., 1995), and three assessed a mixed-sex sample (Jessee et al., 2018, Vincent
205	et al., 2002, Harris et al., 2004). The mean age of study participants ranged from 20 (Kubo
206	et al., 2020) to 72 years (Hortobagyi et al., 2001). The training status of participants ranged
207	from untrained (Barcelos et al., 2015, Campos et al., 2002, Chestnut and Docherty, 1999,
208	Holm et al., 2008, Jenkins et al., 2016, Jessee et al., 2018, Lasevicius et al., 2018, Taaffe et
209	al., 1996, Kubo et al., 2020, Lasevicius et al., 2019, Vincent et al., 2002, Fatouros et al., 2005,

Fatouros et al., 2006, Harris et al., 2004, Hortobagyi et al., 2001, Pruitt et al., 1995) to

resistance-trained (Schoenfeld et al., 2014, Lopes et al., 2017). One study did not report the

212	training status of participants (Dons et al., 1979).
213	Intervention characteristics
214	Resistance training programs for the included studies are summarized in Table 1.
215	According to our inclusion criteria, we only analyzed studies that investigated changes in
216	site-specific muscle hypertrophy and 1RM strength using two or more different magnitudes
217	of load with volume load equated. Most studies compared two loading schemes (Barcelos et
218	al., 2015, Chestnut and Docherty, 1999, Dons et al., 1979, Holm et al., 2008, Jenkins et al.,
219	2016, Jessee et al., 2018, Schoenfeld et al., 2014, Taaffe et al., 1996, Lasevicius et al., 2019,
220	Vincent et al., 2002, Hortobagyi et al., 2001, Lopes et al., 2017, Pruitt et al., 1995). Five
221	investigations compared three loading schemes (Campos et al., 2002, Kubo et al., 2020,
222	Fatouros et al., 2005, Fatouros et al., 2006, Harris et al., 2004) and another compared four
223	loading schemes (Lasevicius et al., 2018). In 10 studies, participants performed the training
224	protocol until failure (Barcelos et al., 2015, Campos et al., 2002, Chestnut and Docherty,

225	1999, Jenkins et al., 2016, Jessee et al., 2018, Lasevicius et al., 2018, Schoenfeld et al., 2014,
226	Kubo et al., 2020, Harris et al., 2004, Lopes et al., 2017) while in the other nine studies
227	training stopped short of failure (Dons et al., 1979, Holm et al., 2008, Taaffe et al., 1996,
228	Vincent et al., 2002, Fatouros et al., 2005, Fatouros et al., 2006, Hortobagyi et al., 2001,
229	Pruitt et al., 1995, Bemben et al., 2000). One study compared two loads with participants
230	performing the strength protocol until failure and with training stopped short of failure
231	(Lasevicius et al., 2019). The most common load prescription was % of 1RM (Barcelos et
232	al., 2015, Dons et al., 1979, Holm et al., 2008, Jenkins et al., 2016, Jessee et al., 2018,
233	Lasevicius et al., 2018, Taaffe et al., 1996, Lasevicius et al., 2019, Vincent et al., 2002,
234	Bemben et al., 2000, Fatouros et al., 2005, Fatouros et al., 2006, Hortobagyi et al., 2001,
235	Pruitt et al., 1995) and six studies used a repetition maximum zone to prescribe load (Campos
236	et al., 2002, Chestnut and Docherty, 1999, Schoenfeld et al., 2014, Kubo et al., 2020, Harris
237	et al., 2004, Lopes et al., 2017). Intervention duration ranged from 4 (Jenkins et al., 2016) to
238	52 (Taaffe et al., 1996) weeks, with 8 weeks being the most common.(Barcelos et al., 2015,
239	Campos et al., 2002, Jessee et al., 2018, Schoenfeld et al., 2014, Lasevicius et al., 2019).

240	Three studies involved resistance training of the upper limbs (Chestnut and Docherty, 1999,
241	Jenkins et al., 2016, Kubo et al., 2020), eight studies involved the lower limbs (Barcelos et
242	al., 2015, Campos et al., 2002, Dons et al., 1979, Holm et al., 2008, Jessee et al., 2018, Taaffe
243	et al., 1996, Lasevicius et al., 2019, Hortobagyi et al., 2001) and nine studies involved both
244	the lower and upper limbs.(Lasevicius et al., 2018, Schoenfeld et al., 2014, Vincent et al.,
245	2002, Bemben et al., 2000, Fatouros et al., 2005, Fatouros et al., 2006, Harris et al., 2004,
246	Lopes et al., 2017, Pruitt et al., 1995) More than half of the studies were carried out three
247	times per week (Chestnut and Docherty, 1999, Dons et al., 1979, Holm et al., 2008, Jenkins
248	et al., 2016, Schoenfeld et al., 2014, Taaffe et al., 1996, Vincent et al., 2002, Bemben et al.,
249	2000, Fatouros et al., 2005, Fatouros et al., 2006, Hortobagyi et al., 2001, Pruitt et al., 1995).
250	Six studies were carried out twice per week (Barcelos et al., 2015, Jessee et al., 2018,
251	Lasevicius et al., 2018, Kubo et al., 2020, Lasevicius et al., 2019, Harris et al., 2004), one
252	study was carried out four times per week (Lopes et al., 2017) and one study carried out
253	training twice per week for the first 4 weeks and three times per week for the last 4 weeks
254	(Campos et al., 2002).

255 ******INSERT TABLE 1 ABOUT HERE******

- 256 For muscle strength assessments, 12 studies evaluated muscle strength of the upper
- limbs (Chestnut and Docherty, 1999, Jenkins et al., 2016, Lasevicius et al., 2018, Schoenfeld
- 258 et al., 2014, Kubo et al., 2020, Vincent et al., 2002, Bemben et al., 2000, Fatouros et al., 2005,
- 259 Fatouros et al., 2006, Harris et al., 2004, Lopes et al., 2017, Pruitt et al., 1995) and 17 studies
- 260 evaluated muscle strength of the lower limbs (Barcelos et al., 2015, Campos et al., 2002,
- 261 Dons et al., 1979, Holm et al., 2008, Jessee et al., 2018, Lasevicius et al., 2018, Schoenfeld
- et al., 2014, Taaffe et al., 1996, Lasevicius et al., 2019, Vincent et al., 2002, Hortobagyi et
- 263 al., 2001, Bemben et al., 2000, Fatouros et al., 2005, Fatouros et al., 2006, Harris et al., 2004,
- Lopes et al., 2017, Pruitt et al., 1995). The most common exercises that assessed upper limb
- strength were: elbow flexor exercise (Chestnut and Docherty, 1999, Jenkins et al., 2016,
- Lasevicius et al., 2018, Bemben et al., 2000, Harris et al., 2004, Pruitt et al., 1995), elbow
- 267 extensor exercise (Chestnut and Docherty, 1999, Bemben et al., 2000, Harris et al., 2004)
- and bench press exercise (Schoenfeld et al., 2014, Kubo et al., 2020, Harris et al., 2004, Lopes
- et al., 2017, Pruitt et al., 1995). The most common exercises that assessed lower limb strength

270	were: knee extensor exercise (Barcelos et al., 2015, Campos et al., 2002, Dons et al., 1979,
271	Holm et al., 2008, Jessee et al., 2018, Taaffe et al., 1996, Jenkins et al., 2016, Lasevicius et
272	al., 2019, Vincent et al., 2002, Fatouros et al., 2005, Harris et al., 2004, Pruitt et al., 1995),
273	leg press exercise (Campos et al., 2002, Lasevicius et al., 2018, Taaffe et al., 1996, Vincent
274	et al., 2002, Bemben et al., 2000, Fatouros et al., 2006, Harris et al., 2004, Pruitt et al., 1995)
275	and squat exercise (Campos et al., 2002, Schoenfeld et al., 2014, Lopes et al., 2017).
276	For muscle hypertrophy assessments, a majority of studies used ultrasonography
277	(Dons et al., 1979, Jenkins et al., 2016, Jessee et al., 2018, Lasevicius et al., 2018, Schoenfeld
278	et al., 2014, Bemben et al., 2000) and MRI (Barcelos et al., 2015, Chestnut and Docherty,
279	1999, Holm et al., 2008, Kubo et al., 2020, Lasevicius et al., 2019) while others used biopsy
280	(Campos et al., 2002, Taaffe et al., 1996). Most studies used cross sectional area as a measure
281	of muscle size (Barcelos et al., 2015, Campos et al., 2002, Chestnut and Docherty, 1999,
282	Dons et al., 1979, Holm et al., 2008, Lasevicius et al., 2018, Taaffe et al., 1996, Lasevicius
283	et al., 2019, Bemben et al., 2000), whereas three studies used muscle thickness (Jenkins et
284	al., 2016, Jessee et al., 2018, Schoenfeld et al., 2014) and one study used muscle volume

- 285 (Kubo et al., 2020). Six studies assessed muscle hypertrophy of the upper limbs (Chestnut
- and Docherty, 1999, Jenkins et al., 2016, Lasevicius et al., 2018, Schoenfeld et al., 2014,
- 287 Kubo et al., 2020, Bemben et al., 2000) and nine studies assessed muscle hypertrophy of the
- lower limbs (Barcelos et al., 2015, Campos et al., 2002, Dons et al., 1979, Holm et al., 2008,
- Jessee et al., 2018, Lasevicius et al., 2018, Taaffe et al., 1996, Lasevicius et al., 2019, Bemben
- et al., 2000). The muscle most commonly evaluated was the vastus lateralis (Campos et al.,
- 201 2002, Jessee et al., 2018, Lasevicius et al., 2018, Taaffe et al., 1996).

292 Quality assessments

- The quality assessment is presented in Table 2. The mean rating of study quality as
- assessed by the PEDro scale was 6.7, indicating the studies to be of excellent quality; no
- study in the analysis was classified to be of poor quality.

296 ****INSERT TABLE 2 ABOUT HERE****

297 Meta-analysis

298	A pooled analysis of the standardized mean difference for 1RM strength outcomes
299	across the studies showed a benefit favoring HL vs. LL ($p = 0.006$; ES:1.03; 95% CI: 0.37,
300	1.69; Figure 2) and a benefit favoring HL vs. ML ($p = 0.012$; ES:0.60; 95% CI: 0.17, 1.03;
301	Figure 2). The ML vs. LL comparison also showed a benefit for 1RM strength outcomes (p
302	= 0.048; ES: 0.83; 95% CI: 0.01, 1.65) for the higher load. No significant benefit was found
303	for 1RM strength outcomes comparing LL vs. VLL ($p = 0.079$; ES: 0.20; 95% CI: -0.12,
304	0.52). Sensitivity analysis with outliers omitted did not significantly change findings.
305	Subanalysis stratifying strength outcomes by body region (upper vs lower) showed
306	little differences between conditions (Table 3). Subanalysis of studies carried to failure vs.
307	not to failure showed a significant difference only between HL vs. ML ($p = 0.049$), favoring
308	HL in not to failure condition.
309	****INSERT FIGURE 2 ABOUT HERE****
310	A pooled analysis of the standardized mean difference for hypertrophy outcomes
311	across the studies showed no meaningful differences between HL vs. LL conditions ($p =$
312	0.938; ES: 0.01; 95% CI: -0.30, 0.32; Figure 3), HL <i>vs.</i> ML (<i>p</i> = 0.559; ES: 0.04; 95% CI: -

313	0.12, 0.20), ML vs. LL (p = 0.571; ES: 0.17; 95% CI: -2.51, 2.84; Figure 3) and LL vs. VLL
314	(p = 0.626; ES: 0.28; 95% CI: -5.09, 5.65). Sensitivity analysis with outliers omitted did not
315	significantly change findings.
316	Subanalysis stratifying hypertrophy outcomes by body region (upper vs. lower)
317	showed no differences between conditions (Table 3). Subanalysis of studies carried to failure
318	<i>vs.</i> not to failure showed a significant difference only between HL <i>vs.</i> ML conditions ($p =$
319	0.002), favoring HL in not to failure condition.
320	****INSERT FIGURE 3 ABOUT HERE****
321	
322	****INSERT TABLE 3 ABOUT HERE****
323	DISCUSSION
324	The present systematic review and meta-analysis encompassed 20 studies that
325	compared different training loads while matching volume load. The studies were of relatively
326	high quality (PEDro scale = 6.7) and trim and fill analysis did not indicate evidence of

327	significant reporting bias. Results from meta-analysis indicate that when volume load is
328	equated, the highest loads induce superior dynamic strength gains, with the exception of
329	comparisons between low loads and very low loads, which did not show significant
330	differences. Alternatively, no differences were observed between loading conditions for
331	measures of muscle hypertrophy. In addition, subanalysis of studies carried to failure vs. not
332	to failure showed a significant difference only between HL vs. ML conditions, favoring HL
333	in not to failure condition. We discuss the implications of our findings below.
334	1RM Strength

554 IKINI SUCIIGUI

335	The results of our meta-analysis show that when volume load is similar, training
336	with higher loads induces superior increases in 1RM strength compared to using lighter loads.
337	Scrutiny of the forest plot (Figure 1) provides additional support for this conclusion, as 15 of
338	41 (HL vs. LL) and 8 of 22 (HL vs. ML) strength measures favored heavier loads training.
339	In contrast, only one strength measure favored the lowest load group (Figure 1A). Hence, the
340	data indicate compelling evidence for the observed effect across the spectrum of loading
341	zones. Moreover, regression analysis showed that results held true irrespective of body region

342	(upper vs. lower body). Surprisingly no differences were found for strength gains when VLL
343	and LL were compared. We believe that this finding is a consequence of the low number of
344	studies found (only 2), which limited our statistical power.
345	Our overall effect size difference for strength gains when comparing HL vs. LL was
346	greater than that reported in the meta-analysis by Schoenfeld et al. (2017) (1.03 vs. 0.58,
347	respectively), but was similar when comparing HL vs. ML (0.60). This difference may be a
348	consequence of the cut-points used to classify loads in the present study, as the HL was
349	composed of studies that contained training protocols with loads above 80% of 1RM, while
350	in the study by Schoenfeld et al. (2017), high loads were considered those >60% of 1RM.
351	The different cut-points used for classification of loads mean that in Schoenfeld et al. (2017)
352	high load condition, studies we classified as ML would be in the same category as those in
353	HL, which differences would have been mitigated, yielding lower ES.
354	It is noteworthy to mention that the level of effort was not a significant explanatory
355	variable as to changes in strength, with meta regression showing greater strength gains are
356	achieved with the highest loads regardless of whether or not training is carried out to failure.

357	Our results corroborate findings of the meta-analysis performed by Davies et al. (2016), who
358	reported similar increases in muscle strength between failure and non-failure training. It
359	therefore can be inferred that the magnitude of load is the dominant variable for promoting
360	increases in dynamic strength; training with a very high intensity of effort appears to be of
361	secondary consequence.

362 Hypertrophy

363	From a hypertrophy standpoint, a simple pooled meta-analysis showed similar
364	muscle growth irrespective of the magnitude of load when training is carried out under
365	volume-matched conditions. The negligible ES difference (HL vs. $LL = 0.01$ and HL vs.
366	ML= 0.04) and narrow corresponding 95% confidence interval (-0.30 to 0.32 and -0.12 to
367	0.20, respectively) provides strong evidence that loading is not a primary determinant in
368	hypertrophic adaptations. This conclusion is further supported by the forest plots (Figure 2
369	A and B), which displays a relatively even distribution of point estimates on either side of
370	the line of null effect. It is important to highlight that in the only study that investigated
371	hypertrophy at fiber level there was a difference between HL vs. LL. More studies are

encouraged to investigate if the specificity of hypertrophy assessment influences theresponse.

374	Our findings concur with the meta-analysis of Lopez et al. (2021) and Schoenfeld
375	et al. (2017), and expand on their findings by demonstrating that results hold true when
376	volume is matched for total work. Importantly, however, this inference is specific when
377	comparing moderate (~60% to 80% 1RM) vs. lower ($\leq 60\%$ 1RM) load training protocols,
378	which was the focus of the previous meta-analysis (Schoenfeld et al., 2017).
379	A point of interest is whether a minimum loading threshold exists for optimal
380	increases in hypertrophy. In this regard, Lasevicius et al. (2018) reported that increases in
381	muscle CSA are compromised when the magnitude of load is 20% vs 40% 1RM on a work-
382	matched basis. Given previous work showing that the use of 30% 1RM elicits similar
383	hypertrophy compared to higher loading zones (Jenkins et al., 2016, Mitchell et al., 2012,
384	Morton et al., 2016), the findings suggest diminished hypertrophic returns with loads $< 30\%$
385	1RM. To further investigate this hypothesis, we subanalyzed studies comparing $< 30\%$ 1RM
386	(VLL) versus 31% to 59% 1RM (LL) in the low load condition (not displayed); results

387	showed no differences between these conditions ($p = 0.626$, ES: 0.28, 95% CI: -5.09, 5.65).
388	The lack of significant ES may be a consequence of the low number of studies and
389	consequently a wide 95% CI. However, the scope of research on the topic remains limited
390	and further studies are needed to draw stronger conclusions.
391	Current theory proposes that the hypertrophic benefits of low-loads are
392	predicated on training to muscular failure. This theory is based on the supposition that
393	a high level of effort is required for maximal recruitment of high-threshold motor units
394	(Morton et al., 2019). Despite having a logical rationale, meta regression showed that
395	intensity of effort did not influence hypertrophic results between loading zones,
396	independently of the comparisons made (LL vs. HL; LL vs. ML and ML vs. HL). The
397	limited direct evidence on the topic seems to support that the need to train closer to
398	failure training becomes increasingly more important when employing low loads ($<50\%$
399	1RM) (Lasevicius et al., 2019, Nóbrega et al., 2018). However, research on the topic
400	can be considered preliminary and more study is required to draw stronger conclusions.

401 Study limitations

402	Our meta-analysis has several limitations that should be taken into consideration
403	when attempting to draw evidence-based conclusions. First, the intervention duration was
404	relatively short in most studies on the topic. The longest study included had a duration of 52
405	weeks but the others spanned 12 weeks or less; the median of duration was 10 weeks. While
406	this limits extrapolation of findings over longer time periods, it should be noted that research
407	consistently shows such intervention durations are sufficient to observe significant
408	improvements in muscle hypertrophy and strength. Second, the strength results are specific
409	to dynamic 1RM testing that employed exercises similar to that used in the training protocol.
410	Evidence indicates that strength gains are relatively similar between loading zones when
411	testing is carried out under isometric conditions and training volume is set-equated
412	(Schoenfeld et al., 2016). It remains to be determined whether such results would hold true
413	when conditions are work-matched. Third, only one study on the topic included resistance-
414	trained participants (Morton et al., 2019). Given that trained muscle responds differently to
415	mechanical stimuli compared to untrained muscle (Bagley et al., 2020), findings may not
416	necessarily be generalizable to those with resistance training experience. Finally, there is a

417 paucity of data for women and older individuals. Further research in these groups are

418 warranted to gain greater insights into the loading response across populations.

419 Concluding Remarks

420 Our findings show that training with higher loads elicits greater gains in 1RM 421 muscle strength when compared to lower loads. Moreover, these results appear to follow a 422 dose-response relationship, with the heaviest of loads providing the greatest strength-related 423 benefit. From a practical standpoint, these results indicate that individuals seeking to 424 optimize dynamic muscular strength should employ the use of heavier loads. That said, 425 evidence shows that strength can be increased even with the use of relatively light loads. Whether these increases are sufficient to optimize athletic performance or activities of daily 426 427 living would be specific to individual needs and abilities. Moreover, it is not clear how often 428 an individual needs to employ higher loads to achieve maximal strength gains. This topic 429 warrants further study.

430	Alternatively, those seeking to maximize hypertrophy can choose to train across a
431	wide-spectrum of loading zones. Given that the magnitude of the effect for hypertrophic
432	adaptations is relatively similar to previous meta-analytic data that equated volume by the
433	number of sets (Schoenfeld et al., 2017), matching total work between heavier and lighter
434	load conditions does not yield additional increases in this regard. Individual preference and
435	needs (i.e. musculoskeletal injury, etc.) therefore can guide loading prescription from a
436	hypertrophy standpoint. It should be noted that evidence indicates training with lower loads
437	until to concentric failure induces greater perceived effort, discomfort, discontent, elevated
438	heart rate and blood pressure compared to higher loads (Nóbrega et al., 2018, Ribeiro et al.,
439	2019). These outcomes may influence exercise adherence and thus should be considered in
440	individualized program prescription.
441	A CENIONI ED CMENTS
441	ACKNOWLEDGMENTS
442 443	The authors are grateful to CAPES for financial support.

445 COMPETING INTERESTS

446 The authors declare that they have no competing interest.

447

448 AUTHOR'S CONTRIBUTIONS

449	LC conceived the idea for the review, performed the searches, data extraction, and
450	methodological quality assessment, as well as drafted the manuscript; RMJ performed the
451	searches, data extraction, and methodological quality assessment, as well drafted the
452	manuscript; JB analyzed the data and critically revised the manuscript content; BJ analyzed
453	the data and drafted the manuscript; JO analyzed the data and critically revised the
454	manuscript content; RB conceived the idea for the review, performed the methodological
455	quality assessment and drafted the manuscript. All authors have read and approved the final
456	version of the manuscript, and agree with the order of presentation of the authors.

457 **REFERENCES**

458 2009. American College of Sports Medicine position stand. Progression models in resistance
459 training for healthy adults. *Medicine Science Sports Exercise*, 41, 687-708. PMID: 19204579
460 BAGLEY, J. R., BURGHARDT, K. J., MCMANUS, R., HOWLETT, B., COSTA, P. B.,
461 COBURN, J. W., AREVALO, J. A., MALEK, M. H. & GALPIN, A. J. 2020. Epigenetic

- responses to acute resistance exercise in trained vs. sedentary men. *The Journal of Strength & Conditioning Research*, 34, 1574-1580. PMID: 32459413
- 464 BARCELOS, L. C., NUNES, P. R. P., DE SOUZA, L. R. M. F., DE OLIVEIRA, A. A.,
- 465 FURLANETTO, R., MAROCOLO, M. & ORSATTI, F. L. 2015. Low-load resistance
- training promotes muscular adaptation regardless of vascular occlusion, load, or volume.
- 467 *European journal of applied physiology*, 115, 1559-1568. PMID: 25731927.
- BEMBEN, D. A., FETTERS, N. L., BEMBEN, M. G., NABAVI, N. & KOH, E. T. 2000.
 Musculoskeletal responses to high-and low-intensity resistance training in early
 postmenopausal women. *Medicine Science Sports Exercise*, 32, 1949-1957.
 PMID: 11079527.
- 472 CAMPOS, G. E., LUECKE, T. J., WENDELN, H. K., TOMA, K., HAGERMAN, F. C.,
 473 MURRAY, T. F., RAGG, K. E., RATAMESS, N. A., KRAEMER, W. J. & STARON, R. S.
- 474 2002. Muscular adaptations in response to three different resistance-training regimens:
 475 specificity of repetition maximum training zones. *European journal of applied physiology,*
- 476 88, 50-60. PMID: 12436270.
- 477 CHESTNUT, J. L. & DOCHERTY, D. 1999. The effects of 4 and 10 repetition maximum
 478 weight-training protocols on neuromuscular adaptations in untrained men. *The Journal of*479 *Strength & Conditioning Research*, 13, 353-359. DOI: 10.1519/1533480 287(1999)013<0353:TEOARM>2.0.CO;2.
- 481 COHEN, J. 1992. A power primer. *Psychological bulletin*, 112, 155. PMID: 19565683.
- DAVIES, T., ORR, R., HALAKI, M. & HACKETT, D. 2016. Effect of training leading to
 repetition failure on muscular strength: a systematic review and meta-analysis. *Sports Medicine*, 46, 487-502. PMID: 26666744.

485DONS, B., BOLLERUP, K., BONDE-PETERSEN, F. & HANCKE, S. 1979. The effect of 486weight-lifting exercise related to muscle fiber composition and muscle cross-sectional area in

487humans. *European journal of applied physiology and occupational physiology*, 40, 95-106. 488PMID: 42837.

489FATOUROS, I., TOURNIS, S., LEONTSINI, D., JAMURTAS, A., SXINA, M., THOMAKOS, 490P., MANOUSAKI, M., DOUROUDOS, I., TAXILDARIS, K. & MITRAKOU, A. 2005. Leptin 491and adiponectin responses in overweight inactive elderly following resistance training and 492detraining are intensity related. *The Journal of Clinical Endocrinology & Metabolism*, 90, 5970-4935977.

494FATOUROS, I. G., KAMBAS, A., KATRABASAS, I., LEONTSINI, D., 495CHATZINIKOLAOU, A., JAMURTAS, A. Z., DOUROUDOS, I., AGGELOUSIS, N. & 496TAXILDARIS, K. 2006. Resistance training and detraining effects on flexibility performance in 497the elderly are intensity-dependent. *The Journal of Strength & Conditioning Research*, 20, 634-498642. PMID: 16091494.

499GRGIC, J., MIKULIC, P., PODNAR, H. & PEDISIC, Z. 2017. Effects of linear and daily 500undulating periodized resistance training programs on measures of muscle hypertrophy: a 501systematic review and meta-analysis. *PeerJ*, 5, e3695. PMID: 28848690.

502HARRIS, C., DEBELISO, M. A., SPITZER-GIBSON, T. A. & ADAMS, K. J. 2004. The effect 503of resistance-training intensity on strength-gain response in the older adult. *The Journal of* 504*Strength and Conditioning Research*, 18, 833-838. PMID: 15574091.

505HEDGES, L. V., TIPTON, E. & JOHNSON, M. C. 2010. Robust variance estimation in 506meta-regression with dependent effect size estimates. *Research synthesis methods*, 1, 39-65. 507PMID: 26056092.

508HOLM, L., REITELSEDER, S., PEDERSEN, T. G., DOESSING, S., PETERSEN, S. G., 509FLYVBJERG, A., ANDERSEN, J. L., AAGAARD, P. & KJAER, M. 2008. Changes in muscle 510size and MHC composition in response to resistance exercise with heavy and light loading 511intensity. *Journal of applied physiology*, 105, 1454-1461. PMID: 18787090.

512HORTOBAGYI, T., TUNNEL, D., MOODY, J., BEAM, S. & DEVITA, P. 2001. Low-or high-513intensity strength training partially restores impaired quadriceps force accuracy and steadiness 514in aged adults. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences,* 51556, B38-B47. PMID: 11193224.

516JENKINS, N. D., HOUSH, T. J., BUCKNER, S. L., BERGSTROM, H. C., COCHRANE, K. C., 517HILL, E. C., SMITH, C. M., SCHMIDT, R. J., JOHNSON, G. O. & CRAMER, J. T. 2016. 518Neuromuscular adaptations after 2 and 4 weeks of 80% versus 30% 1 repetition maximum 519resistance training to failure. *The Journal of Strength and Conditioning Research*, 30, 2174-2185. 520PMID: 26848545.

521JESSEE, M. B., BUCKNER, S. L., MOUSER, J. G., MATTOCKS, K. T., DANKEL, S. J., ABE, 522T., BELL, Z. W., BENTLEY, J. P. & LOENNEKE, J. P. 2018. Muscle adaptations to high-load 523training and very low-load training with and without blood flow restriction. *Frontiers in* 524*physiology*, 9, 1448. PMID: 30386254.

525KUBO, K., IKEBUKURO, T. & YATA, H. 2020. Effects of 4, 8, and 12 Repetition Maximum 526Resistance Training Protocols on Muscle Volume and Strength. *The Journal of strength and* 527 *conditioning research*. PMID: 32304514.

528KÜMMEL, J., KRAMER, A., GIBOIN, L.-S. & GRUBER, M. 2016. Specificity of balance 529training in healthy individuals: a systematic review and meta-analysis. *Sports Medicine*, 46, 5301261-1271. PMID: 26993132.

531LASEVICIUS, T., SCHOENFELD, B. J., SILVA-BATISTA, C., BARROS, T. D. S., AIHARA, 532A. Y., BRENDON, H., LONGO, A. R., TRICOLI, V., PERES, B. & TEIXEIRA, E. L. 2019. 533Muscle Failure Promotes Greater Muscle Hypertrophy in Low-Load but Not in High-Load 534Resistance Training. *The Journal of strength and conditioning research*. PMID: 31895290.

535LASEVICIUS, T., UGRINOWITSCH, C., SCHOENFELD, B. J., ROSCHEL, H., TAVARES, 536L. D., DE SOUZA, E. O., LAURENTINO, G. & TRICOLI, V. 2018. Effects of different

537intensities of resistance training with equated volume load on muscle strength and hypertrophy. 538*European journal of sport science*, 18, 772-780. PMID: 29564973.

539LOPES, C. R., AOKI, M. S., CRISP, A. H., DE MATTOS, R. S., LINS, M. A., DA MOTA, G. 540R., SCHOENFELD, B. J. & MARCHETTI, P. H. 2017. The effect of different resistance training 541load schemes on strength and body composition in trained men. *Journal of human kinetics*, 58, 542177. PMID: 28828088.

543LOPEZ, P., RADAELLI, R., TAAFFE, D. R., NEWTON, R. U., GALVÃO, D. A., TRAJANO, 544G. S., TEODORO, J. L., KRAEMER, W. J., HÄKKINEN, K. & PINTO, R. S. 2021. Resistance 545training load effects on muscle hypertrophy and strength gain: systematic review and network 546meta-analysis. *Medicine and science in sports and exercise*, 53, 1206. PMID: 33433148.

547MAHER, C. G., SHERRINGTON, C., HERBERT, R. D., MOSELEY, A. M. & ELKINS, M. 5482003. Reliability of the PEDro scale for rating quality of randomized controlled trials. *Phys Ther*, 54983, 713-21. PMID: 12882612.

550MITCHELL, C. J., CHURCHWARD-VENNE, T. A., WEST, D. W., BURD, N. A., BREEN, 551L., BAKER, S. K. & PHILLIPS, S. M. 2012. Resistance exercise load does not determine 552training-mediated hypertrophic gains in young men. *Journal of applied physiology*, 113, 71-77. 553PMID: 22518835.

554MOEYAERT, M., UGILLE, M., NATASHA BERETVAS, S., FERRON, J., BUNUAN, R. & 555VAN DEN NOORTGATE, W. 2017. Methods for dealing with multiple outcomes in meta-556analysis: a comparison between averaging effect sizes, robust variance estimation and multilevel 557meta-analysis. *International Journal of Social Research Methodology*, 20, 559-572. 558PMID: 22518835.

559MORRIS, S. B. 2008. Estimating effect sizes from pretest-posttest-control group designs. 560*Organizational research methods*, 11, 364-386.

561MORTON, R. W., SONNE, M. W., FARIAS ZUNIGA, A., MOHAMMAD, I. Y., JONES, A., 562MCGLORY, C., KEIR, P. J., POTVIN, J. R. & PHILLIPS, S. M. 2019. Muscle fibre activation 563 is unaffected by load and repetition duration when resistance exercise is performed to task failure. 564 *The Journal of physiology*, 597, 4601-4613. PMID: 31294822.

565NÓBREGA, S. R., UGRINOWITSCH, C., PINTANEL, L., BARCELOS, C. & LIBARDI, C. 566A. 2018. Effect of resistance training to muscle failure vs. volitional interruption at high-and 567low-intensities on muscle mass and strength. *The Journal of Strength anda Conditioning* 568*Research*, 32, 162-169. PMID: 29189407.

569OGASAWARA, R., LOENNEKE, J. P., THIEBAUD, R. S. & ABE, T. 2013. Low-load bench 570press training to fatigue results in muscle hypertrophy similar to high-load bench press training. 571*International Journal of Clinical Medicine*, 4, 114. DOI: 10.4236/ijcm.2013.42022.

572PRUITT, L. A., TAAFFE, D. R. & MARCUS, R. 1995. Effects of a one-year high-intensity 573versus low-intensity resistance training program on bone mineral density in older women. 574*Journal of Bone and Mineral Research*, 10, 1788-1795. PMID: 8592957.

575RIBEIRO, A. S., DOS SANTOS, E. D., NUNES, J. P. & SCHOENFELD, B. J. 2019. Acute 576Effects of Different Training Loads on Affective Responses in Resistance-trained Men. 577*International journal of sports medicine*, 40, 850-855. PMID: 3149956.

578SCHOENFELD, B. J., CONTRERAS, B., VIGOTSKY, A. D. & PETERSON, M. 2016. 579Differential effects of heavy versus moderate loads on measures of strength and hypertrophy in 580resistance-trained men. *Journal of sports science & medicine*, 15, 715. PMID: 27928218.

581SCHOENFELD, B. J., GRGIC, J., OGBORN, D. & KRIEGER, J. W. 2017. Strength and 582hypertrophy adaptations between low-vs. high-load resistance training: a systematic review and 583meta-analysis. *The Journal of Strength and Conditioning Research*, 31, 3508-3523. 584PMID: 28834797.

585SCHOENFELD, B. J., PETERSON, M. D., OGBORN, D., CONTRERAS, B. & SONMEZ, G. 586T. 2015. Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in 587well-trained men. *The Journal of Strength and Conditioning Research*, 29, 2954-2963. 588PMID: 25853914.

589SCHOENFELD, B. J., RATAMESS, N. A., PETERSON, M. D., CONTRERAS, B., SONMEZ, 590G. & ALVAR, B. A. 2014. Effects of different volume-equated resistance training loading 591strategies on muscular adaptations in well-trained men. *The Journal of Strength and Conditioning* 592*Research*, 28, 2909-2918. PMID: 24714538.

593TAAFFE, D., PRUITT, L., PYKA, G., GUIDO, D. & MARCUS, R. 1996. Comparative effects 594of high-and low-intensity resistance training on thigh muscle strength, fiber area, and tissue 595composition in elderly women. *Clinical Physiology*, 16, 381-392. PMID: 8842574.

596TANNER-SMITH, E. E., TIPTON, E. & POLANIN, J. R. 2016. Handling complex meta-597analytic data structures using robust variance estimates: A tutorial in R. *Journal of* 598*Developmental and Life-Course Criminology*, 2, 85-112.

599VINCENT, K. R., BRAITH, R. W., FELDMAN, R. A., MAGYARI, P. M., CUTLER, R. B., 600PERSIN, S. A., LENNON, S. L., MD, A. H. G. & LOWENTHAL, D. T. 2002. Resistance 601exercise and physical performance in adults aged 60 to 83. *Journal of the American Geriatrics* 602*Society*, 50, 1100-1107. PMID: 12110072

603

604

605

Study	Subjects	Design	Hypertrophy measurement	Strengh measureme nt	Findings
Campos	32 untrained	Random	Biopsy/CSA	1RM in leg	Significant increases
et al., 2002	young men (5	assignment to	1 5 1	press, squat	in CSA for 3–5 RM
,	served as	either 3–5 RM, 9–		and leg	and 9–11 RM group;
	controls)	11 RM or 20–28		extension.	no
	,	RM exercises.			significant increase in
		Exercise consisted			CSA for 20–28 RM.
		of 2–4 sets of			Significantly greater
		squat, leg press			increases in strength
		and leg extension,			for 3–5 vs. 9–11 RM
		performed 2 d/wk			and 20–28 RM.
		for the first 4 wks			
		and 3 days/wk for			
		the final 4 wks.			
Lasevicius et	30 untrained	Within-subject	Ultrasound	1RM in leg	Significant increases
al., 2018	young men	design whereby	imaging/CSA	press and	in muscle strength an
8 9					
0					
1					
2					
3					

		one leg and arm		elbow	CSA for all protocols.
		were set at 20%		flexion.	Significantly greater
		1RM for all			increases in CSA for
		participants (G20).			80% of 1RM vs. 20%
		The contralateral			Strength increase for
		limb was randomly			elbow flexion
		assigned to one of			significantly greater in
		the three possible			80% 1RM vs 20, 40
		conditions: 40%			and 60% of 1RM.
		1RM; 60% 1RM,			Strength increase for
		and 80% 1RM.			leg press significantly
		G20 consisted of 3			greater in 60 and 80%
		sets of elbow			of 1RM conditions vs
		flexion and leg			20 and 40% of 1RM.
		press exercise.			
		After G20 training,			
		the number of sets			
		was adjusted for			
		the contralateral			
		limb conditions			
		with volume-			
		matched. Subjects			
		trained 2 d/wk for			
		12 wks.			
Schoenfeld et	17 resistance-	Random	Ultrasound	1RM in	Significant increases
ıl., 2014	trained men	assignment to 3	imaging/ MT	bench press	in MT and 1RM
		sets of 10 RM or 7		and back	occurred from pre- to
		sets of 3RM.		squat	post testing for both
		Training consisted			groups. No significan
		of 3 exercises			differences noted in
		targeting the			MT between groups.
		anterior torso			Significant strength
		muscles, 3			differences favoring
		exercises targeting			of heavier load
		the posterior torso			condition for the 1RN

		muscles, and 3 exercises targeting the thigh musculature, performed 3 d/wk for 8 wks.			bench press and a trend for greater increases in the 1RM squat.
Jesse et al., 2018	20 untrained men and women	Within-subject, counter-balanced randomization of lower legs to 15% 1RM and 70% 1RM. Protocol consisted of 4 sets of unilateral knee extension performed 2d/wk for 8 wks.	Ultrasound imaging/ MT	1RM in knee extension	Strength increased only 70% 1RM. Significant increases in MT for both groups without significant between-group differences.
Jenkins et al., 2016	15 untrained young men	Random assignment to either 80% 1RM or 30% 1RM. Protocol consisted of 3 sets of forearm flexion performed 3 d/wk for 4 wks.	Ultrasound imaging/ MT	1RM in forearm flexion	Similar increases in MT for 80 vs. 30% 1RM, but only 80% 1RM increased muscle strength.
Holm et al., 2008	11 untrained young men	Within-subject design with random assignment to both 70% 1RM and 15.5% 1RM. Protocol consisted of 10 sets of unilateral knee	MRI/CSA	1RM in knee extension	CSA increased in both protocols, with a greater gain in 70% 1RM. Strength increased in both conditions, with a greater gain in 70% 1RM.

		extensions			
		performed 3 d/wk			
		for 12 wks. The			
		15.5% 1RM			
		condition			
		performed 36			
		repetitions per set			
		(one repetition			
		every 5th s for 3			
		min) and 70%			
		1RM			
		performed 8			
		repetitions per set.			
Dons et al.,	18 young	Random	Ultrasound	1RM knee	Strength increased
1979	males (6	assignment to	imaging/CSA	extension	only in 80% 1RM.
	served as	either 80% 1RM			Significant increases
	controls)	or 50% 1RM. 50%			in CSA for 80% 1RM
		condition			and 50% 1RM, with
		performed 20			no significant
		repetitions per set			difference between
		of knee extension			groups.
		exercise while			
		80% group			
		performed 12			
		repetitions.			
		Training carried			
		out 3 d/wk for 7			
		wks.			
Barcelos et al.,	28 untrained	Random	MRI/CSA	1RM in leg	CSA and strength
2015	young men (8	assignment to 1 set		extension	increased in all
	served as	at 20% 1RM or 3			groups, with no
	controls).	sets at 50% 1RM.			differences between
		Protocol consisted			groups.
		of unilateral leg			
		extension carried			

		out 2 d/wk for 8			
		wks.			
Chestnut et al., 1999	24 untrained young men (5 served as controls).	Random assignment to 6 sets of 4RM or 3 sets of 10RM. Protocol consisted of triceps bench press, triceps pulley press-down, standing biceps barbell curl, and standing dumbbell curl performed 3 d/wk for 10 wks.	MRI/ CSA	1RM in triceps bench press and biceps curl.	CSA and strength increased in all groups, with no differences noted among groups.
Taaffe et al., 1996	25 untrained old women, 11 - served as control.	Randomly assignment to 3 sets of 14 repetitions at 40% 1RM or 3 sets of 7 rep at 80% 1RM. Protocol consisted of leg press, knee extension and knee flexion, exercise performed 3 d/wk week for 52 wks.	Biopsy/CSA	1RM in leg press, knee extension and knee flexion.	CSA and strength increased in all groups, with no differences noted among groups.
Kubo et al., 2020	42 untrained young men, 10 served as control.	Random assignment to 7 sets of 4RM or 4 sets of 8RM or 3 sets of 12RM. Protocol consisted	MRI/muscle volume	1RM in bench press	Muscle volume increased in all groups, with no differences between groups. Strength increased in all

4	4
---	---

		of bench press		groups, with lower
		exercise performed		increases in the 12RM
		2 d/wk for 10 wks.		condition.
Lasevicius et	25 untrained	Within-subject	1RM/knee	Quadriceps CSA
al., 2019	young men	design whereby	extension	increased significantly
		each lower limb		for high-load to
		was allocated to 1		failure and not to
		of 4 unilateral		failure, and low-load
		knee extension		to failure,
		protocols:		whereas no significant
		repetitions to		changes were
		failure with 30%		observed in the low-
		1RM ; repetitions		load not to
		to failure with		failure. Strength incre
		80% 1RM ;		ased in
		repetitions not to		all conditions and cha
		failure with 30%		nges were
		1RM ; and		significantly higher
		repetitions not to		for high-load to
		failure with 80%		failure and not to
		1RM. All		failure when
		protocols were		compared with the
		performed 2 d/wk		low-load to failure
		for 8 wks		and low-load not to
				failure.
Vincent et al.	46 untrained	Random	1RM/ chest	Strength increased in
2002	older men	assignment to 1 set	press, leg	all groups, with no
		of 13 repetitions at	press, leg	differences noted
		50% 1RM or 1 set	curl, biceps	among groups
		of 8 repetitions at	curl, seated	
		80% 1RM.	row,	
		Protocol consisted	overhead	
		of 12 exercises	press,	
		performed 3 d/wk	triceps dip	
		for 24 wks.	and leg	

				extension.	
Lopes et al.	16 resistance	Random		1 RM in	Strength increased in
2017	trained men	assignment to 6		Bench Press	all groups, with no
		sets of 10RM		and Squat	differences between
		group or a 3 sets of			the groups.
		20RM group,			
		consisted of 8			
		exercises			
		performed 4d/wk			
		for 6 wks.			
Harris et al.	61 untrained	Random		sum 1RM	Strength increased in
2004	older men and	assignment to 4		biceps curl,	all groups, with no
	women. 14	sets of 6RM group,		triceps	differences noted
	served as	3 sets of 9RM		extension,	among groups.
	control.	group or 2 sets of		lat	
		15RM group,		pull down,	
		performed 8		shoulder	
		resistance		press, and	
		exercises 2d/wk		bench press	
		for 18-week		and sum	
				1RM knee	
				extension,	
				leg press,	
				and leg curl	
Bemben et al.	25 untrained	Random	Ultrasound	1 RM in	CSA increased in all
2000.	older women.	assignment to 3	imaging/CSA –	biceps curl,	groups, with no
	8 served as	sets of 8 rep at	rectus femoris	latissimus	differences between
	control.	80% 1RM or 3	and biceps	pull, seated	groups.
		sets of 16 reps at	brachii	row,	There were no
		40% 1RM.		shoulder	significant difference
		Performed 8		press,	between the groups
		resistance		triceps,	for the strength. Only
		exercises 3d/wk		hamstrings,	the 80% 1RM
		for 24-week		leg press,	protocol resulted in
				quadriceps,	significant increases

46

			hip	in shoulder press,
			1	1
			abduction,	quadriceps, and hip
			hip	flexion strength.
			adduction,	Neither training group
			hip	exhibited significant
			extension,	improvements in
			hip flexion.	biceps curl, triceps
				extension, or hip
				abduction strength.
Fatouros et al.	50 untrained	Random	1RM in lat	Leg strength increased
2005	older men. 10	assignment to 80-	pull down	in exercise groups
	served as	85%1RM 8 rep 3	and leg	after training, with 80-
	control.	sets: 60-65% 1RM	extension.	85%1RM inducing
		10 rep 3 sets; 45-		greater gains than the
		50% 1RM 14 reps		other groups, and 60-
		3 sets. Performed		65% 1RM being more
		8 resistance		effective than 45-50%
		exercises 3d/wk		1RM . Trunk strength
		for 24-week		increased in all
				exercise groups, with
				80-85%1RM
				demonstrating greater
				improvement than the
				other groups, and 60-
				65% 1RM being more
				effective than 45-50%
				1RM .
Fatouros et al.	58 untrained	Random	1RM in	Leg strength increased
2006	older men. 10	assignment to: 80-	chest press	in exercise groups
	served as	85% 1RM 8 rep 3	and leg	after training, with 80-
	control.	sets; 60-65% 1RM	press.	85%1RM inducing
		10 rep 3 sets; 45-	P. 000.	greater gains than the
		50% 1RM 14 reps		other groups, and 60-
		3 sets. Performed		
				65%1RM being more
		8 resistance		effective than 45-

		exercises 3d/wk		50%1RM. Trunk
		for 24-week		strength increased in
				all exercise groups,
				with 80-85%1RM
				demonstrating greater
				improvement than the
				other groups, and 60-
				65%1RM being more
				effective than 45-
				50%1RM .
Hortobágyi et	27 untrained	Random	1RM in leg	Strength increased in
al. 2001	older men. 9	assignment to 5	press supine	all groups, with no
	served as	sets of 4-6 rep at	position	differences noted
	control.	80% 1RM or 5		among groups.
		sets of 8-12 reps at		
		40% 1RM.		
		Performed 1		
		resistance exercise		
		3d/wk for 10-week		
Pruitt et al.	27 untrained	Random	1RM in	Strength gains for the
1995	older women.	assignment to 2	bench press;	80%1RM and
	11 served as	sets of 7 rep at	military	40%1RM groups were
	control.	80% 1RM; or 3	press;	statistically similar in
		sets of 14 reps at	biceps curl;	6 of 7 muscle groups.
		40% 1RM.	lat pull	Change in arm
		Performed 10	down; back	muscular strength,
		exercises, 3d/wk	extension;	however, was
		for 36-week.	leg	significantly greater in
			abduction	the 40%1RM group
			plus leg	compared with the
			adduction;	80%1RM group.
			leg press	
			plus knee	
			extension	
			and flexion	

- 615
- 616 CSA = cross sectional area; MT = muscle thickness; MRI = magnetic resonance imaging;
- 617 1RM= maximal dynamic strength.
- 618
- 619 Table 2: The methodological quality assessment by the modified PEDro scale.

Study	2	3	4	8	9	10	11
Campos et al. 2002	Yes						
Lasevicius et al., 2018	Yes						
Shoenfeld et al. ,2014	Yes						
Jesse et al., 2018	Yes	Yes	No	Yes	Yes	Yes	Yes
Jenkins et al., 2016	Yes						
Holm et al., 2008	Yes						
Dons et al., 1979	Yes	Yes	Yes	No	Yes	No	Yes
Barcelos et al., 2015	Yes	Yes	Yes	No	Yes	Yes	Yes
Chestnut et al.,1999	Yes	Yes	Yes	No	Yes	Yes	Yes
Taafee et al., 1996	Yes	Yes	Yes	No	Yes	Yes	Yes
Kubo et al., 2020	Yes						
Lasevicius et al., 2019	Yes						
Vincent et al., 2002	Yes						
Lopes et al. 2017	Yes						

| Harris et al. 2004 | Yes |
|------------------------|-----|-----|-----|-----|-----|-----|-----|
| Bemben et al. 2000 | Yes |
| Fatouros et al. 2005 | Yes |
| Fatouros et al. 2006 | Yes |
| Hortobágyi et al. 2001 | Yes |
| Pruitt et al. 1995 | Yes |

Outcome	Comparison	Covariate	Estimate	p-value	Difference	p-value
C		T 1: 1	(C.I. 95%)	0.014		
Strength	HL vs. LL	Lower limbs	0.98 (0.27, 1.7)	0.014		
		Upper limbs	1.11 (0.05, 2.18)	0.044	0.13 (-0.75, 1.01)	0.747
		Failure	1.11 (0.57, 1.66)	0.008		
		Not failure	1.00 (-0.05, 2.04)	0.059	-0.12 (-1.29, 1.05)	0.809
	HL vs. ML	Lower limbs	0.58 (0.05, 1.1)	0.035		
		Upper limbs	0.64 (-0.05, 1.33)	0.061	0.07 (-0.58, 0.71)	0.813
		Failure	0.33 (-0.04, 0.7)	0.071		
		Not failure	1.19 (0.03, 2.35)	0.048	0.86 (0, 1.71)	0.049
	ML vs. LL	Lower limbs	0.87 (0, 1.73)	0.049		
		Upper limbs	0.78 (-0.68, 2.24)	0.188	-0.09 (-1.31, 1.14)	0.852
		Failure	0.41 (-0.41, 1.23)	0.166		
		Not failure	1.48 (-2.28, 5.25)	0.125	1.08 (-0.3, 2.46)	0.081
Muscle	HL vs. LL	Lower limbs	0.12 (-0.28, 0.53)	0.428		
hypertrophy						
		Upper limbs	-0.21 (-1.16, 0.74)	0.411	-0.33 (-1.11, 0.44)	0.273
		Failure	0.11 (-0.31, 0.53)	0.458		
		Not failure	-0.15 (-1.06, 0.76)	0.542	-0.26 (-1, 0.48)	0.372
		Fiber	0.51 NC ^a	< 0.001		
		Muscle	-0.07 (-0.37, 0.24)	0.556	-0.58 (-0.88, -0.28)	0.007
	HL vs ML	Lower limbs	0.18 (-0.26, 0.61)	0.205		
		Upper limbs	-0.04 (-0.22, 0.14)	0.539	-0.21 (-0.56, 0.13)	0.150
		Failure	0.01 (-0.15, 0.16)	0.930		
		Not failure	0.43 NC ^a		0.42 (0.26, 0.58)	0.002
		Fiber	0.25 (-1.23, 1.73)	0.278		
		Muscle	-0.04 (-0.19, 0.12)	0.493	-0.29 (-0.9, 0.32)	0.166

669 Table 3: Subgroup analysis for the robust variance meta regression.

670	^a The 95% confidence interval could not be calculated because only one study contributed in
671	this subgroup.
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	

687	
688	
689	
690	
691	
692	
693	Figure Captions
694	Figure 1: PRISMA Flow diagram
695	Figure 2: Forest plots for 1RM strength differences between conditions. (A) HL vs LL; (B)
696	HL vs ML; (C) ML vs LL. Abbreviations: HL = high load; ML = moderate load; LL = light
697	load
698	
699	Figure 3: Forest plots for hypertrophy differences between conditions. (A) HL vs LL; (B) HL
700	vs ML; (C) ML vs LL. Abbreviations: HL = high load; ML = moderate load; LL = light load

PRISMA 2009 Flow Diagram

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 В

<--- ML better HL better --->

Weight Estimate [95% CI]

Study/Comparison

A

Study/Comparison	< LL better	HL better>	Weight	Estimate [95% CI]
Bemben et al. 2000 1RM/Hip abduction: 80% 1RM vs. 40% 1RM 1RM/Hip adduction: 80% 1RM vs. 40% 1RM 1RM/Biceps curl: 80% 1RM vs. 40% 1RM	, F		2.05%	0.31 [-0.46, 1.08] 0.22 [-0.55, 0.98] -0.19 [-0.95, 0.58]
1RM/Hip extension: 80% 1RM vs. 40% 1RM 1RM/Hip flexion: 80% 1RM vs. 40% 1RM 1RM/Knee flexion: 80% 1RM vs. 40% 1RM	∎_ ■_ ■_	┡╕ ╡ ╞═╋╌╢ ╘╴┨	1.91% 1.82% 2.08%	-0.59 [-1.39, 0.21] 0.71 [-0.10, 1.53] -0.23 [-0.99, 0.54]
1RM/Lat pull down: 80% 1RM vs. 40% 1RM 1RM/Leg press: 80% 1RM vs. 40% 1RM 1RM/Knee extension: 80% 1RM vs. 40% 1RM 1RM/Seated row: 80% 1RM vs. 40% 1RM	H	 	0.79% 1.97% 1.45% 0.70%	2.32 [1.08, 3.55] 0.48 [-0.30, 1.27] 1.21 [0.29, 2.12] 2.55 [1.23, 3.87]
1RM/Shoulder press: 80% 1RM vs. 40% 1RM 1RM/Elbow extension: 80% 1RM vs. 40% 1RM Campos et al. 2002	F	₽_ ₽_	1.19% 2.00%	1.58 (0.57, 2.59) 0.42 (-0.36, 1.20)
1RM/Knee extension: 3–5 reps vs. 20–28 reps 1RM/Leg press: 3–5 reps vs. 20–28 reps 1RM/Squat: 3–5 reps vs. 20–28 reps Dons et al. 1979	F	;∎_ ∎_ _∎_	1.93% 0.80% 1.06%	0.37 [-0.42, 1.17] 2.17 [0.93, 3.41] 1.67 [0.59, 2.75]
1RM/Knee extension: 80% 1RM vs. 50% 1RM Fatouros et al. 2005		⊢	0.67%	1.85 [0.44, 3.25]
1RM/Lat pull down: 80-85% 1RM vs. 45-50% 1R 1RM/Knee extension: 80-85% 1RM vs. 45-50% Fatouros et al. 2006	1RM		0.63%	3.64 [2.29, 4.99] 2.76 [1.66, 3.86]
1RM/Chest press: 80-85% 1RM vs. 45-50% 1RM 1RM/Leg press: 80-85% 1RM vs. 45-50% 1RM Hortobágvi et al. 2001	И	⊢∎- ⊢∎-	1.85% 1.39%	1.83 [1.05, 2.61] 2.37 [1.47, 3.27]
1RM/Leg press supine: 80% 1RM vs. 40% 1RM Jenkins et al. 2016	H	н		-0.15 [-0.87, 0.57]
1RM/Elbow flexion: 80% 1RM vs. 30% 1RM Lasevicius et al. 2018 1RM/Elbow flexion: 80% 1RM vs. 40% 1RM		┝╼╾┤	1.50% 1.36%	0.90 [-0.02, 1.81]
1RM/Leg press: 80% 1RM vs. 40% 1RM Lasevicius et al. 2019 1RM/Knee extension (RF): 80% 1RM vs. 30% 1R		⊦ 	2.01% 2.94%	0.97 [0.20, 1.73]
1RM/Knee extension (RNF): 80% 1RM vs. 30% 1 Pruitt et al. 1995		┝╼╾┤	2.68%	0.85 [0.20, 1.50]
1RM/Back extension: 80% 1RM vs. 40% 1RM 1RM/Bench press: 80% 1RM vs. 40% 1RM 1RM/Biceps curl: 80% 1RM vs. 40% 1RM 1RM/Lat pull down: 80% 1RM vs. 40% 1RM			0.85% -	0.14 [-0.68, 0.95] -0.28 [-1.18, 0.63] -1.41 [-2.66, -0.17] 0.81 [-0.18, 1.79]
TRMLeg abduction, leg adduction: 80% TRM vs. TRMLeg press, knee extension, flexion: 80% TRM vs. TRM/Military press: 80% TRM vs. 40% TRM Vincent et al. 2002			1.85%	-0.31 [-1.13, 0.51] 0.09 [-0.86, 1.05] -0.56 [-1.50, 0.38]
1RM/Biceps curl: 80% 1RM vs. 50% 1RM 1RM/Chest press: 80% 1RM vs. 50% 1RM 1RM/Leg curl: 80% 1RM vs. 50% 1RM	Ĥ	: ===-1 ==-1 ==-1	6.06%	0.19 [-0.24, 0.61] -0.01 [-0.44, 0.41] -0.07 [-0.50, 0.35]
TRWK/nee extension: 80% TRM vs. 50% 1RM TRWK/nee extension: 80% TRM vs. 50% 1RM TRWLeg press: 80% 1RM vs. 50% 1RM TRWCSeated row: 80% 1RM vs. 50% 1RM TRWCSeated row: 80% 1RM vs. 50% 1RM TRWCSeated row: 80% 1RM vs. 50% 1RM	F F H	₽7 ₩71 ₩71 ₩71 ₩71 ₩71 ₩71	6.01% 6.01% 6.06% 5.10%	0.17 [-0.25, 0.60] 0.17 [-0.25, 0.60] 0.00 [-0.42, 0.43] 0.83 [0.37, 1.29] -0.05 [-0.47, 0.38]
Robust Variance Meta-Analysis (p-value=0.006)			100.00%	1.03 [0.37, 1.69]

-4.00 -2.00 0.00 2.00 4.00 6.00

HL vs. LL difference in standardized post-pre mean change

Campos et al. 2002		
1RM/Knee extension: 3-5 reps vs. 9-11 reps	∎	4.41% 0.51 [-0.19, 1.22]
1RM/Leg press: 3-5 reps vs. 9-11 reps	· - ·	2.96% 1.41 [0.55, 2.27]
1RM/Squat: 3-5 reps vs. 9-11 reps		3.13% 1.30 [0.47, 2.14]
Chestnut et al. 1999		
1RM/Knee extension: 4 reps vs. 10 reps	⊢∎ -1	4.54% 0.06 [-0.64, 0.76]
1RM/Knee flexion: 4 reps vs. 10 reps	┝┿╋╾┥	4.47% 0.23 [-0.47, 0.94]
Fatouros et al. 2005		
1RM/Lat pull down: 80-85% 1RM vs. 60-65% 1RM	⊢-∎1	3.49% 1.65 [0.87, 2.43]
1RM/Knee extension: 80-85% 1RM vs. 60-65% 1RM	• • ·	3.28% 1.77 [0.97, 2.57]
Fatouros et al. 2006		0.2010 1.11 [0.01, 2.01]
1RM/Chest press: 80-85% 1RM vs. 60-65% 1RM	┝╼╾┥	4.74% 1.05 [0.38, 1.72]
1RM/Leg press: 80-85% 1RM vs. 60-65% 1RM	; ┍╼╌┐ ┝┲╌┤	5.10% 0.89 [0.24, 1.53]
Harris et al. 2004		5.10% 0.69[0.24, 1.55]
1RM/Sum of 5 exercises for upper limbs: 6 RM vs. 15 RM		0.040/ 0.251 0.45 0.061
	·;= ·	8.01% 0.35 [-0.15, 0.86]
1RM/Sum of 5 exercises for upper limbs: 6 RM vs. 9 RM 1RM/Sum of 3 exercises for lower limbs: 6 RM vs. 15 RM	⊢ ∰1	7.17% 0.03 [-0.51, 0.56]
	⊢≢ ⊣	8.29% 0.03 [-0.47, 0.53]
1RM/Sum of 3 exercises for lower limbs: 6 RM vs. 9 RM	H # -1	7.15% -0.10 [-0.64, 0.44]
Kubo et al. 2020		4.0400 0.077 0.00 4.00
1RM/Bench press: 4 reps vs. 12 reps	⊢∎⊣	4.61% 0.37 [-0.32, 1.06]
1RM/Bench press: 4 reps vs. 8 reps	⊢≞ ⊣	5.26% 0.03 [-0.61, 0.67]
Lasevicius et al. 2018		
1RM/Elbow flexion: 80% 1RM vs. 60% 1RM	. ⊢ ∎-1	3.28% 1.23 [0.41, 2.04]
1RM/Leg press: 80% 1RM vs. 60% 1RM	┝╌═┊┤	4.70% -0.28 [-0.96, 0.40]
Schoenfeld et al. 2014		
1RM/Bench press: 3 reps vs. 10 reps		4.02% 0.14 [-0.61, 0.89]
1RM/Squat: 3 reps vs. 10 reps	┝╼╌┥	4.02% 0.14 [-0.61, 0.89]
Taaffe et al. 1996		
1RM/Knee extension: 7 reps vs. 14 reps	⊢ •−+	1.53% 1.84 [0.60, 3.08]
1RM/Knee flexion: 7 reps vs. 14 reps		3.27% -0.18 [-1.03, 0.67]
1RM/Leg press: 7 reps vs. 14 reps	⊨ ∎1	2.56% 0.92 [-0.04, 1.88]
Robust Variance Meta-Analysis (p-value=0.012)		100.00% 0.60 [0.17, 1.03]
-	.00 0.00 2.00 4.00	
HL vs. ML differe	nce in standardized post-pre	mean change

Study/Comparison	< LL better	ML better>	Weight	Estimate [95% CI]
Campos et al. 2002				
1RM/Knee extension: 9-11 reps vs. 20-28 reps	⊢∎	H	9.93%	-0.10 [-0.84, 0.64]
1RM/Leg press: 9-11 reps vs. 20-28 reps		⊢∎⊣	7.60%	1.02 [0.17, 1.86]
1RM/Squat: 9-11 reps vs. 20-28 reps	F		9.37%	0.46 [-0.30, 1.22]
Fatouros et al. 2005				
1RM/Lat pull down: 60-65% 1RM vs. 45-50% 1R	м	⊢₌⊣	5.17%	2.22 [1.21, 3.22]
1RM/Leg extension: 60-65% 1RM vs. 45-50% 1F	RM	⊢∎→	8.05%	1.40 [0.59, 2.21]
Fatouros et al. 2006				
1RM/Chest press: 60-65% 1RM vs. 45-50% 1RM	1	⊨∎⊣	13.37%	0.69 [0.07, 1.32]
1RM/Leg press: 60-65% 1RM vs. 45-50% 1RM		⊢■→	8.13%	1.73 [0.94, 2.53]
Lasevicius et al. 2018				
1RM/Elbow flexion: 60% 1RM vs. 40% 1RM	F	■1	11.40%	0.29 [-0.39, 0.98]
1RM/Leg press: 60% 1RM vs. 40% 1RM		⊢∎⊣	8.46%	1.11 [0.32, 1.91]
Lopes et al. 2017				
1RM/Bench Press: 10 RM vs. 20 RM	H	- -1	9.26%	0.05 [-0.72, 0.82]
1RM/Squat : 10 RM vs. 20 RM	Н	■ 1	9.25%	0.06 [-0.71, 0.84]
Robust Variance Meta-Analysis (p-value=0.048)		~	100.00%	0.83 [0.01, 1.65]
	-1.00	1.00 3.00		

С

ML vs. LL difference in standardized post-pre mean change

В

С

А

Study/Comparison < LL better HL better>	Weight Estimate [95% CI]	Study/Comparison < ML better HL better>	Weight Estimate [95% CI]	Study/Comparison < LL better ML better	> Weight Estimate [95% CI]
Bemben et al. 2000		Campos et al. 2002			
Biceps brachii: 80% 1RM vs. 40% 1RM	6.24% -0.82 [-1.65, 0.02]	Fiber CSA type I: 3–5 reps vs. 9–11 reps	9.37% 0.06 [-0.62, 0.73]		
Rectus femoris: 80% 1RM vs. 40% 1RM	7.48% 0.16 [-0.60, 0.92]	Fiber CSA type IIa: 3–5 reps vs. 9–11 reps	8.81% 0.46 [-0.24, 1.16]	Campos et al. 2002	
Campos et al. 2002		Fiber CSA type IIb: 3–5 reps vs. 9–11 reps	9.38% 0.00 [-0.68, 0.68]		
Fiber CSA type I: 3-5 reps vs. 20-28 reps	7.12% 0.17 [-0.62, 0.95]	Chestnut et al. 1999		Fiber CSA type I: 9–11 reps vs. 20–28 reps	19.19% 0.14 [-0.60, 0.88]
Fiber CSA type IIa: 3-5 reps vs. 20-28 reps	5.95% 0.80 [-0.06, 1.66]		8.73% -0.29 [-0.99, 0.42]		
Fiber CSA type IIb: 3-5 reps vs. 20-28 reps	6.51% 0.57 [-0.25, 1.39]			Fiber CSA type IIa: 9-11 reps vs. 20-28 reps	18.08% 0.47 [-0.29, 1.24]
Dons et al. 1979		CSA middle arm: 4 reps vs. 10 reps	8.94% -0.08 [-0.78, 0.62]		
CSA quadriceps: 80% 1RM vs. 50% 1RM	5.09% -0.38 [-1.34, 0.58]	Kubo et al. 2020		Fiber CSA type IIb: 9–11 reps vs. 20–28 reps	17.44% 0.59 [-0.18, 1.37]
Jenkins et al. 2016		MV pectoralis: 4 reps vs. 12 reps	9.47% -0.03 [-0.70, 0.65]		
MT distal EF: 80% 1RM vs. 30% 1RM	6.75% -0.13 [-0.94, 0.68]	MV pectoralis: 4 reps vs. 8 reps	10.37% 0.01 [-0.63, 0.65]	Lasevicius et al. 2018	
MT middle EF: 80% 1RM vs. 30% 1RM	6.78% -0.06 [-0.87, 0.75]	Lasevicius et al. 2018			
MT proximal EF: 80% 1RM vs. 30% 1RM	6.79% -0.02 [-0.83, 0.79]	CSA EF: 80% 1RM vs. 60% 1RM	9.46% 0.07 [-0.60, 0.75]	CSA EF: 60% 1RM vs. 40% 1RM	22.64% -0.06 [-0.73, 0.62]
Lasevicius et al. 2018		CSA VL: 80% 1RM vs. 60% 1RM	9.47% -0.03 [-0.70, 0.65]		
CSA EF: 80% 1RM vs. 40% 1RM	9.22% 0.03 [-0.65, 0.70]	Schoenfeld et al. 2014		CSA VL: 60% 1RM vs. 40% 1RM	22.66% 0.02 [-0.66, 0.69]
CSA VL: 80% 1RM vs. 40% 1RM	9.22% 0.00 [-0.67, 0.68]	MT EF: 3 reps vs. 10 reps	7.96% 0.02 [-0.73, 0.77]		
Lasevicius et al. 2019		Taaffe et al. 1996			
CSA quadriceps (RF): 80% 1RM vs. 30% 1RM	11.60% 0.01 [-0.59, 0.60]	Fiber CSA type I: 7 reps vs. 14 reps	3.56% 0.80 [-0.40, 2.01]		
CSA quadriceps (RNF): 80% 1RM vs. 30% 1RM	11.26% 0.32 [-0.29, 0.92]	Fiber CSA type II: 7 reps vs. 14 reps	4.49% 0.05 [-1.03, 1.12]		
				Robust Variance Meta-Analysis (p-value=0.571)	- 100.00% 0.17 [-2.51, 2.84]
Robust Variance Meta-Analysis (p-value=0.938)	100.00% 0.01 [-0.30, 0.32]	Robust Variance Meta-Analysis (p-value=0.559) 🔶	100.00% 0.04 [-0.12, 0.20]		
			_		
-2.00 -1.00 0.00 1.00 2.00		-2.00 -1.00 0.00 1.00 2.00	3.00	-1.00 0.50	
HL vs. LL difference in standardized post-pre mean	change	HL vs. ML difference in standardized post-pre mea		ML vs. LL difference in standardized post-p	re mean change