Exhibit 368

Early Treatments for COVID-19

https://c19early.org/treatments.html

Early treatments for COVID-19

The 3,367 treatments below have been reported as potentially beneficial for COVID-19. We currently review studies for:

acetaminophen alkalinization antiandrogens APD aspirin bamlanivimab/etesevimab bebtelovimab bromhexine budesonide cannabidiol casirivimab/imdevimab colchicine convalescent plasma curcumin diet ensitrelvir ensovibep exercise famotidine favipiravir fluvoxamine HCQ ibuprofen indomethacin iota-carrageenan ivermectin lactoferrin melatonin metformin molnupiravir N-acetylcysteine nigella sativa nitazoxanide nitric oxide paxlovid peginterferon lambda povidone-iodine probiotics proxalutamide quercetin remdesivir sleep sotrovimab spironolactone sunlight tixagevimab/cilgavimab vitamin A vitamin B9 vitamin C vitamin D zinc

The following papers report potential benefits of 3,316 other treatments. We have not reviewed these studies.

Sort by number of studies Sort alphabetically Submit updates

camostat Luteolin rutin baricitinib kaempferol resveratrol Hesperidin lopinavir glycyrrhiza glabra Artemisia annua ribavirin arbidol epigallocatechin ritonavir myricetin nafamostat Apigenin azithromycin Baicalin catechin Chloroquine dexamethasone amantadine darunavir cepharanthine ellagic acid emodin sofosbuvir fluoxetine theaflavin baicalein galidesivir methylprednisolone niclosamide Andrographolide atazanavir atorvastatin boceprevir daclatasvir doxycycline isorhamnetin naringenin ozone therapy azvudine gallic acid Glycyrrhizin methotrexate oleuropein Omega 3 Pectolinarin ruxolitinib saquinavir amentoflavone atovaquone Chlorogenic acid ebselen emetine Folic Acid genistein glutathione Hypericin losartan Myricitrin nelfinavir sirolimus tocilizumab amiodarone apilimod APN01 Caffeic Acid carvedilol celecoxib clofazimine danoprevir estradiol fostamatinib heparin imatinib masitinib (more...)

camostat, camostat mesilate, camostat mesylate, Foistar Submit Updates

Wu et al., Protease inhibitor Camostat Mesyalte blocks wild type SARS-CoV-2 and D614G viral entry in human engineered miniature lungs, *Biomaterials*, doi:10.1016/j.biomaterials.2022.121509

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Campos-Gomez et al., Mucociliary Clearance Augmenting Drugs Block SARS-Cov-2 Replication in Human Airway Epithelial Cells, *bioRxiv*, doi:10.1101/2023.01.30.526308

Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, *Current Pharmaceutical Biotechnology*, doi:10.2174/1389201024666230302113110

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Wagoner et al., Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2, *Microbiology Spectrum*, doi:10.1128/spectrum.03331-22

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Saloni et al., A computational study of potential therapeutics for COVID-19 invoking conceptual density functional theory, *Structural Chemistry*, doi:10.1007/s11224-022-02048-1

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

https://arxiv.org/abs/2108.13764ANIMAL:https://journals.asm.org/doi/full/10.1128/mBio.0097.. (In Silico)

https://www.sciencedirect.com/science/article/pii/S2352396421000487 (*In Vitro*) https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(21)00048-7/fulltext https://www.europeanpharmaceuticalreview.com/news/159375/camostat-cuts-recovery-time-in-ha..

https://clinicaltrials.gov/ct2/show/NCT04530617

https://www.medrxiv.org/content/10.1101/2020.12.10.20240689v1.full

https://www.medrxiv.org/content/10.1101/2022.01.28.22270035v1.full

https://www.frontiersin.org/articles/10.3389/fphar.2022.870493/full

https://www.medrxiv.org/content/10.1101/2022.03.27.22271988v1.full

Luteolin Submit Updates

Munafò et al., Quercetin and Luteolin Are Single-digit Micromolar Inhibitors of the SARS-CoV-2 RNA-dependent RNA Polymerase, *Research Square*, doi:10.21203/rs.3.rs-1149846/v1

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From *Andrographis paniculata* via Bioinformatics, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221149622

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Yang et al., A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity, *Molecules*, doi:10.3390/molecules28062735

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Glaab et al., Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and *in Vitro* Experimental Validation of Computationally Screened Inhibitors, *Journal of Chemical Information and Modeling*, doi:10.1021/acs.jcim.1c00258

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Shahhamzehei et al., In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library, *Pharmaceuticals*, doi:10.3390/ph15030308

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

HELALİ et al., Natural substances and coronavirus: review and potential for the inhibition of SARS-CoV-2, *Current Perspectives on Medicinal and Aromatic Plants (CUPMAP)*, doi:10.38093/cupmap.1029572

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://pubmed.ncbi.nlm.nih.gov/34236507/ (In Silico)

https://europepmc.org/article/PMC/PMC10143378

https://link.springer.com/article/10.1007/s00894-023-05569-6

https://www.pnrjournal.com/index.php/home/article/view/4167 (In Silico)

https://www.sciencedirect.com/science/article/pii/S0223523421007066

https://www.mdpi.com/2304-8158/10/9/2084/htm

rutin Submit Updates

Srus et al., In Silico study of Wheatgrass constituents against Coronavirus COVID-19 Proteins., *Research Square*, doi:10.21203/rs.3.rs-1167417/v1

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

Adedayo et al., In-silico studies of Momordica charantia extracts as potential candidates against SARS-CoV-2 targeting human main protease enzyme (MPRO), Informatics in Medicine Unlocked, doi:10.1016/j.imu.2023.101216

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

Kawall et al., Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity, *Frontiers in Chemistry*, doi:10.3389/fchem.2022.1100460

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Moezzi, M., Comprehensive in silico screening of flavonoids against SARS-CoV-2 main protease, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2142297

Amalia et al., The Potential of Phyllanthus Niruri Plant Secondary Metabolites in Providing Antiviral Protection Against Sars-Cov-2: A Literature Review, *KnE Medicine*, doi:10.18502/kme.v2i3.11915

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Zhu et al., Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E, *Virology*, doi:10.1016/j.virol.2022.04.005

Adem et al., Multidimensional in silico strategy for identification of natural polyphenols-based SARS-CoV-2 main protease (Mpro) inhibitors to unveil a hope against COVID-19, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105452

HELALİ et al., Natural substances and coronavirus: review and potential for the inhibition of SARS-CoV-2, *Current Perspectives on Medicinal and Aromatic Plants (CUPMAP)*, doi:10.38093/cupmap.1029572

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/https://www.sciencedirect.com/science/article/pii/S0223523421007066https://www.mdpi.com/1424-8247/14/9/892https://www.mdpi.com/2304-8158/10/9/2084/htm

baricitinib Submit Updates

Bronte et al., Baricitinib restrains the immune dysregulation in patients with severe COVID-19, *Journal of Clinical Investigation*, doi:10.1172/JCI141772

Stebbing et al., JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality, *Science Advances*, doi:10.1126/sciadv.abe4724

Goletti et al., Baricitinib Therapy in Covid-19 Pneumonia — An Unmet Need Fulfilled, *New England Journal of Medicine*, doi:10.1056/NEJMe2034982

Melikhov et al., Use of Janus kinase inhibitors in COVID-19: a prospective observational series in 522 individuals, *Annals of the Rheumatic Diseases*, doi:10.1136/annrheumdis-2021-220049

Manoharan et al., Does baricitinib reduce mortality and disease progression in SARS-CoV-2 virus infected patients? A systematic review and meta analysis, *Respiratory Medicine*, doi:10.1016/j.rmed.2022.106986

Sampath et al., Use of Baricitinib in Treatment of COVID-19: A Systematic Review, *medRxiv*, doi:10.1101/2021.12.26.21268434

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Talukdar et al., Potential Drugs for COVID -19 Treatment Management With Their Contraindications and Drug- Drug Interaction, *MDPI AG*, doi:10.20944/preprints202105.0690.v1

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, *Current Pharmaceutical Biotechnology*, doi:10.2174/1389201024666230302113110

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Mavlankar et al., Interaction of surface glycoprotein of SARS-CoV-2 variants of concern with potential drug candidates: A molecular docking study, *F1000Research*, doi:10.12688/f1000research.109586.1

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

https://www.sciencedirect.com/science/article/abs/pii/S2213260021003313

kaempferol, Kaempferol 3-O-rutinoside Submit Updates

Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From *Andrographis paniculata* via Bioinformatics, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221149622

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Fam et al., Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites, *Scientific Reports*, doi:10.1038/s41598-023-31764-9

Yang et al., A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity, *Molecules*, doi:10.3390/molecules28062735

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Miraz et al., Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study, *International Journal of Clinical Practice*, doi:10.1155/2023/9917306

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Jiang et al., Exploration of Fuzheng Yugan Mixture on COVID-19 based on network pharmacology and molecular docking, *Medicine*, doi:10.1097/MD.000000000032693

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

Bijelić et al., Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, *Antibiotics*, doi:10.3390/antibiotics11111614

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

Jamshidnia et al., An Update on Promising Agents against COVID-19: Secondary Metabolites and Mechanistic Aspects, *Current Pharmaceutical Design*, doi:10.2174/1381612828666220722124826

Liu et al., Network Pharmacology and Molecular Docking Elucidate the Underlying Pharmacological Mechanisms of the Herb Houttuynia cordata in Treating Pneumonia Caused by SARS-CoV-2, *Viruses*, doi:10.3390/v14071588

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Chaves et al., Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors Than Isoflavone and Flavones, *Viruses*, doi:10.3390/v14071458

Zhu et al., Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E, *Virology*, doi:10.1016/j.virol.2022.04.005

HELALİ et al., Natural substances and coronavirus: review and potential for the inhibition of SARS-CoV-2, *Current Perspectives on Medicinal and Aromatic Plants (CUPMAP)*, doi:10.38093/cupmap.1029572

https://journals.sagepub.com/doi/full/10.1177/1934578X221124769 https://www.mdpi.com/2304-8158/10/9/2084/htm

resveratrol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Fam et al., Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites, *Scientific Reports*, doi:10.1038/s41598-023-31764-9

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Bijelić et al., Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, *Antibiotics*, doi:10.3390/antibiotics11111614

Milton-Laskibar et al., Potential usefulness of Mediterranean diet polyphenols against COVID-19-induced inflammation: a review of the current knowledge, *Journal of Physiology and Biochemistry*, doi:10.1007/s13105-022-00926-0

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Mortezaei et al., Variations of SARS-CoV-2 in the Iranian Population and Candidate Putative Druglike Compounds to Inhibit the Mutated Proteins, *Heliyon*, doi:10.1016/j.heliyon.2022.e09910

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

https://www.medrxiv.org/content/10.1101/2020.07.21.20151423v1 (Retrospective Study)

https://www.nature.com/articles/s41598-022-13920-9 (RCT)

https://www.mdpi.com/2076-3921/10/9/1440 (Review)

https://www.tandfonline.com/doi/full/10.1080/21623945.2021.1965315

https://www.sciencedirect.com/science/article/pii/S0223523421007066

https://www.mdpi.com/2304-8158/10/9/2084/htm

https://www.sciencedirect.com/science/article/pii/S0308814621026005

Hesperidin, Hesperetin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Yang et al., A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity, *Molecules*, doi:10.3390/molecules28062735

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

Utomo et al., Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection, *MDPI AG*, doi:10.20944/preprints202003.0214.v1

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, Journal of Taibah University Medical Sciences, doi:10.1016/j.jtumed.2022.12.015

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Babu et al., Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101038

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Adem et al., Multidimensional in silico strategy for identification of natural polyphenols-based SARS-CoV-2 main protease (Mpro) inhibitors to unveil a hope against COVID-19, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105452

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

HELALİ et al., Natural substances and coronavirus: review and potential for the inhibition of SARS-CoV-2, Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), doi:10.38093/cupmap.1029572

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.mdpi.com/2072-6643/13/8/2800

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

https://www.sciencedirect.com/science/article/pii/S0223523421007066

https://www.mdpi.com/2304-8158/10/9/2084/htm

lopinavir Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Oner et al., Investigation of antiviral substances in Covid 19 by Molecular Docking: In Silico Study, *African Health Sciences*, doi:10.4314/ahs.v23i1.4

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

Talukdar et al., Potential Drugs for COVID -19 Treatment Management With Their Contraindications and Drug- Drug Interaction, *MDPI AG*, doi:10.20944/preprints202105.0690.v1

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Mavlankar et al., Interaction of surface glycoprotein of SARS-CoV-2 variants of concern with potential drug candidates: A molecular docking study, *F1000Research*, doi:10.12688/f1000research.109586.1

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Davarpanah et al., Combination of Spironolactone and Sitagliptin Improves Clinical Outcomes of Outpatients with COVID-19: An Observational Study, *medRxiv*, doi:10.1101/2022.01.21.22269322

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

glycyrrhiza glabra, liquorice, glycyrrhizic acid Submit Updates

Bisht et al., Revisiting liquorice (Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: potential pharmacological applications with mechanistic insight., *Phytomedicine Plus*, doi:10.1016/j.phyplu.2021.100206

Khorshiddoust et al., Efficacy of a multiple-indication antiviral herbal drug (Saliravira®) for COVID-19 outpatients: A pre-clinical and randomized clinical trial study, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.112729

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.mdpi.com/1999-4915/13/4/609/pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227143/

https://pubmed.ncbi.nlm.nih.gov/33918301/

https://www.sciencedirect.com/science/article/pii/S2667031321000257

https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-020-04706-3

https://dergipark.org.tr/en/pub/jcm/issue/71238/1165597

https://www.sciencedirect.com/science/article/abs/pii/S0022286022022876

https://www.frontiersin.org/articles/10.3389/fphar.2021.631206/full

https://www.mdpi.com/2223-7747/10/12/2600

https://www.jcchems.com/index.php/JCCHEMS/article/download/1802/561

https://www.sciencedirect.com/science/article/pii/S0223523421007066

Artemisia annua, amodiaquine, artemisinin Submit Updates

Agrawal et al., Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment?, *Molecules*, doi:10.3390/molecules27123828

Badraoui et al., Antiviral Effects of Artemisinin and Its Derivatives against SARS-CoV-2 Main Protease: Computational Evidences and Interactions with ACE2 Allelic Variants, *Pharmaceuticals*, doi:10.3390/ph15020129

Ahmad et al., Artemisia annua L. and Its Derivatives: Their Antiviral Effects on COVID-19 and Possible Mechanisms, Journal of Exploratory Research in Pharmacology, doi:10.14218/JERP.2021.00034

Tang et al., Network pharmacology-based predictions of active components and pharmacological mechanisms of Artemisia annua L. for the treatment of the novel Corona virus disease 2019 (COVID-19), *BMC Complementary Medicine and Therapies*, doi:10.1186/s12906-022-03523-2

Gurung et al., Artesunate induces substantial topological alterations in the SARS-CoV-2 Nsp1 protein structure, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2021.101810

Nair et al., SARS-CoV-2 omicron variants are susceptible in vitro to Artemisia annua hot water extracts, *Journal of Ethnopharmacology*, doi:10.1016/j.jep.2023.116291

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Anju et al., Virtual screening of quinoline derived library for SARS-COV-2 targeting viral entry and replication, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2021.1913228

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

https://www.sciencedirect.com/science/article/abs/pii/S0378874121002439

https://chemrxiv.org/engage/chemrxiv/article-details/60c74a53469df45440f43d21

https://www.openaccessjournals.com/articles/targeting-tgf-pathway-with-covid19-drug-candid...

https://www.biorxiv.org/content/10.1101/2021.09.08.459260v1 (In Vitro)

https://www.biorxiv.org/content/10.1101/2020.04.13.039917v3 (In Vitro)

https://linkinghub.elsevier.com/retrieve/pii/S0378874121002439

https://pubmed.ncbi.nlm.nih.gov/34306988/

https://clinicaltrials.gov/ct2/show/NCT04530617

ribavirin Submit Updates

Clair et al., High-throughput SARS-CoV-2 antiviral testing method using the Celigo Image Cytometer, *Research Square*, doi:10.21203/rs.3.rs-2846848/v1

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Leonidou et al., New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells, *PLOS Computational Biology*, doi:10.1371/journal.pcbi.1010903

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, *Current Pharmaceutical Biotechnology*, doi:10.2174/1389201024666230302113110

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, Journal of Taibah University Medical Sciences, doi:10.1016/j.jtumed.2022.12.015

Celik et al., In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase, *Molecular Diversity*, doi:10.1007/s11030-021-10215-5

Kapoor et al., In silico evaluation of potential intervention against SARS-CoV-2 RNA-dependent RNA polymerase, *Physics and Chemistry of the Earth, Parts A/B/C*, doi:10.1016/j.pce.2022.103350

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Wang et al., Screening Potential Drugs for COVID-19 Based on Bound Nuclear Norm Regularization, *Frontiers in Genetics*, doi:10.3389/fgene.2021.749256

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

arbidol, umifenovir Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, *Current Pharmaceutical Biotechnology*, doi:10.2174/1389201024666230302113110

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Gangadharan et al., Repurposing of Potential Antiviral Drugs against RNA-dependent RNA Polymerase of SARS-CoV-2 by Computational Approach, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.09.007

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

https://onlinelibrary.wiley.com/doi/full/10.1002/iid3.502

https://bmcinfect dis.biomed central.com/articles/10.1186/s12879-020-05698-white productions are also as a comparable of the comparable

https://www.mdpi.com/1999-4915/13/8/1665

https://www.newindianexpress.com/nation/2021/sep/15/clinical-trial-of-anti-viral-drug-umif...

epigallocatechin, epigallocatechin gallate, epigallocatechin-3-gallate

Submit Updates

Park et al., Epigallocatechin Gallate (EGCG), a Green Tea Polyphenol, Reduces Coronavirus Replication in a Mouse Model, Viruses, doi:10.3390/v13122533

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

Fam et al., Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites, *Scientific Reports*, doi:10.1038/s41598-023-31764-9

Maiti et al., Epigallocatechin-Gallate and Theaflavin-Gallate Interaction in SARS CoV-2 Spike-Protein Central-Channel with Reference to the Hydroxychloroquine Interaction: Bioinformatics and Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202004.0247.v1

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Kawall et al., Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity, *Frontiers in Chemistry*, doi:10.3389/fchem.2022.1100460

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

https://www.sciencedirect.com/science/article/pii/S0223523421007066

https://www.mdpi.com/1424-8247/14/9/892

https://www.mdpi.com/2304-8158/10/9/2084/htm

https://www.sciencedirect.com/science/article/pii/S0308814621026005

ritonavir Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Talukdar et al., Potential Drugs for COVID -19 Treatment Management With Their Contraindications and Drug- Drug Interaction, *MDPI AG*, doi:10.20944/preprints202105.0690.v1

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Kanhed et al., Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach, *Molecular Diversity*, doi:10.1007/s11030-020-10130-1

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, Journal of Taibah University Medical Sciences, doi:10.1016/j.jtumed.2022.12.015

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Davarpanah et al., Combination of Spironolactone and Sitagliptin Improves Clinical Outcomes of Outpatients with COVID-19: An Observational Study, *medRxiv*, doi:10.1101/2022.01.21.22269322

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

myricetin Submit Updates

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

Zhang et al., Discovery and characterization of the covalent SARS-CoV-2 3CLpro inhibitors from Ginkgo biloba extract via integrating chemoproteomic and biochemical approaches, *Phytomedicine*, doi:10.1016/j.phymed.2023.154796

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, *Frontiers in Cellular and Infection Microbiology*, doi:10.3389/fcimb.2022.929430

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Kawall et al., Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity, *Frontiers in Chemistry*, doi:10.3389/fchem.2022.1100460

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Chaves et al., Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors Than Isoflavone and Flavones, *Viruses*, doi:10.3390/v14071458

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

HELALİ et al., Natural substances and coronavirus: review and potential for the inhibition of SARS-CoV-2, *Current Perspectives on Medicinal and Aromatic Plants (CUPMAP)*, doi:10.38093/cupmap.1029572

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/https://www.mdpi.com/1424-8247/14/9/892https://www.mdpi.com/2304-8158/10/9/2084/htm

nafamostat, nafamostat mesilate, nafamostat mesylate Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

https://c19early.org/treatments.html

Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, *Current Pharmaceutical Biotechnology*, doi:10.2174/1389201024666230302113110

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

Wagoner et al., Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2, *Microbiology Spectrum*, doi:10.1128/spectrum.03331-22

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

https://www.mdpi.com/1999-4915/13/9/1768 (In Vitro)

https://journals.asm.org/doi/full/10.1128/mBio.00970-21 (Animal Study)

https://www.biorxiv.org/content/10.1101/2021.07.08.451654v1 (Animal Study)

https://www.sciencedirect.com/science/article/pii/S2589537021004491 (RCT)

Apigenin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From *Andrographis paniculata* via Bioinformatics, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221149622

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Moezzi, M., Comprehensive in silico screening of flavonoids against SARS-CoV-2 main protease, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2142297

Kushari et al., An integrated computational approach towards the screening of active plant metabolites as potential inhibitors of SARS-CoV-2: an overview, *Structural Chemistry*, doi:10.1007/s11224-022-02066-z

Liu et al., Network Pharmacology and Molecular Docking Elucidate the Underlying Pharmacological Mechanisms of the Herb Houttuynia cordata in Treating Pneumonia Caused by SARS-CoV-2, *Viruses*, doi:10.3390/v14071588

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

HELALİ et al., Natural substances and coronavirus: review and potential for the inhibition of SARS-CoV-2, *Current Perspectives on Medicinal and Aromatic Plants (CUPMAP)*, doi:10.38093/cupmap.1029572

https://link.springer.com/article/10.1007/s00894-023-05569-6 https://www.mdpi.com/2304-8158/10/9/2084/htm

azithromycin Submit Updates

Hinks et al., Azithromycin versus standard care in patients with mild-to-moderate COVID-19 (ATOMIC2): an open-label, randomised trial, *The Lancet Respiratory Medicine*, doi:10.1016/S2213-2600(21)00263-0

Butler et al., Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial, *The Lancet*, doi:10.1016/S0140-6736(21)00461-X

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Monserrat Villatoro et al., A Case-Control of Patients with COVID-19 to Explore the Association of Previous Hospitalisation Use of Medication on the Mortality of COVID-19 Disease: A Propensity Score Matching Analysis, *Pharmaceuticals*, doi:10.3390/ph15010078

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Baicalin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Yang et al., A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity, *Molecules*, doi:10.3390/molecules28062735

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

Bijelić et al., Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, *Antibiotics*, doi:10.3390/antibiotics11111614

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

https://www.karger.com/Article/Abstract/519564 https://www.mdpi.com/2304-8158/10/9/2084/htm

catechin Submit Updates

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

Kawall et al., Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity, *Frontiers in Chemistry*, doi:10.3389/fchem.2022.1100460

Milton-Laskibar et al., Potential usefulness of Mediterranean diet polyphenols against COVID-19-induced inflammation: a review of the current knowledge, *Journal of Physiology and Biochemistry*, doi:10.1007/s13105-022-00926-0

Aati et al., Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking, *Plants*, doi:10.3390/plants11192521

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

BHARDWAJ et al., Molecular Docking Studies to Identify Promising Natural Inhibitors Targeting SARS-CoV-2 Nsp10-Nsp16 Protein Complex, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.56957

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

HELALİ et al., Natural substances and coronavirus: review and potential for the inhibition of SARS-CoV-2, Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), doi:10.38093/cupmap.1029572

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/https://www.mdpi.com/2304-8158/10/9/2084/htm

Chloroquine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Talukdar et al., Potential Drugs for COVID -19 Treatment Management With Their Contraindications and Drug- Drug Interaction, *MDPI AG*, doi:10.20944/preprints202105.0690.v1

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

dexamethasone Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Talukdar et al., Potential Drugs for COVID -19 Treatment Management With Their Contraindications and Drug- Drug Interaction, *MDPI AG*, doi:10.20944/preprints202105.0690.v1

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Mavlankar et al., Interaction of surface glycoprotein of SARS-CoV-2 variants of concern with potential drug candidates: A molecular docking study, *F1000Research*, doi:10.12688/f1000research.109586.1

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102277

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

amantadine Submit Updates

Chober et al., Improved survival in intensive care unit in severe COVID-19 associated with amantadine use - retrospective study, *International Journal of Infectious Diseases*, doi:10.1016/j.ijid.2022.09.026

Fam et al., Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites, *Scientific Reports*, doi:10.1038/s41598-023-31764-9

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

https://www.nature.com/articles/s42003-021-02866-9

https://www.nature.com/articles/s41594-020-00536-8

https://www.researchsquare.com/article/rs-121743/v1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063946/

https://www.nature.com/articles/s41392-021-00558-8

https://pubmed.ncbi.nlm.nih.gov/33344913/

https://www.sciencedirect.com/science/article/pii/S092485792030162X

https://www.eurekaselect.com/183729/article

https://link.springer.com/article/10.1007/s43440-021-00231-5

https://link.springer.com/article/10.1007/s40268-021-00351-6

https://www.researchsquare.com/article/rs-493154/v1

darunavir Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, *Current Pharmaceutical Biotechnology*, doi:10.2174/1389201024666230302113110

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Talluri, S., Molecular Docking and Virtual Screening Based Prediction of Drugs for COVID-19, *Combinatorial Chemistry & High Throughput Screening*, doi:10.2174/1386207323666200814132149

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

cepharanthine Submit Updates

Sun et al., Unraveling the mechanism of action of cepharanthine for the treatment of novel coronavirus pneumonia (COVID-19) from the perspectives of systematic pharmacology, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104722

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Naz et al., Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach, *Molecules*, doi:10.3390/molecules28072989

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Suet-May et al., COVID-19: How Effective Are the Repurposed Drugs and Novel Agents in Treating the Infection?, *Sudan Journal of Medical Sciences*, doi:10.18502/sjms.v17i4.12550

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Kumar et al., Identification of potential COVID-19 treatment compounds which inhibit SARS Cov2 prototypic, Delta and Omicron variant infection, *Virology*, doi:10.1016/j.virol.2022.05.004

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

https://www.sciencedirect.com/science/article/pii/S2213422021000688

ellagic acid Submit Updates

Alexova et al., Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L., *Molecules*, doi:10.3390/molecules28093772

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://pub.qu.edu.sa/index.php/journal/article/view/7719

https://themedicon.com/pdf/medicalsciences/MCMS-04-107.pdfandrographolide https://www.mdpi.com/2304-8158/10/9/2084/htm

https://www.sciencedirect.com/science/article/pii/S0308814621026005

emodin Submit Updates

Xu et al., Bioactive compounds from Huashi Baidu decoction possess both antiviral and antiinflammatory effects against COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2301775120

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Jang et al., Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2024302118

https://www.sciencedirect.com/science/article/pii/S0223523421007066 https://www.sciencedirect.com/science/article/pii/S2213422021000688

sofosbuvir Submit Updates

Hsu et al., The effect of sofosbuvir-based treatment on the clinical outcomes of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2022.106545

Sokhela et al., Randomized clinical trial of nitazoxanide or sofosbuvir/daclatasvir for the prevention of SARS-CoV-2 infection, *Journal of Antimicrobial Chemotherapy*, doi:10.1093/jac/dkac266

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Yakoot et al., Clinical utility of repurposing a short course of hepatitis C drugs for COVID19. A randomized controlled study, *medRxiv*, doi:10.1101/2022.07.18.22277477

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Medhat et al., Sofosbuvir/Ledipasvir in Combination or Nitazoxanide Alone are Safe and Efficient Treatments for COVID-19 Infection: A Randomized Controlled Trial for Repurposing antivirals, *Arab Journal of Gastroenterology*, doi:10.1016/j.ajg.2022.04.005

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

fluoxetine Submit Updates

Péricat et al., Antiviral and Anti-Inflammatory Activities of Fluoxetine in a SARS-CoV-2 Infection Mouse Model, *International Journal of Molecular Sciences*, doi:10.3390/ijms232113623

Sedighi et al., Efficacy and safety of adding fluoxetine to the treatment regimen of hospitalized patients with non-critical COVID -19 pneumonia: A double-blind randomized, placebo-controlled clinical trial, Neuropsychopharmacology Reports, doi:10.1002/npr2.12327

Lenze et al., Beyond "Psychotropic", The Journal of Clinical Psychiatry, doi:10.4088/jcp.22r14494

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1829082

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3896539

https://www.nature.com/articles/s41598-021-85049-0

https://pubmed.ncbi.nlm.nih.gov/32975484/

theaflavin Submit Updates

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Kawall et al., Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity, *Frontiers in Chemistry*, doi:10.3389/fchem.2022.1100460

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Patel et al., Computational investigation of natural compounds as potential main protease (Mpro) inhibitors for SARS-CoV-2 virus, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.106318

BHARDWAJ et al., Molecular Docking Studies to Identify Promising Natural Inhibitors Targeting SARS-CoV-2 Nsp10-Nsp16 Protein Complex, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.56957

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/

baicalein Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Yang et al., A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity, Molecules, doi:10.3390/molecules28062735

Abdizadeh et al., Efficacy Evaluation of Quercetin and Its Analogues on the Main Protease Enzyme of the COVID-19 Using Molecular Docking Studies, journal of ilam university of medical sciences, doi:10.52547/sjimu.30.4.66

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Glaab et al., Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and *in Vitro* Experimental Validation of Computationally Screened Inhibitors, *Journal of Chemical Information and Modeling*, doi:10.1021/acs.jcim.1c00258

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.mdpi.com/1420-3049/28/9/3766 (*In Silico*) https://www.mdpi.com/1424-8247/14/9/892

galidesivir Submit Updates

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Celik et al., In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase, *Molecular Diversity*, doi:10.1007/s11030-021-10215-5

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

http://hdl.handle.net/10523/13405

methylprednisolone Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Maria et al., Application of the PHENotype SIMulator for rapid identification of potential candidates in effective COVID-19 drug repurposing, *Heliyon*, doi:10.1016/j.heliyon.2023.e14115

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

niclosamide Submit Updates

Jitobaom et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, *BMC Pharmacology and Toxicology*, doi:10.1186/s40360-022-00580-8

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Wang et al., Screening Potential Drugs for COVID-19 Based on Bound Nuclear Norm Regularization, *Frontiers in Genetics*, doi:10.3389/fgene.2021.749256

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Gassen et al., SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals, *Nature Communications*, doi:10.1038/s41467-021-24007-w

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

https://www.sciencedirect.com/science/article/pii/S2049080121007299doi:10.1111/bph.15843

Andrographolide Submit Updates

Sa-ngiamsuntorn et al., Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, doi:10.1021/acs.jnatprod.0c01324

Wanaratna et al., Efficacy and safety of Andrographis paniculata extract in patients with mild COVID-19: A randomized controlled trial, *medRxiv*, doi:10.1101/2021.07.08.21259912

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From *Andrographis paniculata* via Bioinformatics, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221149622

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.sciencedirect.com/science/article/pii/S0223523421007066

atazanavir Submit Updates

Chaves et al., Atazanavir is a competitive inhibitor of SARS-CoV-2 Mpro, impairing variants replication in vitro and in vivo, *bioRxiv*, doi:10.1101/2021.11.24.469775

Chaves et al., Atazanavir Is a Competitive Inhibitor of SARS-CoV-2 Mpro, Impairing Variants Replication In Vitro and In Vivo, *Pharmaceuticals*, doi:10.3390/ph15010021

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, *Current Pharmaceutical Biotechnology*, doi:10.2174/1389201024666230302113110

Beck et al., Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.03.025

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

atorvastatin Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Risner et al., Maraviroc inhibits SARS-CoV-2 multiplication and s-protein mediated cell fusion in cell culture, *bioRxiv*, doi:10.1101/2020.08.12.246389

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

https://www.sciencedirect.com/science/article/pii/S2352906721001639 https://onlinelibrary.wiley.com/doi/10.1111/ijcp.14434 (*Retrospective Study*) https://www.mdpi.com/1999-4915/13/10/2084

boceprevir Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

Li et al., Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.08.016

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, *Communications Biology*, doi:10.1038/s42003-020-01577-x

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Davarpanah et al., Combination of Spironolactone and Sitagliptin Improves Clinical Outcomes of Outpatients with COVID-19: An Observational Study, *medRxiv*, doi:10.1101/2022.01.21.22269322

daclatasvir Submit Updates

Sokhela et al., Randomized clinical trial of nitazoxanide or sofosbuvir/daclatasvir for the prevention of SARS-CoV-2 infection, *Journal of Antimicrobial Chemotherapy*, doi:10.1093/jac/dkac266

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Yakoot et al., Clinical utility of repurposing a short course of hepatitis C drugs for COVID19. A randomized controlled study, *medRxiv*, doi:10.1101/2022.07.18.22277477

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Mosharaf et al., Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing, *Scientific Reports*, doi:10.1038/s41598-022-08073-8

Wang et al., Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture, *Communications Biology*, doi:10.1038/s42003-022-03101-9

doxycycline Submit Updates

Dhar et al., Doxycycline for the prevention of progression of COVID-19 to severe disease requiring intensive care unit (ICU) admission: a randomized, controlled, open-label, parallel group trial (DOXPREVENT.ICU), *medRxiv*, doi:10.1101/2022.01.30.22269685

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Rehman et al., *In Silico* molecular docking and dynamic analysis of natural compounds against major non-structural proteins of SARS-COV-2, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2139766

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

isorhamnetin Submit Updates

Spiegel et al., Computational investigation on the antioxidant activities and on the Mpro SARS-CoV-2 non-covalent inhibition of isorhamnetin, *Frontiers in Chemistry*, doi:10.3389/fchem.2023.1122880

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Yang et al., A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity, *Molecules*, doi:10.3390/molecules28062735

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

Shahhamzehei et al., In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library, *Pharmaceuticals*, doi:10.3390/ph15030308

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

https://www.sciencedirect.com/science/article/pii/S0223523421007066

naringenin Submit Updates

Aleebrahim-Dehkordi et al., Targeting the vital Non-Structural Proteins (NSP12, NSP7, NSP8 and NSP3) from SARS-CoV-2 and Inhibition of RNA Polymerase by Natural Bioactive Compound naringenin as a Promising Drug Candidate against COVID-19, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2023.135642

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Abdizadeh et al., Efficacy Evaluation of Quercetin and Its Analogues on the Main Protease Enzyme of the COVID-19 Using Molecular Docking Studies, *journal of ilam university of medical sciences*, doi:10.52547/sjimu.30.4.66

Milton-Laskibar et al., Potential usefulness of Mediterranean diet polyphenols against COVID-19-induced inflammation: a review of the current knowledge, *Journal of Physiology and Biochemistry*, doi:10.1007/s13105-022-00926-0

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool.

https://www.mdpi.com/2304-8158/10/9/2084/htm

ozone therapy Submit Updates

Hernández et al., Ozone therapy for patients with COVID-19 pneumonia: Preliminary report of a prospective case-control study, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.107261

Shah et al., Safety and efficacy of ozone therapy in mild to moderate COVID-19 patients: A phase 1/11 randomized control trial (SEOT study), *International Immunopharmacology*, doi:10.1016/j.intimp.2020.107301

Tascini et al., Blood ozonization in patients with mild to moderate COVID-19 pneumonia: a single centre experience, *Internal and Emergency Medicine*, doi:10.1007/s11739-020-02542-6

Araimo et al., Ozone as adjuvant support in the treatment of COVID-19: A preliminary report of probiozovid trial, *Journal of Medical Virology*, doi:10.1002/jmv.26636

Fernández-Cuadros et al., Compassionate Use of Rectal Ozone (O3) in Severe COVID-19 Pneumonia: a Case-Control Study, *SN Comprehensive Clinical Medicine*, doi:10.1007/s42399-021-00849-9

Sozio et al., CORonavirus-19 mild to moderate pneumonia Management with blood Ozonization in patients with Respiratory failure (CORMOR) multicentric prospective randomized clinical trial, *International Immunopharmacology*, doi:10.1016/j.intimp.2021.107874

Fernández-Cuadros et al., Effect of Rectal Ozone (O3) in Severe COVID-19 Pneumonia: Preliminary Results, *SN Comprehensive Clinical Medicine*, doi:10.1007/s42399-020-00374-1

Robert Jay et al., A Plausible "Penny" Costing Effective Treatment for Corona Virus - Ozone Therapy, Journal of Infectious Diseases and Epidemiology, doi:10.23937/2474-3658/1510113

Rowen, R., Ozone and oxidation therapies as a solution to the emerging crisis in infectious disease management: a review of current knowledge and experience, *Medical Gas Research*, doi:10.4103/2045-9912.273962

https://jppres.com/jppres/ozone-in-covid-19/

azvudine, RO-0622 Submit Updates

Yu et al., The first Chinese oral anti-COVID-19 drug Azvudine launched, *The Innovation*, doi:10.1016/j.xinn.2022.100321

Shen et al., Real-world effectiveness of Azvudine in hospitalized patients with COVID-19: a retrospective cohort study, *medRxiv*, doi:10.1101/2023.01.23.23284899

da Silva et al., Serial viral load analysis by DDPCR to evaluate FNC efficacy and safety in the treatment of mild cases of COVID-19, Frontiers in Medicine, doi:10.3389/fmed.2023.1143485

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

https://www.trialsitenews.com/a/new-oral-drug-for-covid-19first-indigenous-chinese-drug-ap..

gallic acid Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Cerqueira et al., Edible alginate-based films with anti-SARS-CoV-2 activity, *Food Microbiology*, doi:10.1016/j.fm.2023.104251

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, *Frontiers in Cellular and Infection Microbiology*, doi:10.3389/fcimb.2022.929430

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

Aati et al., Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking, *Plants*, doi:10.3390/plants11192521

Youn et al., Robust therapeutic effects on COVID-19 of novel small molecules: Alleviation of SARS-CoV-2 S protein induction of ACE2/TMPRSS2, NOX2/ROS, and MCP-1, *Frontiers in Cardiovascular Medicine*, doi:10.3389/fcvm.2022.957340

https://www.pnrjournal.com/index.php/home/article/view/4167 (*In Silico*) https://www.sciencedirect.com/science/article/pii/S0223523421007066 https://www.mdpi.com/2304-8158/10/9/2084/htm

Glycyrrhizin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Bijelić et al., Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, *Antibiotics*, doi:10.3390/antibiotics11111614

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, *Chemistry & Biodiversity*, doi:10.1002/cbdv.202200655

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

HELALİ et al., Natural substances and coronavirus: review and potential for the inhibition of SARS-CoV-2, Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), doi:10.38093/cupmap.1029572

https://www.jcchems.com/index.php/JCCHEMS/article/download/1802/561

methotrexate Submit Updates

Schälter et al., Does methotrexate influence COVID-19 infection? Case series and mechanistic data, Arthritis Research & Therapy, doi:10.1186/s13075-021-02464-4

Caruso et al., Methotrexate inhibits SARS-CoV-2 virus replication "in vitro", *Journal of Medical Virology*, doi:10.1002/jmv.26512

Chevalier et al., CovAID: Identification of factors associated with severe COVID-19 in patients with inflammatory rheumatism or autoimmune diseases, *Frontiers in Medicine*, doi:10.3389/fmed.2023.1152587

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

oleuropein Submit Updates

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

Kawall et al., Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity, *Frontiers in Chemistry*, doi:10.3389/fchem.2022.1100460

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/https://www.mdpi.com/2304-8158/10/9/2084/htm

Omega 3, DHA/EPA Submit Updates

Harris et al., Association between blood N-3 fatty acid levels and the risk of coronavirus disease 2019 in the UK Biobank, *The American Journal of Clinical Nutrition*, doi:10.1016/j.ajcnut.2022.11.011

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

https://www.sciencedirect.com/science/article/abs/pii/S0952327821000132

https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-021-02795-5

https://www.authorea.com/doi/full/10.22541/au.161051252.26168891

https://www.sciencedirect.com/science/article/pii/S2589004221010087

https://www.plefa.com/article/S0952-3278(21)00013-2/fulltext

https://www.nature.com/articles/s41598-021-91794-z

Pectolinarin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Glaab et al., Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and *in Vitro* Experimental Validation of Computationally Screened Inhibitors, *Journal of Chemical Information and Modeling*, doi:10.1021/acs.jcim.1c00258

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

ruxolitinib Submit Updates

Molina et al., 556. Ruxolitinib for the Management of Severe Pneumonia Caused by SARS-CoV-2. Exploring the Combination with dexamethasone, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofab466.754

Rein et al., Randomized Phase 3 Trial of Ruxolitinib for COVID-19—Associated Acute Respiratory Distress Syndrome*, Critical Care Medicine, doi:10.1097/CCM.000000000005682

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

saquinavir Submit Updates

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

Kanhed et al., Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach, *Molecular Diversity*, doi:10.1007/s11030-020-10130-1

Anju et al., Virtual screening of quinoline derived library for SARS-COV-2 targeting viral entry and replication, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2021.1913228

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

Talluri, S., Molecular Docking and Virtual Screening Based Prediction of Drugs for COVID-19, *Combinatorial Chemistry & High Throughput Screening*, doi:10.2174/1386207323666200814132149

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

amentoflavone Submit Updates

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Glaab et al., Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and *in Vitro* Experimental Validation of Computationally Screened Inhibitors, *Journal of Chemical Information and Modeling*, doi:10.1021/acs.jcim.1c00258

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

atovaquone Submit Updates

Jain et al., Atovaquone for Treatment of COVID-19: A Prospective Randomized, Double-Blind, Placebo-Controlled Clinical Trial, *medRxiv*, doi:10.1101/2022.05.24.22275411

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Naz et al., Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach, *Molecules*, doi:10.3390/molecules28072989

Ahmed et al., Identification of FDA Approved Drugs with Antiviral Activity against SARS-CoV-2: A Tale from structure-based drug repurposing to host-cell mechanistic investigation, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2023.114614

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Pasla et al., In silico Drug Repurposing for the Identification of Antimalarial Drugs as Candidate Inhibitors of SARS-CoV-2, *Anti-Infective Agents*, doi:10.2174/2211352519666211202141143

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009840 https://pubs.acs.org/doi/abs/10.1021/acsinfecdis.1c00278 (*In Vitro*)

Chlorogenic acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

https://www.sciencedirect.com/science/article/pii/S0223523421007066 https://www.mdpi.com/2304-8158/10/9/2084/htm

ebselen Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595 *Oliver et al.*, Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Wu et al., In silico identification of drug candidates against COVID-19, Informatics in Medicine Unlocked, doi:10.1016/j.imu.2020.100461

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

emetine Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Folic Acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

Ugurel et al., Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13), *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2020.09.138

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Bello et al., Innovative, rapid, high-throughput method for drug repurposing in a pandemic—A case study of SARS-CoV-2 and COVID-19, *Frontiers in Pharmacology*, doi:10.3389/fphar.2023.1130828

Bello et al., Erythromycin, Retapamulin, Pyridoxine, Folic acid and Ivermectin dose dependently inhibit cytopathic effect, Papain-like Protease and M^{PRO}of SARS-CoV-2, *bioRxiv*, doi:10.1101/2022.12.28.522082

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

genistein Submit Updates

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Abdizadeh et al., Efficacy Evaluation of Quercetin and Its Analogues on the Main Protease Enzyme of the COVID-19 Using Molecular Docking Studies, journal of ilam university of medical sciences, doi:10.52547/sjimu.30.4.66

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, Annals of Medicine and Surgery, doi:10.1016/j.amsu.2022.104125

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

https://www.mdpi.com/2304-8158/10/9/2084/htm

glutathione Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

https://pubmed.ncbi.nlm.nih.gov/32463221/

https://pubmed.ncbi.nlm.nih.gov/32992775/

https://pubmed.ncbi.nlm.nih.gov/32708578/

https://pubmed.ncbi.nlm.nih.gov/33336769/

https://pubmed.ncbi.nlm.nih.gov/33117175/

https://pubmed.ncbi.nlm.nih.gov/32322478/

Hypericin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Jang et al., Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2024302118

Shahhamzehei et al., In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library, *Pharmaceuticals*, doi:10.3390/ph15030308 https://www.mdpi.com/2304-8158/10/9/2084/htm

losartan Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

Myricitrin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Ur Rehman et al., Flavonoids and other polyphenols against SARS-CoV-2, *Application of Natural Products in SARS-CoV-2*, doi:10.1016/B978-0-323-95047-3.00014-9

Jamshidnia et al., An Update on Promising Agents against COVID-19: Secondary Metabolites and Mechanistic Aspects, *Current Pharmaceutical Design*, doi:10.2174/1381612828666220722124826

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.sciencedirect.com/science/article/pii/S0223523421007066 https://www.mdpi.com/2304-8158/10/9/2084/htm

nelfinavir Submit Updates

Foo et al., HIV protease inhibitors Nelfinavir and Lopinavir/Ritonavir markedly improve lung pathology in SARS-CoV-2-infected Syrian hamsters despite lack of an antiviral effect, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105311

Xu et al., Preventive and therapeutic benefits of nelfinavir in rhesus macaques and human beings infected with SARS-CoV-2, *Signal Transduction and Targeted Therapy*, doi:10.1038/s41392-023-01429-0

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

Kanhed et al., Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach, *Molecular Diversity*, doi:10.1007/s11030-020-10130-1

Gidari et al., Nelfinavir: An Old Ally in the COVID-19 Fight?, *Microorganisms*, doi:10.3390/microorganisms10122471

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

sirolimus Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

McAuley et al., Use of Human Lung Tissue Models for Screening of Drugs against SARS-CoV-2 Infection, *Viruses*, doi:10.3390/v14112417

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

Doshi et al., A computational approach to drug repurposing using graph neural networks, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105992

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

tocilizumab Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

amiodarone Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Jeong et al., Rapid discovery and classification of inhibitors of coronavirus infection by pseudovirus screen and amplified luminescence proximity homogeneous assay, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105473

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

https://www.mdpi.com/1424-8247/14/3/226

apilimod Submit Updates

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

Kumar et al., Identification of potential COVID-19 treatment compounds which inhibit SARS Cov2 prototypic, Delta and Omicron variant infection, *Virology*, doi:10.1016/j.virol.2022.05.004

Riva et al., A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals, *bioRxiv*, doi:10.1101/2020.04.16.044016

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

APN01, alunacedase alfa, soluble ACE2, RhACE2-APN01 Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

https://www.biorxiv.org/content/10.1101/2021.09.10.459744v1.full.pdf (*In Vitro*) https://clinicaltrials.gov/ct2/show/NCT04335136

https://www.sciencedirect.com/science/article/abs/pii/S0040595721002043 https://www.sciencedirect.com/science/article/pii/S0953620521003071

Caffeic Acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Le-Trilling et al., Universally available herbal teas based on sage and perilla elicit potent antiviral activity against SARS-CoV-2 variants of concern by HMOX-1 upregulation in human cells, *bioRxiv*, doi:10.1101/2020.11.18.388710

https://www.sciencedirect.com/science/article/pii/S2213422021000688 https://www.mdpi.com/2304-8158/10/9/2084/htm

carvedilol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

https://c19early.org/treatments.html

Cousins et al., Integrative analysis of viral entry networks and clinical outcomes identifies a protective role for spironolactone in severe COVID-19, medRxiv, doi:10.1101/2022.07.02.22277181

Abdel-Halim et al., Identification of Drug Combination Therapies for SARS-CoV-2: A Molecular Dynamics Simulations Approach, *Drug Design, Development and Therapy*, doi:10.2147/DDDT.S366423

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286244/pdf/main.pdf https://www.mdpi.com/1424-8247/14/3/226

celecoxib Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Doshi et al., A computational approach to drug repurposing using graph neural networks, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105992

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

clofazimine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

danoprevir Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Yin et al., Computational Screening of Repurposed Drugs Targeting Sars-Cov-2 Main Protease By Molecular Docking, *Sudan Journal of Medical Sciences*, doi:10.18502/sjms.v17i3.12125

Talluri, S., Molecular Docking and Virtual Screening Based Prediction of Drugs for COVID-19, *Combinatorial Chemistry & High Throughput Screening*, doi:10.2174/1386207323666200814132149

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

http://journal.oiu.edu.sd/index.php/FMHS/article/view/2688

estradiol Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

https://journals.physiology.org/doi/full/10.1152/ajplung.00153.2020

https://www.biorxiv.org/content/10.1101/2021.04.08.439071v1

https://physoc.onlinelibrary.wiley.com/doi/full/10.14814/phy2.14707

fostamatinib Submit Updates

Sameni et al., Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study, *3 Biotech*, doi:10.1007/s13205-023-03518-x

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

https://www.sciencedirect.com/science/article/abs/pii/S104620232100205X (*In Silico*) https://www.atsjournals.org/doi/pdf/10.1164/ajrccm-conference.2022.205.1_MeetingAbstracts...

heparin Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Rodrigues Barbosa et al., Sulfated polysaccharides act as baits to interfere with the binding of the spike protein (SARS-CoV-2) to the ACE2 receptor and can be administered through food, *Journal of Functional Foods*, doi:10.1016/j.jff.2023.105532

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

https://www.sciencedirect.com/science/article/abs/pii/S1386142521011720

imatinib Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

masitinib Submit Updates

Drayman et al., Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2, *Science*, doi:10.1126/science.abg5827

Martínez-Ortega et al., In Silico Characterization of Masitinib Interaction with SARS-CoV-2 Main Protease, *ChemMedChem*, doi:10.1002/cmdc.202100375

Drayman et al., Drug repurposing screen identifies masitinib as a 3CLpro inhibitor that blocks replication of SARS-CoV-2 in vitro, *bioRxiv*, doi:10.1101/2020.08.31.274639

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Rhoifolin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

https://c19early.org/treatments.html

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

rosuvastatin Submit Updates

Gaitán-Duarte et al., Effectiveness of Rosuvastatin plus Colchicine, Emtricitabine/Tenofovir and a combination of them in Hospitalized Patients with SARS Covid-19, *medRxiv*, doi:10.1101/2021.07.06.21260085

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

https://elifesciences.org/articles/68165

simeprevir Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Ma et al., Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105419

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Lazniewski et al., Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations, *Methods*, doi:10.1016/j.ymeth.2022.02.004

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

suramin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

https://pubmed.ncbi.nlm.nih.gov/32513797/ https://pubmed.ncbi.nlm.nih.gov/33674802/

withaferin A Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, Chemistry & Biodiversity, doi:10.1002/cbdv.202200655

Tiwari et al., Molecular docking studies on the phytoconstituents as therapeutic leads against SARS-CoV-2, *Polimery*, doi:10.14314/polimery.2022.7.8

https://link.springer.com/article/10.1007/s12010-023-04525-7

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

anakinra Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Liu et al., Therapeutic Polypeptides and Peptidomimetics: Powerful Tools for COVID-19 Treatment, *Clinical Drug Investigation*, doi:10.1007/s40261-022-01231-w

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

Azelastine Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

https://www.biorxiv.org/content/10.1101/2020.09.15.296228v1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144927/

https://pubmed.ncbi.nlm.nih.gov/34052578/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713548/ (Retrospective Study)

https://www.researchsguare.com/article/rs-864566/v1

berberine Submit Updates

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, Journal of Taibah University Medical Sciences, doi:10.1016/j.jtumed.2022.12.015

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

brequinar Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Wagoner et al., Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2, *Microbiology Spectrum*, doi:10.1128/spectrum.03331-22

Demarest et al., Brequinar and dipyridamole in combination exhibits synergistic antiviral activity against SARS-CoV-2 in vitro: Rationale for a host-acting antiviral treatment strategy for COVID-19, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105403

Demarest et al., Brequinar and Dipyridamole in Combination Exhibits Synergistic Antiviral Activity Against SARS-CoV-2 in vitro: Rationale for a host-acting antiviral treatment strategy for COVID-19, *bioRxiv*, doi:10.1101/2022.03.30.486499

captopril Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, *Journal of Taibah University Medical Sciences*, doi:10.1016/j.jtumed.2022.12.015

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

cetirizine Submit Updates

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713548/ (Retrospective Study)
https://www.nature.com/articles/s41392-021-00689-y (Retrospective Study)
https://www.sciencedirect.com/science/article/abs/pii/S1094553921000018 (Retrospective Study)

cetylpyridinium chloride Submit Updates

Anderson et al., Virucidal activity of CPC-containing oral rinses against SARS-CoV-2 variants and are active in the presence of human saliva, bioRxiv, doi:10.1101/2021.08.05.455040

Okamoto et al., Virucidal activity and mechanism of action of cetylpyridinium chloride against SARS-CoV-2, *bioRxiv*, doi:10.1101/2022.01.27.477964

Okamoto et al., Virucidal activity and mechanism of action of cetylpyridinium chloride against SARS-CoV-2, *Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology*, doi:10.1016/j.ajoms.2022.04.001

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

https://www.biorxiv.org/content/10.1101/2020.10.28.359257v1 (*In Vitro*) https://www.sciencedirect.com/science/article/pii/S0929664621004691 (Review)

chlorpromazine Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Roy et al., G4-binding drugs, chlorpromazine and prochlorperazine, repurposed against COVID-19 infection in hamsters, Frontiers in Molecular Biosciences, doi:10.3389/fmolb.2023.1133123

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

ciclesonide Submit Updates

Song et al., Ciclesonide Inhaler Treatment for Mild-to-Moderate COVID-19: A Randomized, Open-Label, Phase 2 Trial, *Journal of Clinical Medicine*, doi:10.3390/jcm10163545

Clemency et al., Efficacy of Inhaled Ciclesonide for Outpatient Treatment of Adolescents and Adults With Symptomatic COVID-19, *JAMA Internal Medicine*, doi:10.1001/jamainternmed.2021.6759

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Mortezaei et al., Variations of SARS-CoV-2 in the Iranian Population and Candidate Putative Druglike Compounds to Inhibit the Mutated Proteins, *Heliyon*, doi:10.1016/j.heliyon.2022.e09910

https://www.medrxiv.org/content/10.1101/2021.09.07.21261811v1

Cryptoquindoline Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.sciencedirect.com/science/article/pii/S0223523421007066

dihydroergotamine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

Shen et al., The antiviral activity of a small molecule drug targeting the NSP1-ribosome complex against Omicron, especially in elderly patients, *Frontiers in Cellular and Infection Microbiology*, doi:10.3389/fcimb.2023.1141274

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

enoxaparin Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Monserrat Villatoro et al., A Case-Control of Patients with COVID-19 to Explore the Association of Previous Hospitalisation Use of Medication on the Mortality of COVID-19 Disease: A Propensity Score Matching Analysis, *Pharmaceuticals*, doi:10.3390/ph15010078

https://pubs.asahq.org/anesthesiology/article-abstract/doi/10.1097/ALN.000000000003999/11...

fenofibrate Submit Updates

Yasmin et al., The role of fenofibrate in the treatment of COVID-19, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2021.102974

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

https://www.researchsquare.com/article/rs-770724/v1

https://www.frontiersin.org/articles/10.3389/fphar.2021.660490/full

https://www.sciencedirect.com/science/article/pii/S2049080121009249

fucoidan Submit Updates

Pradhan et al., A state-of-the-art review on fucoidan as an antiviral agent to combat viral infections, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.119551

Yadav et al., Therapeutic Applications of Fucoidans and their Potential to Act against COVID-19, *Current Pharmaceutical Design*, doi:10.2174/1381612829666221207093215 *Eilts et al.*, The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

https://pubs.rsc.org/en/content/articlelanding/2020/fo/d0fo02017f/unauth

https://www.sciencedirect.com/science/article/pii/S2589014X20302450https://www.mdpi.com/16..

https://www.sciencedirect.com/science/article/abs/pii/S0144861721009541

hydrogen peroxide Submit Updates

Burgos-Ramos et al., Is hydrogen peroxide an effective mouthwash for reducing the viral load of SARS-CoV-2 in dental clinics?, *The Saudi Dental Journal*, doi:10.1016/j.sdentj.2022.01.005

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308628/

https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8289588/

https://www.sciencedirect.com/science/article/pii/S0929664621004691 (Review)

http://www.orthomolecular.org/resources/omns/v17n13.shtml

isotretinoin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

leflunomide Submit Updates

Chevalier et al., CovAID: Identification of factors associated with severe COVID-19 in patients with inflammatory rheumatism or autoimmune diseases, *Frontiers in Medicine*, doi:10.3389/fmed.2023.1152587

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

loratadine Submit Updates

Oh et al., Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19, *Current Issues in Molecular Biology*, doi:10.3390/cimb44040109

Monserrat Villatoro et al., A Case-Control of Patients with COVID-19 to Explore the Association of Previous Hospitalisation Use of Medication on the Mortality of COVID-19 Disease: A Propensity Score Matching Analysis, *Pharmaceuticals*, doi:10.3390/ph15010078

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889471/ (In Vitro)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713548/ (Retrospective Study)

https://jcmimagescasereports.org/article/JCM-V1-1016.pdf

https://www.sciencedirect.com/science/article/abs/pii/S1094553921000018 (*Retrospective Study*)

meplazumab Submit Updates

Bian et al., Meplazumab in hospitalized adults with severe COVID-19 (DEFLECT): a multicenter, seamless phase 2/3, randomized, third-party double-blind clinical trial, *Signal Transduction and Targeted Therapy*, doi:10.1038/s41392-023-01323-9

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

methylene blue Submit Updates

Cagno et al., Methylene Blue has a potent antiviral activity against SARS-CoV-2 and H1N1 influenza virus in the absence of UV-activation in vitro, *Scientific Reports*, doi:10.1038/s41598-021-92481-9

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

https://www.frontiersin.org/articles/10.3389/fphar.2020.600372/full https://www.sciencedirect.com/science/article/pii/S0753332221008064 https://pubmed.ncbi.nlm.nih.gov/34019535/

paritaprevir Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, *Communications Biology*, doi:10.1038/s42003-020-01577-x

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

propolis Submit Updates

Silveira et al., Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2021.111526

Bilir et al., Evaluation of the Effect of Anatolian Propolis on Covid-19 in Healthcare Professionals, *ScienceOpen*, doi:10.14293/S2199-1006.1.SOR-.PPZR10D.v1

Karaoğlu et al., Chewable tablet with herbal extracts and propolis arrests Wuhan and Omicron variants of SARS-CoV-2 virus, *Journal of Functional Foods*, doi:10.1016/j.jff.2023.105544

https://www.medrxiv.org/content/10.1101/2021.01.08.20248932v1

https://www.scienceopen.com/hosted-document?doi=10.14293/S2199-1006.1.SOR-.PPZR10D.v1 https://jtim.tums.ac.ir/index.php/jtim/article/view/408

regdanvimab Submit Updates

Streinu-Cercel et al., Efficacy and Safety of Regdanvimab (CT-P59): A Phase 2/3 Randomized, Double-Blind, Placebo-Controlled Trial in Outpatients with Mild-to-Moderate Coronavirus Disease 2019, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac053

Lee et al., Regdanvimab in patients with mild-to-moderate SARS-CoV-2 infection: A propensity score—matched retrospective cohort study, *International Immunopharmacology*, doi:10.1016/j.intimp.2022.108570

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Gutlapalli et al., Exploring the Potential of Broadly Neutralizing Antibodies for Treating SARS-CoV-2 Variants of Global Concern in 2023: A Comprehensive Clinical Review, *Cureus*, doi:10.7759/cureus.36809

https://pubmed.ncbi.nlm.nih.gov/34724174/

tenofovir disoproxil Submit Updates

Del Amo, J., Daily tenofovir disoproxil fumarate/emtricitabine and hydroxychloroquine for preexposure prophylaxis of COVID-19: a double-blind placebo controlled randomized trial in healthcare workers, *medRxiv*, doi:10.1101/2022.03.02.22271710

Polo et al., Daily tenofovir disoproxil fumarate/emtricitabine and hydroxychloroquine for preexposure prophylaxis of COVID-19: a double-blind placebo controlled randomized trial in healthcare workers, *Clinical Microbiology and Infection*, doi:10.1016/j.cmi.2022.07.006

Hernán et al., Drug Repurposing and Observational Studies: The Case of Antivirals for the Treatment of COVID-19, *Annals of Internal Medicine*, doi:10.7326/M22-3582

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

thiamine Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

https://ccforum.biomedcentral.com/articles/10.1186/s13054-021-03648-9 (*Retrospective Study*) https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8242279/

https://pubmed.ncbi.nlm.nih.gov/33817670/

https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7428453/

velpatasvir Submit Updates

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Wang et al., Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture, *Communications Biology*, doi:10.1038/s42003-022-03101-9

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

VV116, deuremidevir hydrobromide Submit Updates

Cao et al., VV116 versus Nirmatrelvir—Ritonavir for Oral Treatment of Covid-19, New England Journal of Medicine, doi:10.1056/NEJMoa2208822

McCarthy, M., VV116 as a potential treatment for COVID-19, *Expert Opinion on Pharmacotherapy*, doi:10.1080/14656566.2023.2193668

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

 $https://www.trialsitenews.com/p/trialsitenews/novel-chinese-oral-covid-19-treatment-begins..\\ https://www1.hkexnews.hk/listedco/listconews/sehk/2022/0524/2022052301170.pdf$

xylitol, Xlear Submit Updates

https://www.cureus.com/articles/43909-potential-role-of-xylitol-plus-grapefruit-seed-extra.. https://probiologists.com/Uploads/Articles/11_637497463703161509.pdf https://www.biorxiv.org/content/10.1101/2020.12.02.408575v3.full.pdf

https://www.businesswire.com/news/home/20211222005383/en/https://www.researchgate.net/publication/347176706_A_Nasal_Spray_Solution_of_Grapefruit_Se...https://www.precisionvaccinations.com/nasal-spray-may-eliminate-sars-cov-2-virus

amprenavir Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

Ashwagandha, withania somnifera Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

https://www.sciencedirect.com/science/article/pii/S0965229921001096 https://osf.io/s3v6k/

bedaquiline Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

https://c19early.org/treatments.html

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009840

canakinumab Submit Updates

Ao et al., The effect of canakinumab on clinical outcomes in patients with COVID-19: A meta-analysis, *Journal of Infection*, doi:10.1016/j.jinf.2022.03.011

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

chrysin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.sciencedirect.com/science/article/pii/S0223523421007066 https://www.mdpi.com/2304-8158/10/9/2084/htm

cobicistat Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

conivaptan Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

cyclosporine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Doshi et al., A computational approach to drug repurposing using graph neural networks, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105992

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

disulfiram Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

https://www.biorxiv.org/content/10.1101/2021.09.17.460613v1

erythromycin Submit Updates

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

Bello et al., Innovative, rapid, high-throughput method for drug repurposing in a pandemic—A case study of SARS-CoV-2 and COVID-19, *Frontiers in Pharmacology*, doi:10.3389/fphar.2023.1130828

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Bello et al., Erythromycin, Retapamulin, Pyridoxine, Folic acid and Ivermectin dose dependently inhibit cytopathic effect, Papain-like Protease and M^{PRO}of SARS-CoV-2, *bioRxiv*, doi:10.1101/2022.12.28.522082

Mortezaei et al., Variations of SARS-CoV-2 in the Iranian Population and Candidate Putative Druglike Compounds to Inhibit the Mutated Proteins, *Heliyon*, doi:10.1016/j.heliyon.2022.e09910

etoposide Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

eugenol Submit Updates

Liu, Y., Integrative network pharmacology and in silico analyses identify the anti-omicron SARS-CoV-2 potential of eugenol, *Heliyon*, doi:10.1016/j.heliyon.2023.e13853

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

https://www.mdpi.com/1424-8247/14/9/892

everolimus Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

McAuley et al., Use of Human Lung Tissue Models for Screening of Drugs against SARS-CoV-2 Infection, *Viruses*, doi:10.3390/v14112417

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

Maria et al., Application of the PHENotype SIMulator for rapid identification of potential candidates in effective COVID-19 drug repurposing, *Heliyon*, doi:10.1016/j.heliyon.2023.e14115

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Glabridin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Youn et al., Robust therapeutic effects on COVID-19 of novel small molecules: Alleviation of SARS-CoV-2 S protein induction of ACE2/TMPRSS2, NOX2/ROS, and MCP-1, *Frontiers in Cardiovascular Medicine*, doi:10.3389/fcvm.2022.957340

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, Chemistry & Biodiversity, doi:10.1002/cbdv.202200655

Sharma et al., Nutraceuticals aid in managing COVID-19, *World Journal of Pharmaceutical Sciences*, doi:10.54037/WJPS.2022.100204

https://www.sciencedirect.com/science/article/pii/S0223523421007066

herbacetin Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

homoharringtonine Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Huashibaidu Submit Updates

Chen et al., Effectiveness of Chinese medicine formula Huashibaidu granule on mild COVID-19 patients: A prospective, non-randomized, controlled trial, *Integrative Medicine Research*, doi:10.1016/j.imr.2023.100950

Xu et al., Bioactive compounds from Huashi Baidu decoction possess both antiviral and antiinflammatory effects against COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2301775120

Yao et al., Therapeutic drug combinations against COVID-19 obtained by employing a collaborative filtering method, *Heliyon*, doi:10.1016/j.heliyon.2023.e14023

Wu et al., Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.615287

https://www.sciencedirect.com/science/article/abs/pii/S0944711321004086

hydrocortisone Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

indinavir Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

ledipasvir Submit Updates

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Medhat et al., Sofosbuvir/Ledipasvir in Combination or Nitazoxanide Alone are Safe and Efficient Treatments for COVID-19 Infection: A Randomized Controlled Trial for Repurposing antivirals, *Arab Journal of Gastroenterology*, doi:10.1016/j.ajg.2022.04.005

Lianhua Qingwen Submit Updates

Xia et al., Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19, *Cell Proliferation*, doi:10.1111/cpr.12949

Xu et al., Efficacy of Lianhua Qingwen for children with SARS-CoV-2 Omicron infection: A propensity score-matched retrospective cohort study, *Phytomedicine*, doi:10.1016/j.phymed.2023.154665

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

Yao et al., Therapeutic drug combinations against COVID-19 obtained by employing a collaborative filtering method, *Heliyon*, doi:10.1016/j.heliyon.2023.e14023

Wu et al., Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.615287

limonin Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

 $https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..$

https://www.sciencedirect.com/science/article/pii/S0223523421007066

lufotrelvir Submit Updates

Allais et al., Early Clinical Development of Lufotrelvir as a Potential Therapy for COVID-19, *Organic Process Research & Development*, doi:10.1021/acs.oprd.2c00375

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

lycorine Submit Updates

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Bijelić et al., Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, *Antibiotics*, doi:10.3390/antibiotics11111614

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

mefloquine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

Pasla et al., In silico Drug Repurposing for the Identification of Antimalarial Drugs as Candidate Inhibitors of SARS-CoV-2, *Anti-Infective Agents*, doi:10.2174/2211352519666211202141143

monolaurin Submit Updates

Barberis et al., Understanding protection from SARS-CoV-2 using metabolomics, *Scientific Reports*, doi:10.1038/s41598-021-93260-2

Angeles-Agdeppa et al., Virgin coconut oil is effective in lowering C-reactive protein levels among suspect and probable cases of COVID-19, *Journal of Functional Foods*, doi:10.1016/j.jff.2021.104557

Preuss et al., Suggestions for Combatting COVID-19 by Natural Means in the Absence of Standard Medical Regimens, *Journal of the American College of Nutrition*, doi:10.1080/07315724.2020.1779554

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/...

mycophenolic acid Submit Updates

Wang et al., Anthracyclines inhibit SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.01.10.523518

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Wang et al., Screening Potential Drugs for COVID-19 Based on Bound Nuclear Norm Regularization, *Frontiers in Genetics*, doi:10.3389/fgene.2021.749256

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

naringin Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

Ur Rehman et al., Flavonoids and other polyphenols against SARS-CoV-2, *Application of Natural Products in SARS-CoV-2*, doi:10.1016/B978-0-323-95047-3.00014-9

Aati et al., Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking, *Plants*, doi:10.3390/plants11192521

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

oseltamivir Submit Updates

Zendehdel et al., Efficacy of oseltamivir in the treatment of patients infected with Covid-19, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.103679

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Yadav et al., Effectivity of Repurposed Drugs Against SARS-CoV-2 Infections, A Hope for COVID 19: Inhibitor Modelling studies by Docking and Molecular Dynamics, *Heliyon*, doi:10.1016/j.heliyon.2022.e12327

http://journal.um-surabaya.ac.id/index.php/CAM/article/view/16714

Phillyrin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

https://www.sciencedirect.com/science/article/pii/S0223523421007066

pioglitazone Submit Updates

Setz et al., Synergistic Antiviral Activity of Pamapimod and Pioglitazone against SARS-CoV-2 and Its Variants of Concern, International Journal of Molecular Sciences, doi:10.3390/ijms23126830

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

piperine Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Das et al., Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: an insilico approach, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102534

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, Journal of Taibah University Medical Sciences, doi:10.1016/j.jtumed.2022.12.015

Nag et al., Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105552

https://www.jcchems.com/index.php/JCCHEMS/article/download/1802/561

pomegranate, Punica granatum Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

https://link.springer.com/article/10.1007/s11010-020-03981-7

https://psmpublishers.org/issues/the-use-of-fresh-pomegranate-juice-in-the-treatment-of-co.. https://www.sciencedirect.com/science/article/pii/S0045206821005228

rapamycin Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, Journal of Taibah University Medical Sciences, doi:10.1016/j.jtumed.2022.12.015

Beck et al., Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.03.025

Mosharaf et al., Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing, *Scientific Reports*, doi:10.1038/s41598-022-08073-8

simvastatin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

sulforaphane Submit Updates

Ordonez et al., Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice, *Communications Biology*, doi:10.1038/s42003-022-03189-z

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Zhao et al., Identification of Potential Lead Compounds Targeting Novel Druggable Cavity of SARS-CoV-2 Spike Trimer by Molecular Dynamics Simulations, *International Journal of Molecular Sciences*, doi:10.3390/ijms24076281

Campos-Gomez et al., Mucociliary Clearance Augmenting Drugs Block SARS-Cov-2 Replication in Human Airway Epithelial Cells, *bioRxiv*, doi:10.1101/2023.01.30.526308

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

tannic acid Submit Updates

Jing et al., Pharmacological effects and mechanisms of tannic acid, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113561

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://pubmed.ncbi.nlm.nih.gov/33415017/

theaflavin-3,3'-digallate Submit Updates

Manish et al., Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.106125

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

Al-Sehemi et al., In Silico Exploration of Binding Potentials of Anti SARS-CoV-1 Phytochemicals against Main Protease of SARS-CoV-2, *Journal of Saudi Chemical Society*, doi:10.1016/j.jscs.2022.101453

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253489

ursodeoxycholic acid Submit Updates

Brevini et al., FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2, *Nature*, doi:10.1038/s41586-022-05594-0

Yu et al., UDCA May Promote COVID-19 Recovery: A Cohort Study with Al-Aided Analysis, *medRxiv*, doi:10.1101/2023.05.02.23289410

Li et al., FXR inhibition: an innovative prophylactic strategy against SARS-CoV-2 infection, *Signal Transduction and Targeted Therapy*, doi:10.1038/s41392-023-01390-y

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

Ursolic acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.sciencedirect.com/science/article/pii/S0223523421007066

6-gingerol Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Abdallah et al., Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics, *Plants*, doi:10.3390/plants11151914

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

Afzelin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Liu et al., Network Pharmacology and Molecular Docking Elucidate the Underlying Pharmacological Mechanisms of the Herb Houttuynia cordata in Treating Pneumonia Caused by SARS-CoV-2, *Viruses*, doi:10.3390/v14071588

https://www.mdpi.com/2304-8158/10/9/2084/htm

allicin Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Zhao et al., Identification of Potential Lead Compounds Targeting Novel Druggable Cavity of SARS-CoV-2 Spike Trimer by Molecular Dynamics Simulations, *International Journal of Molecular Sciences*, doi:10.3390/ijms24076281

Nag et al., Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105552

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

AT-527 Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

bemcentinib Submit Updates

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

Biorobin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

https://www.mdpi.com/2304-8158/10/9/2084/htm

camptothecin Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316 deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

capsaicin Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Nag et al., Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105552

chlorhexidine Submit Updates

Huang et al., Use of chlorhexidine to eradicate oropharyngeal SARS-CoV-2 in COVID-19 patients, *Journal of Medical Virology*, doi:10.1002/jmv.26954

Jain et al., Chlorhexidine and SARS-CoV-2 main protease: Molecular docking study, *Journal of Indian Society of Periodontology*, doi:10.4103/jisp.jisp_39_22

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

https://www.sciencedirect.com/science/article/pii/S0929664621004691 (Review)

cinnamon Submit Updates

Yakhchali et al., Cinnamon and its possible impact on COVID-19: The viewpoint of traditional and conventional medicine, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2021.112221

Zareie et al., Cinnamon: A Promising Natural Product Against COVID-19, *Identification of Biomarkers, New Treatments, and Vaccines for COVID-19*, doi:10.1007/978-3-030-71697-4_15

Lucas et al., Cinnamon and Hop Extracts as Potential Immunomodulators for Severe COVID-19 Cases, *Frontiers in Plant Science*, doi:10.3389/fpls.2021.589783

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

ciprofloxacin Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

corilagin Submit Updates

Alexova et al., Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L., *Molecules*, doi:10.3390/molecules28093772

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Rudrapal et al., Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.101826

cryptospirolepine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.sciencedirect.com/science/article/pii/S0223523421007066

daidzein Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

https://www.mdpi.com/2304-8158/10/9/2084/htm

dasatinib Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*. doi:10.1093/bib/bbab114

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Bahadur Gurung et al., An in silico approach unveils the potential of antiviral compounds in preclinical and clinical trials as SARS-CoV-2 Omicron inhibitors, *Saudi Journal of Biological Sciences*, doi:10.1016/j.sjbs.2022.103297

Demethoxycurcumin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

digoxin Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Cho et al., Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19, *Scientific Reports*, doi:10.1038/s41598-020-72879-7

Dithymoquinone Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Miraz et al., Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study, *International Journal of Clinical Practice*, doi:10.1155/2023/9917306

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

https://www.sciencedirect.com/science/article/pii/S1319562X21007968

eculizumab Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

epicatechin Submit Updates

Al-Shuhaib et al., Epicatechin is a promising novel inhibitor of SARS-CoV-2 entry by disrupting interactions between angiotensin-converting enzyme type 2 and the viral receptor binding domain: A computational/simulation study, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.105155

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

ergotamine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

fludarabine Submit Updates

Ugurel et al., Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13), *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2020.09.138

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

forodesine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Rabie et al., Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, *Medicinal Chemistry Research*, doi:10.1007/s00044-022-02970-3

Rabie et al., A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study, *ChemistrySelect*, doi:10.1002/slct.202201912

Abdalla et al., Dual Computational and Biological Assessment of Some Promising Nucleoside Analogs against the COVID-19-Omicron Variant, *Computational Biology and Chemistry*, doi:10.1016/j.compbiolchem.2022.107768

gemcitabine Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Sagulkoo et al., Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing, *Biomolecules*, doi:10.3390/biom12050690

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

gilteritinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Peng et al., Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo, *Science China Life Sciences*, doi:10.1007/s11427-021-2031-7

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

gimsilumab, KIN1901 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

gingerol Submit Updates

Kushari et al., An integrated computational approach towards the screening of active plant metabolites as potential inhibitors of SARS-CoV-2: an overview, *Structural Chemistry*, doi:10.1007/s11224-022-02066-z

Rajamanickam et al., Molecular insight of phytocompounds from Indian spices and its hyaluronic acid conjugates to block SARS-CoV-2 viral entry, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2121757

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

Nag et al., Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105552

ginkgetin Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Patel et al., Computational investigation of natural compounds as potential main protease (Mpro) inhibitors for SARS-CoV-2 virus, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.106318

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

glucosamine Submit Updates

Meng et al., Associations of habitual glucosamine use with SARS-CoV-2 infection and hospital admission and death with COVID-19: Evidence from a large population based cohort study, *medRxiv*, doi:10.1101/2022.09.05.22279621

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

https://pubmed.ncbi.nlm.nih.gov/34306677/

https://www.sciencedirect.com/science/article/pii/S2049080121005240

GRL0617 Submit Updates

Sanders et al., Potent and selective covalent inhibition of the papain-like protease from SARS-CoV-2, *Nature Communications*, doi:10.1038/s41467-023-37254-w

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Bhowmick et al., Identification of bio-active food compounds as potential SARS-CoV-2 PLpro inhibitors-modulators via negative image-based screening and computational simulations, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105474

hyperoside Submit Updates

Peralta-Moreno et al., Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 Mpro Main Protease Inhibitors, *Pharmaceuticals*, doi:10.3390/ph16040585

Zhang et al., Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method, *Viruses*, doi:10.3390/v15040891

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

hypochlorous acid Submit Updates

Giarratana et al., A sprayable Acid-Oxidizing solution containing hypochlorous acid (AOS2020) efficiently and safely inactivates SARS-Cov-2: a new potential solution for upper respiratory tract hygiene, *European Archives of Oto-Rhino-Laryngology*, doi:10.1007/s00405-021-06644-5

Takeda et al., Acidic electrolyzed water potently inactivates SARS-CoV-2 depending on the amount of free available chlorine contacting with the virus, *Biochemical and Biophysical Research Communications*, doi:10.1016/j.bbrc.2020.07.029

Mueller et al., A Concept for the Reduction of Mucosal SARS-CoV-2 Load using Hypochloric Acid Solutions, *Drug Research*, doi:10.1055/a-1467-5956

Rasmussen et al., Inhalation of a fog of hypochlorous acid (HOCl): Biochemical, antimicrobial, and pathological assessment, Research Square, doi:10.21203/rs.3.rs-1009101/v1

L-Lysine, lysine Submit Updates

https://www.mdpi.com/1999-4915/13/7/1301/htm

https://www.researchgate.net/publication/354035681_Theoretical_Discussion_of_the_Probable_.. https://www.researchgate.net/publication/345916326_Amino_Acid_L-Lysine_SARS-CoV-2_COVID-19..

https://www.researchgate.net/publication/344210822_Lysine_Therapy_for_SARS-CoV-2

Levamisole Submit Updates

Roostaei Firozabad et al., Efficacy and safety of Levamisole treatment in clinical presentations of non-hospitalized patients with COVID-19: a double-blind, randomized, controlled trial, *BMC Infectious Diseases*, doi:10.1186/s12879-021-05983-2

Ashraf et al., Molecular Screening of Bioactive Compounds of Garlic for Therapeutic Effects against COVID-19, Biomedicines, doi:10.3390/biomedicines11020643

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

lisinopril Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, Annals of Medicine and Surgery, doi:10.1016/j.amsu.2022.104125 https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

magnolol Submit Updates

Xu et al., Bioactive compounds from Huashi Baidu decoction possess both antiviral and antiinflammatory effects against COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2301775120

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

mangiferin Submit Updates

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

Kawall et al., Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity, *Frontiers in Chemistry*, doi:10.3389/fchem.2022.1100460

http://www.jahm.co.in/index.php/jahm/article/view/686

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/

maribavir Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Rabie et al., Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, *Medicinal Chemistry Research*, doi:10.1007/s00044-022-02970-3

Rabie et al., A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study, *ChemistrySelect*, doi:10.1002/slct.202201912

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

montelukast Submit Updates

Luedemann et al., Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2022.01.024

Kerget et al., Effect of montelukast therapy on clinical course, pulmonary function, and mortality in patients with COVID-19, *Journal of Medical Virology*, doi:10.1002/jmv.27552

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

http://www.biomedrb.com/PDF/brb-9.pdf

naproxen Submit Updates

Asadi et al., Efficacy of naproxen in the management of patients hospitalized with COVID-19 infection: A randomized, double-blind, placebo-controlled, clinical trial, *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*, doi:10.1016/j.dsx.2021.102319

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

https://www.mdpi.com/1420-3049/26/9/2593/htm

neem, Azadirachta Indica A. Juss Submit Updates

Eze et al., Anti-COVID-19 Potential of Azadirachta indica (Neem) Leaf Extract, *Scientific African*, doi:10.1016/j.sciaf.2022.e01184

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640 https://pubmed.ncbi.nlm.nih.gov/33891569/ (RCT)

nicotine Submit Updates

Lewnard et al., Clinical outcomes among patients infected with Omicron (B.1.1.529) SARS-CoV-2 variant in southern California, *medRxiv*, doi:10.1101/2022.01.11.22269045

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

https://pubmed.ncbi.nlm.nih.gov/32790936/ https://clinicaltrials.gov/ct2/show/NCT04583410

nilotinib Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

NRICM102 Submit Updates

Wei et al., Targeting spike protein-induced TLR/NET axis by COVID-19 therapeutic NRICM102 ameliorates pulmonary embolism and fibrosis, *Pharmacological Research*, doi:10.1016/j.phrs.2022.106424

Lin et al., Efficacy analysis and research progress of complementary and alternative medicines in the adjuvant treatment of COVID-19, *Journal of Biomedical Science*, doi:10.1186/s12929-023-00923-5

Lai et al., How Taiwan has responded to COVID-19 and how COVID-19 has affected Taiwan, 2020-2022, *Journal of Microbiology, Immunology and Infection*, doi:10.1016/j.jmii.2023.04.001

Tseng et al., Curbing COVID-19 progression and mortality with traditional Chinese medicine among hospitalized patients with COVID-19: A propensity score-matched analysis, *Pharmacological Research*, doi:10.1016/j.phrs.2022.106412

paclitaxel Submit Updates

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

plitidepsin Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

prednisone Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

procyanidin Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Fatriansyah et al., Molecular Dynamics Simulation of Ligands from Anredera cordifolia (Binahong) to the Main Protease (Mpro) of SARS-CoV-2, *Journal of Tropical Medicine*, doi:10.1155/2022/1178228

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

https://www.sciencedirect.com/science/article/pii/S0223523421007066

psoralidin Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

https://www.mdpi.com/2304-8158/10/9/2084/htm

puerarin Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

https://www.sciencedirect.com/science/article/pii/S0223523421007066

punicalagin Submit Updates

Lu et al., Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105389

Alexova et al., Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L., *Molecules*, doi:10.3390/molecules28093772

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

raloxifene Submit Updates

Nicastri et al., A phase 2 randomized, double-blinded, placebo-controlled, multicenter trial evaluating the efficacy and safety of raloxifene for patients with mild to moderate COVID-19, eClinicalMedicine, doi:10.1016/j.eclinm.2022.101450

Jeong et al., Rapid discovery and classification of inhibitors of coronavirus infection by pseudovirus screen and amplified luminescence proximity homogeneous assay, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105473

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

raltegravir Submit Updates

Zapata-Cardona et al., In vitro and in silico evaluation of antiretrovirals against SARS-CoV-2: A drug repurposing approach, *AIMS Microbiology*, doi:10.3934/microbiol.2023002

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

ramipril Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

riboflavin Submit Updates

Belhassan et al., In silico detection of potential inhibitors from vitamins and their derivatives compounds against SARS-CoV-2 main protease by using molecular docking, molecular dynamic simulation and ADMET profiling, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.132652

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

riboprine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Rabie et al., Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, *Medicinal Chemistry Research*, doi:10.1007/s00044-022-02970-3

Rabie et al., A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study, *ChemistrySelect*, doi:10.1002/slct.202201912

Abdalla et al., Dual Computational and Biological Assessment of Some Promising Nucleoside Analogs against the COVID-19-Omicron Variant, *Computational Biology and Chemistry*, doi:10.1016/j.compbiolchem.2022.107768

sarilumab Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

scutellarein Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

https://www.mdpi.com/2304-8158/10/9/2084/htm

selamectin Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102277

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, *Computation*, doi:10.3390/computation10040051

https://www.biorxiv.org/content/10.1101/2021.04.08.439071v1

selenium Submit Updates

https://pubmed.ncbi.nlm.nih.gov/32992282

https://www.sciencedirect.com/science/article/pii/S030698772031104X

https://www.sciencedirect.com/science/article/pii/S2405457721011074

https://www.mdpi.com/2072-6643/11/9/2101

sitagliptin Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

https://www.medrxiv.org/content/10.1101/2022.01.21.22269322v1

sorafenib Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

tacrolimus Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Mosharaf et al., Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing, *Scientific Reports*, doi:10.1038/s41598-022-08073-8

tamoxifen Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Sagulkoo et al., Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing, *Biomolecules*, doi:10.3390/biom12050690

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

tenofovir Submit Updates

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

tetrandrine Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

https://www.sciencedirect.com/science/article/pii/S2213422021000688

tofacitinib Submit Updates

Polanco et al., Caracterización del uso de tofacitinib como tratamiento para covid-19, *Revista Colombiana de Reumatología*, doi:10.1016/j.rcreu.2022.03.002

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

toremifene Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

https://www.biorxiv.org/content/10.1101/2020.04.13.039917v3

tretinoin Submit Updates

Sameni et al., Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study, *3 Biotech*, doi:10.1007/s13205-023-03518-x

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

valproic acid Submit Updates

Moreno-Pérez et al., El ácido valproico podría ayudar en la lucha contra el COVID-19: un estudio de casos y controles, *Neurología*, doi:10.1016/j.nrl.2022.01.007

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

verapamil Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

Vitamin E Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Pandya et al., Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.100951

withanone Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Das et al., Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: an insilico approach, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102534

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

Xuanfeibaidu Submit Updates

Li et al., Xuanfei Baidu Formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models, *Phytomedicine*, doi:10.1016/j.phymed.2022.154545

Yao et al., Therapeutic drug combinations against COVID-19 obtained by employing a collaborative filtering method, *Heliyon*, doi:10.1016/j.heliyon.2023.e14023

Wu et al., Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.615287

https://www.sciencedirect.com/science/article/pii/S2095809921004422

zidovudine Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

acyclovir Submit Updates

Leonidou et al., New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells, *PLOS Computational Biology*, doi:10.1371/journal.pcbi.1010903

Doshi et al., A computational approach to drug repurposing using graph neural networks, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.105992

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

afatinib Submit Updates

Anju et al., Virtual screening of quinoline derived library for SARS-COV-2 targeting viral entry and replication, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2021.1913228

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

aloe emodin Submit Updates

Dutta et al., A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis, *Heliyon*, doi:10.1016/j.heliyon.2023.e14386

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

amitriptyline Submit Updates

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

https://www.cell.com/cell-reports-medicine/pdf/S2666-3791(20)30186-5.pdf

https://www.mdpi.com/1424-8247/14/3/226

amlodipine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

https://www.mdpi.com/1424-8247/14/3/226

amoxicillin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Alamgir et al., Drug repositioning candidates identified using in-silico quasi-quantum molecular simulation demonstrate reduced COVID-19 mortality in 1.5M patient records, *medRxiv*, doi:10.1101/2021.03.22.21254110

anisomycin Submit Updates

Wang et al., Anthracyclines inhibit SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.01.10.523518

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

apixaban Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

https://pubs.asahq.org/anesthesiology/article-abstract/doi/10.1097/ALN.0000000000003999/11...

aprepitant Submit Updates

McAuley et al., Use of Human Lung Tissue Models for Screening of Drugs against SARS-CoV-2 Infection, *Viruses*, doi:10.3390/v14112417

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

aprotinin Submit Updates

Ivashchenko et al., Effect of Aprotinin and Avifavir® Combination Therapy for Moderate COVID-19 Patients, *Viruses*, doi:10.3390/v13071253

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Li et al., Hypertonic saline and aprotinin based blockage of SARS-CoV-2 specific furin site cleavage by inhibition of nasal protease activity, *bioRxiv*, doi:10.1101/2021.11.19.469276

artesunate Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Aspartic Acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

astragalin Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Jose et al., Potential of phytocompounds from Brassica oleracea targeting S2-domain of SARS-CoV-2 spike glycoproteins: Structure and molecular insights, Journal of Molecular Structure, doi:10.1016/j.molstruc.2022.132369

avdoralimab, IPH5401 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

AZD7442, tixagevimab, cilgavimab Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

https://www.astrazeneca.com/media-centre/press-releases/2021/azd7442-prophylaxis-trial-met... https://trialsitenews.com/astrazeneca-files-request-for-emergency-use-authorization-for-lo...

bevacizumab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

bicuculline Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

https://www.sciencedirect.com/science/article/pii/S0223523421007066

biscryptolepine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

boswellic acids Submit Updates

Gomaa et al., Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly, *Inflammopharmacology*, doi:10.1007/s10787-021-00841-8

Gomaa et al., Advancing combination treatment with glycyrrhizin and boswellic acids for hospitalized patients with moderate COVID-19 infection: a randomized clinical trial, *Inflammopharmacology*, doi:10.1007/s10787-022-00939-7

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

brilacidin Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

calpeptin Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

https://www.biorxiv.org/content/10.1101/2021.08.05.455262v1

carvacrol Submit Updates

Debnath et al., Carvacrol: A PLpro Inhibitor of SARS-CoV-2 Is a Natural Weapon for COVID-19, *The 26th International Electronic Conference on Synthetic Organic Chemistry*, doi:10.3390/ecsoc-26-13679

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

ÖZHAN KOCAKAYA et al., Docking Studies of Natural Product Derived Carvacrol Type Aromatic Monoterpenes Against COVID-19 and Comparison with Used Synthetic Drugs: Potential of Carvacryl Acetate Against SARS-CoV-2 (COVID-19), Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, doi:10.55007/dufed.1184096

cefixime Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Abdel-Halim et al., Identification of Drug Combination Therapies for SARS-CoV-2: A Molecular Dynamics Simulations Approach, *Drug Design, Development and Therapy*, doi:10.2147/DDDT.S366423

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

cefpiramide Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

ceftazidime Submit Updates

Zheng et al., Ceftazidime exhibits a broad inhibition to the infection of SARS-CoV-2 prototype and Omicron variant in vitro by blocking spike protein-ACE2 interaction, *Acta Pharmacologica Sinica*, doi:10.1038/s41401-023-01071-0

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ceftriaxone Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

chebulagic acid Submit Updates

Alexova et al., Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L., *Molecules*, doi:10.3390/molecules28093772

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Rudrapal et al., Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.101826

chlorpheniramine, chlorphenamine Submit Updates

Black, S., Molecular Modeling and Preliminary Clinical Data Suggesting Antiviral Activity for Chlorpheniramine (Chlorphenamine) Against COVID-19, *Cureus*, doi:10.7759/cureus.20980

Valerio-Pascua et al., Chlorpheniramine Intranasal Spray to Accelerate COVID-19 Clinical Recovery in an Outpatient Setting: The ACCROS Trials, *Research Square*, doi:10.21203/rs.3.rs-2167465/v1

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

clindamycin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

clopidogrel Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

cosmosiin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

crizanlizumab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Doshi et al., A computational approach to drug repurposing using graph neural networks, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105992

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Crocin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Mujwar et al., In silico evaluation of food-derived carotenoids against SARS-CoV -2 drug targets: Crocin is a promising dietary supplement candidate for COVID -19, *Journal of Food Biochemistry*, doi:10.1111/jfbc.14219

cryptomisrine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

cryptotanshinone Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

https://www.mdpi.com/2304-8158/10/9/2084/htm

CT-P59 Submit Updates

https://www.clinicaltherapeutics.com/article/S0149-2918(21)00308-8/fulltext https://www.sciencedirect.com/science/article/pii/S0006291X21009311 https://www.sciencedirect.com/science/article/pii/S0006291X21013176

cyanidin, cyanidin 5-O-β-D-glucoside, cyanidin 3-O-glucoside Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Bhowmick et al., Identification of potent food constituents as SARS-CoV-2 papain-like protease modulators through advanced pharmacoinformatics approaches, *Journal of Molecular Graphics and Modelling*, doi:10.1016/j.jmgm.2021.108113

https://www.mdpi.com/2304-8158/10/9/2084/htm

cysteamine Submit Updates

Thoene et al., In Vitro Activity of Cysteamine Against SARS-CoV-2 Variants, *bioRxiv*, doi:10.1101/2021.10.02.462862

https://c19early.org/treatments.html

Thoene et al., In vitro activity of cysteamine against SARS-CoV-2 variants, *Molecular Genetics and Metabolism*, doi:10.1016/j.ymgme.2022.08.009

Alonzi et al., Cysteamine exerts in vitro antiviral activity against the SARS-CoV-2 Delta and Omicron variants, *Cell Death Discovery*, doi:10.1038/s41420-022-01080-8

dabigatran etexilate Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

dactinomycin Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

darolutamide Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

https://www.pnas.org/content/118/1/e2021450118 (In Vitro)

https://www.physchemres.org/article_149159.html

daunorubicin Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

decitabine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Sagulkoo et al., Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing, *Biomolecules*, doi:10.3390/biom12050690

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

dieckol Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Al-Sehemi et al., In Silico Exploration of Binding Potentials of Anti SARS-CoV-1 Phytochemicals against Main Protease of SARS-CoV-2, *Journal of Saudi Chemical Society*, doi:10.1016/j.jscs.2022.101453

https://www.mdpi.com/2304-8158/10/9/2084/htm

dihydroquercetin, taxifolin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Zhu et al., Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E, *Virology*, doi:10.1016/j.virol.2022.04.005

https://journals.eco-vector.com/0367-3014/article/view/321893

diosmin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Adem et al., Multidimensional in silico strategy for identification of natural polyphenols-based SARS-CoV-2 main protease (Mpro) inhibitors to unveil a hope against COVID-19, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105452

dipyridamole Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Demarest et al., Brequinar and dipyridamole in combination exhibits synergistic antiviral activity against SARS-CoV-2 in vitro: Rationale for a host-acting antiviral treatment strategy for COVID-19, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105403

Demarest et al., Brequinar and Dipyridamole in Combination Exhibits Synergistic Antiviral Activity Against SARS-CoV-2 in vitro: Rationale for a host-acting antiviral treatment strategy for COVID-19, *bioRxiv*, doi:10.1101/2022.03.30.486499

doxorubicin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

dutasteride Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

echinacea purpurea Submit Updates

Kolev et al., Echinacea purpurea for the Long-term Prevention of Viral Respiratory Tract Infections during COVID-19 Pandemic: A Randomized, Open, Controlled, Exploratory Clinical Study, *medRxiv*, doi:10.1101/2021.12.10.21267582

Khorshiddoust et al., Efficacy of a multiple-indication antiviral herbal drug (Saliravira®) for COVID-19 outpatients: A pre-clinical and randomized clinical trial study, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.112729

Nicolussi et al., Echinacea as a Potential Force against Coronavirus Infections? A Mini-Review of Randomized Controlled Trials in Adults and Children, *Microorganisms*, doi:10.3390/microorganisms10020211

eltrombopag Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

emtricitabine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zapata-Cardona et al., In vitro and in silico evaluation of antiretrovirals against SARS-CoV-2: A drug repurposing approach, *AIMS Microbiology*, doi:10.3934/microbiol.2023002

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

enzalutamide Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

https://www.pnas.org/content/118/1/e2021450118ANIMAL:https://www.nature.com/articles/s4146.. (In Vitro)

https://www.physchemres.org/article_149159.html

fangchinoline, Submit Updates

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

https://www.sciencedirect.com/science/article/pii/S2213422021000688

fedratinib Submit Updates

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

ferulic acid Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.mdpi.com/2304-8158/10/9/2084/htm

finasteride Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

fingolimod Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Risner et al., Maraviroc inhibits SARS-CoV-2 multiplication and s-protein mediated cell fusion in cell culture, *bioRxiv*, doi:10.1101/2020.08.12.246389

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

fulvestrant Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

ganciclovir Submit Updates

Leonidou et al., New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells, *PLOS Computational Biology*, doi:10.1371/journal.pcbi.1010903

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

GC-376 Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Glaab et al., Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and *in Vitro* Experimental Validation of Computationally Screened Inhibitors, *Journal of Chemical Information and Modeling*, doi:10.1021/acs.jcim.1c00258

Davarpanah et al., Combination of Spironolactone and Sitagliptin Improves Clinical Outcomes of Outpatients with COVID-19: An Observational Study, *medRxiv*, doi:10.1101/2022.01.21.22269322

GC376 Submit Updates

Paciaroni et al., Stabilization of the Dimeric State of SARS-CoV-2 Main Protease by GC376 and Nirmatrelvir, *International Journal of Molecular Sciences*, doi:10.3390/ijms24076062

Supianto et al., Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature, Journal of Taibah University Medical Sciences, doi:10.1016/j.jtumed.2022.12.015

Gangadharan et al., Repurposing of Potential Antiviral Drugs against RNA-dependent RNA Polymerase of SARS-CoV-2 by Computational Approach, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.09.007

geldanamycin Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

Wang et al., Anthracyclines inhibit SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.01.10.523518

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Giloy Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640 https://www.jcchems.com/index.php/JCCHEMS/article/download/1802/561

Ginger Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

glycine Submit Updates

Li, C., Can Glycine Mitigate COVID-19 Associated Tissue Damage and Cytokine Storm?, *Radiation Research*, doi:10.1667/RADE-20-00146.1

Kumar et al., Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) Supplementation, *Antioxidants*, doi:10.3390/antiox11010050

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

grazoprevir Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Ma et al., Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105419

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

guaifenesin Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Kapoor et al., In silico evaluation of potential intervention against SARS-CoV-2 RNA-dependent RNA polymerase, *Physics and Chemistry of the Earth, Parts A/B/C*, doi:10.1016/j.pce.2022.103350

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

haloperidol Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

hydralazine Submit Updates

Doshi et al., A computational approach to drug repurposing using graph neural networks, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105992

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

hydroxyurea Submit Updates

Foster et al., The Use of Hydroxyurea in the Treatment of COVID-19, The Journal of Critical Care Medicine, doi:10.2478/jccm-2021-0019

Sagulkoo et al., Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing, *Biomolecules*, doi:10.3390/biom12050690

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

hyperbaric oxygen Submit Updates

Keller et al., Clinical and biochemical short-term effects of hyperbaric oxygen therapy on SARS-Cov-2+ hospitalized patients with hypoxemic respiratory failure, *Respiratory Medicine*, doi:10.1016/j.rmed.2023.107155

Oliaei et al., Is There a Role for Hyperbaric Oxygen Therapy in Reducing Long-Term COVID-19 Sequelae?, *Journal of Clinical Medicine*, doi:10.3390/jcm12062270

Hadanny et al., Hyperbaric Oxygen Therapy for COVID-19 Patients: A Prospective, Randomized Controlled Trial, *SSRN Electronic Journal*, doi:10.2139/ssrn.3745115

icatibant Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Liu et al., Therapeutic Polypeptides and Peptidomimetics: Powerful Tools for COVID-19 Treatment, *Clinical Drug Investigation*, doi:10.1007/s40261-022-01231-w

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, Journal of Drug Targeting, doi:10.1080/1061186X.2020.1853736

infliximab Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

Jinhua Qinggan Submit Updates

Shah et al., Jinhua Qinggan Granules for Nonhospitalized COVID-19 Patients: a Double-Blind, Placebo-Controlled, Randomized Controlled Trial, *medRxiv*, doi:10.1101/2022.05.16.22275074

Yao et al., Therapeutic drug combinations against COVID-19 obtained by employing a collaborative filtering method, *Heliyon*, doi:10.1016/j.heliyon.2023.e14023

Wu et al., Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.615287

L-arginine Submit Updates

Izzo et al., Combining L-Arginine with Vitamin C Improves Long-COVID Symptoms: The Nationwide Multicenter LINCOLN Study, *Pharmacological Research*, doi:10.1016/j.phrs.2022.106360

Trimarco et al., Beneficial Effects of L-Arginine in Patients Hospitalized for COVID-19: New Insights from a Randomized Clinical Trial, *Pharmacological Research*, doi:10.1016/j.phrs.2023.106702

https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00405-3/fulltext (RCT)

lamivudine Submit Updates

García-Trejo et al., Putative Repurposing of Lamivudine, a Nucleoside/Nucleotide Analogue and Antiretroviral to Improve the Outcome of Cancer and COVID-19 Patients, *Frontiers in Oncology*, doi:10.3389/fonc.2021.664794

Zapata-Cardona et al., In vitro and in silico evaluation of antiretrovirals against SARS-CoV-2: A drug repurposing approach, *AIMS Microbiology*, doi:10.3934/microbiol.2023002

Kapoor et al., In silico evaluation of potential intervention against SARS-CoV-2 RNA-dependent RNA polymerase, *Physics and Chemistry of the Earth, Parts A/B/C*, doi:10.1016/j.pce.2022.103350

lenzilumab Submit Updates

Kilcoyne et al., Clinical and economic benefits of lenzilumab plus standard of care compared with standard of care alone for the treatment of hospitalized patients with Coronavirus Disease 19 (COVID-19) from the perspective of National Health Service England, *medRxiv*, doi:10.1101/2022.02.11.22270859

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(21)00494-X/fulltext

leronlimab, PA14, PRO-140, Vyrologix Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

leucal Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

linagliptin Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

liquiritin Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Sharma et al., Nutraceuticals aid in managing COVID-19, *World Journal of Pharmaceutical Sciences*, doi:10.54037/WJPS.2022.100204

https://www.researchgate.net/profile/Ravi-Patel-57/publication/362712299_Liquiritin_from_G...

Ionafarnib Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

lumacaftor Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Luteolin-7-glucoside Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

Moezzi, M., Comprehensive in silico screening of flavonoids against SARS-CoV-2 main protease, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2142297

maraviroc Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Risner et al., Maraviroc inhibits SARS-CoV-2 multiplication and s-protein mediated cell fusion in cell culture, *bioRxiv*, doi:10.1101/2020.08.12.246389

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

meloxicam Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

mercaptopurine Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

merimepodib Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

micafungin Submit Updates

Nakajima et al., Antiviral Activity of Micafungin and Its Derivatives against SARS-CoV-2 RNA Replication, *Viruses*, doi:10.3390/v15020452

Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, *Communications Biology*, doi:10.1038/s42003-020-01577-x

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

mitoxantrone Submit Updates

Parameswaran et al., Molecular networking-based drug repurposing strategies for SARS-CoV-2 infection by targeting alpha-1-antitrypsin (SERPINA1), *Research Square*, doi:10.21203/rs.3.rs-2800746/v1

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

moxifloxacin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

natamycin Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, *Computation*, doi:10.3390/computation10040051

nelarabine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Rabie et al., Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, *Medicinal Chemistry Research*, doi:10.1007/s00044-022-02970-3

Rabie et al., A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study, *ChemistrySelect*, doi:10.1002/slct.202201912

neohesperidin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Ur Rehman et al., Flavonoids and other polyphenols against SARS-CoV-2, *Application of Natural Products in SARS-CoV-2*, doi:10.1016/B978-0-323-95047-3.00014-9

nystatin Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

obacunone Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

https://www.sciencedirect.com/science/article/pii/S0223523421007066

Oleanolic acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Tiwari et al., Molecular docking studies on the phytoconstituents as therapeutic leads against SARS-CoV-2, *Polimery*, doi:10.14314/polimery.2022.7.8

omeprazole Submit Updates

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

opaganib Submit Updates

Winthrop et al., Opaganib in COVID-19 pneumonia: Results of a randomized, placebo-controlled Phase 2a trial, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac232

Carvalho Neuenschwander et al., Effect of Opaganib on Supplemental Oxygen and Mortality in Patients with Severe SARS-CoV-2 Pneumonia, medRxiv, doi:10.1101/2022.06.12.22276088

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

ouabain Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Cho et al., Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19, *Scientific Reports*, doi:10.1038/s41598-020-72879-7

oxytetracycline Submit Updates

Parameswaran et al., Molecular networking-based drug repurposing strategies for SARS-CoV-2 infection by targeting alpha-1-antitrypsin (SERPINA1), *Research Square*, doi:10.21203/rs.3.rs-2800746/v1

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

p-coumaric acid Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

panduratin A Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Kongratanapasert et al., Pharmacological Activities of Fingerroot Extract and Its Phytoconstituents Against SARS-CoV-2 Infection in Golden Syrian Hamsters, *Journal of Experimental Pharmacology*, doi:10.2147/JEP.S382895

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

paroxetine Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286244/pdf/main.pdf

pentamidine Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

pentoxifylline Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

phenytoin Submit Updates

Taquet et al., Exposure to phenytoin associates with a lower risk of post-COVID cognitive deficits: a cohort study, *Brain Communications*, doi:10.1093/braincomms/fcac206

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

pomegranate peel extract Submit Updates

Alexova et al., Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L., *Molecules*, doi:10.3390/molecules28093772

Karaoğlu et al., Chewable tablet with herbal extracts and propolis arrests Wuhan and Omicron variants of SARS-CoV-2 virus, *Journal of Functional Foods*, doi:10.1016/j.jff.2023.105544

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

pristimerin Submit Updates

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

propylthiouracil Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

pyrimethamine Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Qingfei Paidu Submit Updates

Zhang et al., Association between Use of Qingfei Paidu Tang and Mortality in Hospitalized Patients with COVID-19: A national retrospective registry study, *medRxiv*, doi:10.1101/2020.12.23.20248444

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

Yao et al., Therapeutic drug combinations against COVID-19 obtained by employing a collaborative filtering method, *Heliyon*, doi:10.1016/j.heliyon.2023.e14023

quercetin 3-0-rutinoside Submit Updates

Samodra et al., Molecular docking study on COVID-19 drug activity of quercetin derivatives with glucose groups as potential main protease inhibitor, *AIP Conference Proceedings*, doi:10.1063/5.0105741

Uhomoibhi et al., Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins, *Scientific African*, doi:10.1016/j.sciaf.2022.e01279

https://www.mdpi.com/2304-8158/10/9/2084/htm

quercitrin Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

Ur Rehman et al., Flavonoids and other polyphenols against SARS-CoV-2, *Application of Natural Products in SARS-CoV-2*, doi:10.1016/B978-0-323-95047-3.00014-9

quinine Submit Updates

Große et al., Quinine Inhibits Infection of Human Cell Lines with SARS-CoV-2, Viruses, doi:10.3390/v13040647

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

RAY1216 Submit Updates

Chen et al., Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor, *bioRxiv*, doi:10.1101/2023.03.09.531862

Chen et al., Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor, *Research Square*, doi:10.21203/rs.3.rs-2634509/v1

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

rhein Submit Updates

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/https://www.sciencedirect.com/science/article/pii/S0223523421007066

rifapentine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

rosiglitazone Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

S-217622 Submit Updates

Sasaki et al., Oral administration of S-217622, a SARS-CoV-2 main protease inhibitor, decreases viral load and accelerates recovery from clinical aspects of COVID-19, *bioRxiv*, doi:10.1101/2022.02.14.480338

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

https://www.thepharmaletter.com/article/shionogi-progressing-covid-19-oral-antiviral-agent...

saline Submit Updates

Kimura et al., Interim analysis of an open-label randomized controlled trial evaluating nasal irrigations in non-hospitalized patients with coronavirus disease 2019, *International Forum of Allergy & Rhinology*, doi:10.1002/alr.22703

Li et al., Hypertonic saline and aprotinin based blockage of SARS-CoV-2 specific furin site cleavage by inhibition of nasal protease activity, *bioRxiv*, doi:10.1101/2021.11.19.469276

https://pubmed.ncbi.nlm.nih.gov/33772626/ (Review)

salinomycin Submit Updates

Ju et al., A novel cell culture system modeling the SARS-CoV-2 life cycle, *PLOS Pathogens*, doi:10.1371/journal.ppat.1009439

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Peng et al., Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo, *Science China Life Sciences*, doi:10.1007/s11427-021-2031-7

Scutellarin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

sertraline Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Peng et al., Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo, *Science China Life Sciences*, doi:10.1007/s11427-021-2031-7

https://www.mdpi.com/1424-8247/14/3/226

sesamin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.sciencedirect.com/science/article/pii/S0223523421007066

silibinin Submit Updates

Bosch-Barrera et al., Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients, *Journal of Clinical Medicine*, doi:10.3390/jcm9061770

Virtucio et al., Virtual Screening for SARS-COV-2 Entry Inhibitors by Dual Targeting of TMPRSS2 and CTSL, *Pharmacophore*, doi:10.51847/6IMWqjwVPa

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Silmitasertib Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

https://www.senhwabio.com/en/news/20211020

https://trialsitenews.com/senhwa-presents-positive-data-from-phase-2-trial-of-silmitaserti...

Silybin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Jamshidnia et al., An Update on Promising Agents against COVID-19: Secondary Metabolites and Mechanistic Aspects, *Current Pharmaceutical Design*, doi:10.2174/1381612828666220722124826

sitoindoside IX Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, *Chemistry & Biodiversity*, doi:10.1002/cbdv.202200655

tafenoquine Submit Updates

Chen et al., Tafenoquine and its derivatives as inhibitors for the Severe Acute Respiratory Syndrome Coronavirus 2, *Journal of Biological Chemistry*, doi:10.1016/j.jbc.2022.101658

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

taraxerol Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

https://www.sciencedirect.com/science/article/pii/S0223523421007066

tecadenoson Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Rabie et al., Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, *Medicinal Chemistry Research*, doi:10.1007/s00044-022-02970-3

Rabie et al., A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study, *ChemistrySelect*, doi:10.1002/slct.202201912

telmisartan Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

thymoquinone Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102277

Abdallah et al., Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics, *Plants*, doi:10.3390/plants11151914

tipranavir Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, *Communications Biology*, doi:10.1038/s42003-020-01577-x

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Tranilast Submit Updates

Saeedi-Boroujeni et al., Tranilast as an Adjunctive Therapy in Hospitalized Patients with Severe COVID- 19: A Randomized Controlled Trial, Archives of Medical Research, doi:10.1016/j.arcmed.2022.03.002

Lécuyer et al., The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.04.05.531513

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

triazavirin Submit Updates

Ivan et al., Triazavirin might be the new hope to fight Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Česká a slovenská farmacie, doi:10.5817/CSF2021-1-18

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

valrubicin Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

vidarabine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Rabie et al., Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, *Medicinal Chemistry Research*, doi:10.1007/s00044-022-02970-3

Rabie et al., A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study, *ChemistrySelect*, doi:10.1002/slct.202201912

vitamin B12 Submit Updates

Pandya et al., Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.100951

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

withanolide A Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

https://www.sciencedirect.com/science/article/pii/S0223523421007066

withanolide B Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool.

withanoside V Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, *Chemistry & Biodiversity*, doi:10.1002/cbdv.202200655

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

wogonin Submit Updates

Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From *Andrographis paniculata* via Bioinformatics, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221149622

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

https://journals.sagepub.com/doi/full/10.1177/1934578X221124769

xanthoangelol E Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, *Frontiers in Cellular and Infection Microbiology*, doi:10.3389/fcimb.2022.929430

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

https://www.mdpi.com/2304-8158/10/9/2084/htm

xiannuoxin, simnotrelvir, SIM0417 Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

https://www.trialsitenews.com/a/the-chinese-paxlovid-completes-enrollment-of-phase-23-clin... https://www1.hkexnews.hk/listedco/listconews/sehk/2023/0116/2023011600267.pdf

Xuebijing Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

Yao et al., Therapeutic drug combinations against COVID-19 obtained by employing a collaborative filtering method, *Heliyon*, doi:10.1016/j.heliyon.2023.e14023

Wu et al., Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.615287

zotatifin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

α-hederin Submit Updates

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, Chemistry & Biodiversity, doi:10.1002/cbdv.202200655

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.sciencedirect.com/science/article/pii/S1319562X21007968

(E,E)- α -farnesene Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

10-hydroxyusambarensine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

2-deoxy-D-glucose Submit Updates

Chavda et al., Potential Anti-SARS-CoV-2 Prodrugs Activated by Phosphorylation and Their Role in the Aged Population, *Molecules*, doi:10.3390/molecules28052332

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

6-oxoisoiguesterin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

6-shogaol Submit Updates

Kode et al., 6-Shogaol Exhibits Anti-viral and Anti-inflammatory Activity in COVID-19-Associated Inflammation by Regulating NLRP3 Inflammasomes, *ACS Omega*, doi:10.1021/acsomega.2c07138

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

abacavir Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

abatacept Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

abemaciclib Submit Updates

Bahadur Gurung et al., An in silico approach unveils the potential of antiviral compounds in preclinical and clinical trials as SARS-CoV-2 Omicron inhibitors, *Saudi Journal of Biological Sciences*, doi:10.1016/j.sjbs.2022.103297

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

acalabrutinib Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Maria et al., Application of the PHENotype SIMulator for rapid identification of potential candidates in effective COVID-19 drug repurposing, *Heliyon*, doi:10.1016/j.heliyon.2023.e14115

acarbose Submit Updates

Li et al., Inpatient Use of Metformin and Acarbose Is Associated with Reduced Mortality of COVID-19 Patients with Type 2 Diabetes Mellitus, *Research Square*, doi:10.21203/rs.3.rs-287308/v1

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

acetoside Submit Updates

Kushari et al., An integrated computational approach towards the screening of active plant metabolites as potential inhibitors of SARS-CoV-2: an overview, *Structural Chemistry*, doi:10.1007/s11224-022-02066-z

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

acetylcysteine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

adintrevimab Submit Updates

Rubino et al., 591. Adintrevimab (ADI) Population Pharmacokinetics (PPK) in Phase 1 and Phase 2/3 COVID-19 Prevention and Treatment Study Participants, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac492.643

Gutlapalli et al., Exploring the Potential of Broadly Neutralizing Antibodies for Treating SARS-CoV-2 Variants of Global Concern in 2023: A Comprehensive Clinical Review, *Cureus*, doi:10.7759/cureus.36809

Aframomum melegueta Submit Updates

Mahoney et al., Antiviral Activity of Aframomum melegueta Against Severe Acute Respiratory Syndrome Coronaviruses type 1 and 2, *South African Journal of Botany*, doi:10.1016/j.sajb.2021.12.010

Abdallah et al., Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics, *Plants*, doi:10.3390/plants11151914

agathisflavone Submit Updates

Chaves et al., Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2022.09.204

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

alisporivir Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

almitrine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

almond Submit Updates

Gao et al., Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology, *BioData Mining*, doi:10.1186/s13040-020-00229-4

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

aloenin Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

aloesin Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

Hicks et al., Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors, *Bioorganic & Medicinal Chemistry Letters*, doi:10.1016/j.bmcl.2022.128732

alvocidib Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

amaranthin Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

andrographis paniculata Submit Updates

Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From *Andrographis paniculata* via Bioinformatics, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221149622

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

apalutamide Submit Updates

https://www.pnas.org/content/118/1/e2021450118 (*In Vitro*) https://www.physchemres.org/article_149159.html

Apigenin-7-glucoside Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

apremilast Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Arginine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

aripiprazole Submit Updates

Su et al., DTSEA: A network-based drug target set enrichment analysis method for drug repurposing against COVID-19, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2023.106969

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

aspartame Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

astegolimab Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

asunaprevir Submit Updates

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

Ma et al., Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105419

B-amyrin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Tiwari et al., Molecular docking studies on the phytoconstituents as therapeutic leads against SARS-CoV-2, *Polimery*, doi:10.14314/polimery.2022.7.8

baloxavir marboxil Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

BDB-001 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

bemiparin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

benazepril Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

berbamine Submit Updates

Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102277

Kumar et al., Identification of potential COVID-19 treatment compounds which inhibit SARS Cov2 prototypic, Delta and Omicron variant infection, *Virology*, doi:10.1016/j.virol.2022.05.004

bergamottin Submit Updates

Zhou et al., Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105365

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

bergenin Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

betamethasone Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

bicalutamide Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

https://www.physchemres.org/article_149159.html

bifonazole Submit Updates

Taha et al., Identification of FDA-approved Bifonazole as SARS-CoV-2 blocking agent following a bioreporter drug screen, *Molecular Therapy*, doi:10.1016/j.ymthe.2022.04.025

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

bisoprolol Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

black pepper Submit Updates

Lall et al., Black Pepper an Ideal Choice against Corona Virus: A Systemic study against Pandemic Covid-19, *Research Journal of Pharmacognosy and Phytochemistry*, doi:10.52711/0975-4385.2022.00012

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

BLD-2660 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

blebbistatin Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

bosutinib Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

brazilin Submit Updates

Utomo et al., Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection, *MDPI AG*, doi:10.20944/preprints202003.0214.v1

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253489

broccoli Submit Updates

Ordonez et al., Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice, *Communications Biology*, doi:10.1038/s42003-022-03189-7

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

bromelain Submit Updates

Akhter et al., The Combination of Bromelain and Acetylcysteine (BromAc) Synergistically Inactivates SARS-CoV-2, Viruses, doi:10.3390/v13030425

https://www.sciencedirect.com/science/article/pii/S2589936820300463?via%3Dihub

bromfenac Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

bromocriptine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Broussoflavan A Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Al-Sehemi et al., In Silico Exploration of Binding Potentials of Anti SARS-CoV-1 Phytochemicals against Main Protease of SARS-CoV-2, *Journal of Saudi Chemical Society*, doi:10.1016/j.jscs.2022.101453

bucillamine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

https://clinicaltrials.gov/ct2/show/NCT04504734

bufalin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

Caffeine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Calarene Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

Calceolarioside B Submit Updates

Ali et al., Identification of Natural Lead Compounds against Hemagglutinin-Esterase Surface Glycoprotein in Human Coronaviruses Investigated via MD Simulation, Principal Component Analysis, Cross-Correlation, H-Bond Plot and MMGBSA, *Biomedicines*, doi:10.3390/biomedicines11030793

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

campesterol Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

canertinib Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

capastat Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Carnosol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

https://link.springer.com/article/10.1007/s00894-023-05569-6

carrimycin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

cefamandole Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

cefuroxime Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Monserrat Villatoro et al., A Case-Control of Patients with COVID-19 to Explore the Association of Previous Hospitalisation Use of Medication on the Mortality of COVID-19 Disease: A Propensity Score Matching Analysis, *Pharmaceuticals*, doi:10.3390/ph15010078

chloramphenicol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Mortezaei et al., Variations of SARS-CoV-2 in the Iranian Population and Candidate Putative Druglike Compounds to Inhibit the Mutated Proteins, *Heliyon*, doi:10.1016/j.heliyon.2022.e09910

chlorpheniramine maleate Submit Updates

Tesch et al., Chlorpheniramine Maleate Throat Spray for the Treatment of COVID-19-Induced Acute Viral Pharyngitis: Case Series, *Cureus*, doi:10.7759/cureus.34310

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

chrysoeriol Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Youn et al., Robust therapeutic effects on COVID-19 of novel small molecules: Alleviation of SARS-CoV-2 S protein induction of ACE2/TMPRSS2, NOX2/ROS, and MCP-1, *Frontiers in Cardiovascular Medicine*, doi:10.3389/fcvm.2022.957340

cidofovir Submit Updates

Doshi et al., A computational approach to drug repurposing using graph neural networks, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.105992

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

cimetidine Submit Updates

Kim et al., Histamine-2 Receptor Antagonists and Proton Pump Inhibitors Are Associated With Reduced Risk of SARS-CoV-2 Infection Without Comorbidities Including Diabetes, Hypertension, and Dyslipidemia: A Propensity Score-Matched Nationwide Cohort Study, *Journal of Korean Medical Science*, doi:10.3346/jkms.2023.38.e99

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

cinobufagin Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

clarithromycin Submit Updates

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

clazakizumab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

clevudine Submit Updates

Song et al., Oral antiviral clevudine compared with placebo in Korean COVID-19 patients with moderate severity, *medRxiv*, doi:10.1101/2021.12.09.21267566

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

clofibrate Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

colistin Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

copanlisib Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

cordycepin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

coumarin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

cromolyn Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

cyanidin 3-0-rutinoside Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Uhomoibhi et al., Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins, *Scientific African*, doi:10.1016/j.sciaf.2022.e01279

cyanidin-3-O-glucoside Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Uhomoibhi et al., Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins, *Scientific African*, doi:10.1016/j.sciaf.2022.e01279

cyanin Submit Updates

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

cycloeucalenol Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

cyclophosphamide Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

cynarin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

cytarabine Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

D-viniferin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

https://www.sciencedirect.com/science/article/pii/S0223523421007066

dalcetrapib Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

dalteparin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

Dapansutrile Submit Updates

Lécuyer et al., The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.04.05.531513

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

deferoxamine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

desloratadine, Clarinex Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889471/ (*In Vitro*) https://www.mdpi.com/1424-8247/14/3/226

dexlansoprazole Submit Updates

Kim et al., Histamine-2 Receptor Antagonists and Proton Pump Inhibitors Are Associated With Reduced Risk of SARS-CoV-2 Infection Without Comorbidities Including Diabetes, Hypertension, and Dyslipidemia: A Propensity Score-Matched Nationwide Cohort Study, *Journal of Korean Medical Science*, doi:10.3346/jkms.2023.38.e99

Mok et al., Evaluation of In Vitro and In Vivo Antiviral Activities of Vitamin D for SARS-CoV-2 and Variants, *Pharmaceutics*, doi:10.3390/pharmaceutics15030925

diazepam Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

Digitoxigenine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

dihydromyricetin Submit Updates

Zhu et al., Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E, *Virology*, doi:10.1016/j.virol.2022.04.005

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

dinoprostone Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

diosbulbinoside D Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Bhowmick et al., Identification of potent food constituents as SARS-CoV-2 papain-like protease modulators through advanced pharmacoinformatics approaches, *Journal of Molecular Graphics and Modelling*, doi:10.1016/j.jmgm.2021.108113

diphenhydramine Submit Updates

Ostrov et al., Highly Specific Sigma Receptor Ligands Exhibit Anti-Viral Properties in SARS-CoV-2 Infected Cells, Pathogens, doi:10.3390/pathogens10111514

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713548/ (Retrospective Study)

dolutegravir Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

https://con.antppublishing.com/index.php/ittpcovid19/article/view/183

donepezil Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

doramectin Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051

https://www.biorxiv.org/content/10.1101/2021.04.08.439071v1

doxazosin Submit Updates

Rose et al., The Association Between Alpha-1 Adrenergic Receptor Antagonists and In-Hospital Mortality From COVID-19, Frontiers in Medicine, doi:10.3389/fmed.2021.637647

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

duloxetine Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

duvelisib Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

ebastine Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009840

Echinacea Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

echinacoside Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

ecteinascidin Submit Updates

Wang et al., Anthracyclines inhibit SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.01.10.523518

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

EDP-235 Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

EK1C4 Submit Updates

Xia et al., Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pancoronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion, *Cell Research*, doi:10.1038/s41422-020-0305-x

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

emapalumab Submit Updates

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), *Applied Sciences*, doi:10.3390/app13074471

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

enalapril Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

ephedrine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.sciencedirect.com/science/article/pii/S0223523421007066

Epicatechin-gallate Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Khaerunnisa et al., Potential Inhibitor of COVID-19 Main Protease (M^{pro}) From Several Medicinal Plant Compounds by Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202003.0226.v1

equilin Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Eriodictyol Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

estrone-2,3-quinone Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Bhowmick et al., Identification of potent food constituents as SARS-CoV-2 papain-like protease modulators through advanced pharmacoinformatics approaches, *Journal of Molecular Graphics and Modelling*, doi:10.1016/j.jmgm.2021.108113

etanercept Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

ethoxzolamide Submit Updates

Shimizu et al., LIGHTHOUSE illuminates therapeutics for a variety of diseases including COVID-19, *iScience*, doi:10.1016/j.isci.2022.105314

https://www.biorxiv.org/content/10.1101/2021.09.25.461785v1

etodolac Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Eucalyptus Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

Evusheld, tixagevimab, cilgavimab Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-author..

ezetimibe Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

https://elifesciences.org/articles/68165

FB2001 Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Fenugreek Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

https://www.jcchems.com/index.php/JCCHEMS/article/download/1802/561

fidaxomicin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Gangadharan et al., Repurposing of Potential Antiviral Drugs against RNA-dependent RNA Polymerase of SARS-CoV-2 by Computational Approach, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.09.007

Fisetin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

flecainide Submit Updates

Parameswaran et al., Molecular networking-based drug repurposing strategies for SARS-CoV-2 infection by targeting alpha-1-antitrypsin (SERPINA1), *Research Square*, doi:10.21203/rs.3.rs-2800746/v1

https://elifesciences.org/articles/68165

flutamide Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

https://www.physchemres.org/article_149159.html

fluvastatin Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Folinic Acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

formononetin Submit Updates

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

Forsythoside A Submit Updates

Fu et al., Interfering effects on the bioactivities of several key proteins of COVID-19/variants in diabetes by compounds from Lianqiao leaves: In silico and in vitro analyses, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2022.03.145

https://www.sciencedirect.com/science/article/pii/S0223523421007066

Friedelin Submit Updates

Arumugam et al., In silico evaluation of some commercially available terpenoids as spike glycoprotein of SARS-CoV-2 – inhibitors using molecular dynamic approach, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2023.2201848

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

galangin Submit Updates

Utomo et al., Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection, *MDPI AG*, doi:10.20944/preprints202003.0214.v1

https://www.mdpi.com/2304-8158/10/9/2084/htm

gallocatechin Submit Updates

Zhang et al., Discovery and characterization of the covalent SARS-CoV-2 3CLpro inhibitors from Ginkgo biloba extract via integrating chemoproteomic and biochemical approaches, *Phytomedicine*, doi:10.1016/j.phymed.2023.154796

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

gefitinib Submit Updates

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

GENZ-123346 Submit Updates

Clair et al., High-throughput SARS-CoV-2 antiviral testing method using the Celigo Image Cytometer, *Research Square*, doi:10.21203/rs.3.rs-2846848/v1

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Ginseng Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

glecaprevir Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

gliquidone Submit Updates

Shen et al., The antiviral activity of a small molecule drug targeting the NSP1-ribosome complex against Omicron, especially in elderly patients, *Frontiers in Cellular and Infection Microbiology*, doi:10.3389/fcimb.2023.1141274

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Glutamic Acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

glycyrrhetinic acid Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Das et al., Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: an insilico approach, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102534

green propolis Submit Updates

Zeyad Bazbouz et al., Plant phytochemicals as potential candidates for treating post-COVID-19 lung infections, *Phytotherapy Research*, doi:10.1002/ptr.7650

Bijelić et al., Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, *Antibiotics*, doi:10.3390/antibiotics11111614

Green Tea Submit Updates

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

https://pubmed.ncbi.nlm.nih.gov/34375189/ (In Vitro)

green tea extract Submit Updates

Karaoğlu et al., Chewable tablet with herbal extracts and propolis arrests Wuhan and Omicron variants of SARS-CoV-2 virus, *Journal of Functional Foods*, doi:10.1016/j.jff.2023.105544

Cerqueira et al., Edible alginate-based films with anti-SARS-CoV-2 activity, *Food Microbiology*, doi:10.1016/j.fm.2023.104251

Griffithsin Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

https://www.mdpi.com/1660-3397/19/8/418

griseofulvin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

GRL-0617 Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

Wu et al., Identifying Drug Candidates for COVID-19 with Large-Scale Drug Screening, *International Journal of Molecular Sciences*, doi:10.3390/ijms24054397

GS-621763 Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

$\begin{array}{ll} \textbf{GSK-1059615} & \textbf{Submit Updates} \end{array}$

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Hederagenin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Uhomoibhi et al., Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins, *Scientific African*, doi:10.1016/j.sciaf.2022.e01279

hinokiflavone Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Houttuynia cordata Submit Updates

Lin et al., Deciphering Houttuynia cordata extract as electron shuttles with anti-COVID-19 activity and its performance in microbial fuel cells, *Journal of the Taiwan Institute of Chemical Engineers*, doi:10.1016/j.jtice.2023.104838

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

hydrochlorothiazide Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Alamgir et al., Drug repositioning candidates identified using in-silico quasi-quantum molecular simulation demonstrate reduced COVID-19 mortality in 1.5M patient records, *medRxiv*, doi:10.1101/2021.03.22.21254110

hydroquinone Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

hydroxytyrosol Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Milton-Laskibar et al., Potential usefulness of Mediterranean diet polyphenols against COVID-19-induced inflammation: a review of the current knowledge, *Journal of Physiology and Biochemistry*, doi:10.1007/s13105-022-00926-0

hydroxyzine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713548/ (Retrospective Study)

hyperin Submit Updates

Adedayo et al., In-silico studies of Momordica charantia extracts as potential candidates against SARS-CoV-2 targeting human main protease enzyme (MPRO), Informatics in Medicine Unlocked, doi:10.1016/j.imu.2023.101216

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

ichangin Submit Updates

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

idarubicin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

ifenprodil Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

iguesterin Submit Updates

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

indigo Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

interferon beta-1a Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

interferon beta-1b Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

ionomycin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

ipratropium bromide Submit Updates

Monserrat Villatoro et al., A Case-Control of Patients with COVID-19 to Explore the Association of Previous Hospitalisation Use of Medication on the Mortality of COVID-19 Disease: A Propensity Score Matching Analysis, *Pharmaceuticals*, doi:10.3390/ph15010078

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

irbesartan Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

irinotecan Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

irisolidone Submit Updates

Jiang et al., Exploration of Fuzheng Yugan Mixture on COVID-19 based on network pharmacology and molecular docking, *Medicine*, doi:10.1097/MD.000000000032693

https://www.sciencedirect.com/science/article/pii/S0223523421007066

isobavachalcone Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

isoginkgetin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

isoprinosine Submit Updates

unknown, u., P5-145: COVID-19: Performance of oseltamivir and isoprinosine in neutrophil-to-lymphocyte ratio improvement from confirmed COVID-19 patients in Saiful Anwar General Hospital, Malang, *Respirology*, doi:10.1111/resp.14150_352

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Isoquercitrin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Zhu et al., Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E, *Virology*, doi:10.1016/j.virol.2022.04.005

Isothymol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

Jing Si Herbal Tea Submit Updates

Lu et al., Jing Si Herbal Drink as a Prospective Adjunctive Therapy for COVID-19 Treatment: Molecular evidence and mechanisms, *Pharmacological Research - Modern Chinese Medicine*, doi:10.1016/j.prmcm.2021.100024

Hsieh et al., Efficacy and Safety of Complementary Therapy With Jing Si Herbal Tea in Patients With Mild-To-Moderate COVID-19: A Prospective Cohort Study, *Frontiers in Nutrition*, doi:10.3389/fnut.2022.832321

Kabasura Kudineer Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, Journal of Ayurveda and Integrative Medicine, doi:10.1016/j.jaim.2023.100706

https://pubmed.ncbi.nlm.nih.gov/34526104/ (RCT)

kaempferol-3-o-rutinoside Submit Updates

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

Uhomoibhi et al., Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins, *Scientific African*, doi:10.1016/j.sciaf.2022.e01279

kaletra Submit Updates

Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, *Current Pharmaceutical Biotechnology*, doi:10.2174/1389201024666230302113110

Beck et al., Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.03.025

ketoprofen Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

lansoprazole Submit Updates

Kim et al., Histamine-2 Receptor Antagonists and Proton Pump Inhibitors Are Associated With Reduced Risk of SARS-CoV-2 Infection Without Comorbidities Including Diabetes, Hypertension, and Dyslipidemia: A Propensity Score-Matched Nationwide Cohort Study, *Journal of Korean Medical Science*, doi:10.3346/jkms.2023.38.e99

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

levofloxacin Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

lianhuaqingwen Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

licoleafol Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Jamshidnia et al., An Update on Promising Agents against COVID-19: Secondary Metabolites and Mechanistic Aspects, *Current Pharmaceutical Design*, doi:10.2174/1381612828666220722124826

lifitegrast Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

linsitinib Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Ionicera japonica Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

lorazepam Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

lutein Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

magnoflorine Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

Maslinic acid Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

https://www.sciencedirect.com/science/article/pii/S0223523421007066

mebendazole Submit Updates

Galal et al., The Use of Mebendazole in COVID-19 Patients: An Observational Retrospective Single Center Study, *Advances in Virology*, doi:10.1155/2022/3014686

Ahmed et al., Identification of FDA Approved Drugs with Antiviral Activity against SARS-CoV-2: A Tale from structure-based drug repurposing to host-cell mechanistic investigation, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2023.114614

meclizine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

metamizole sodium Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

methyl-rosmarinate Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

metoclopramide Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

minocycline Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102277

mitomycin C Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

Sagulkoo et al., Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing, *Biomolecules*, doi:10.3390/biom12050690

ML188 Submit Updates

Shen et al., Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study, *International Journal of Molecular Sciences*, doi:10.3390/ijms24044237

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

MLN4760 Submit Updates

Zamai, L., The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients, *Cells*, doi:10.3390/cells9071704

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

monobenzone Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

morin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

moxidectin Submit Updates

Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102277

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, *Computation*, doi:10.3390/computation10040051

Mucopolysaccharide polysulfate Submit Updates

Rodrigues Barbosa et al., Sulfated polysaccharides act as baits to interfere with the binding of the spike protein (SARS-CoV-2) to the ACE2 receptor and can be administered through food, *Journal of Functional Foods*, doi:10.1016/j.jff.2023.105532

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

N-acetylglucosamine Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

https://www.sciencedirect.com/science/article/pii/S2049080121005240

N4-hydroxycytidine Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

https://pubchem.ncbi.nlm.nih.gov/compound/197020

nabiximols Submit Updates

Tallei et al., Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, *Scientifica*, doi:10.1155/2020/6307457

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

nafcillin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

narcissin Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Narcissoside Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

niacinamide Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

https://kidney360.asnjournals.org/content/2/1/33? WT.MC_ID=TMD01&utm_campaign=Kidney360_Tre...

nicotiflorin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

nifedipine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

nigellidine Submit Updates

Miraz et al., Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study, *International Journal of Clinical Practice*, doi:10.1155/2023/9917306

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, *Chemistry & Biodiversity*, doi:10.1002/cbdv.202200655

nimbin Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

nintedanib Submit Updates

Velagacherla et al., Multi-Targeting Approach in Selection of Potential Molecule for COVID-19 Treatment, *Viruses*, doi:10.3390/v15010213

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

nitrofurantoin Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

nivolumab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

nobiletin Submit Updates

Fam et al., Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites, *Scientific Reports*, doi:10.1038/s41598-023-31764-9

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

NOQ19 Submit Updates

Kanchibhotla et al., Rate of Recovery and Symptomatic Efficacy of a Polyherbal AYUSH Formulation in the Treatment of SARS CoV-2 disease: A Single-arm trial, *Research Square*, doi:10.21203/rs.3.rs-923003/v4

Bhardwaja et al., An integrative approach to clinical recovery for COVID-19 patients using an Ayurvedic formulation: A multicentric double-blind randomized control trial., *Research Square*, doi:10.21203/rs.3.rs-1165680/v1

norquinadoline A Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

NRICM101 Submit Updates

Lai et al., How Taiwan has responded to COVID-19 and how COVID-19 has affected Taiwan, 2020-2022, *Journal of Microbiology, Immunology and Infection*, doi:10.1016/j.jmii.2023.04.001

Tseng et al., Curbing COVID-19 progression and mortality with traditional Chinese medicine among hospitalized patients with COVID-19: A propensity score-matched analysis, *Pharmacological Research*, doi:10.1016/j.phrs.2022.106412

olanzapine Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

oleic acid Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

ombitasvir Submit Updates

Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, *Communications Biology*, doi:10.1038/s42003-020-01577-x

Wang et al., Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture, *Communications Biology*, doi:10.1038/s42003-022-03101-9

omipalisib Submit Updates

Jang et al., Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2024302118

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

ondansetron Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

oridonin Submit Updates

Zhang et al., Oridonin inhibits SARS-CoV-2 replication by targeting viral proteinase and polymerase, *Virologica Sinica*, doi:10.1016/j.virs.2023.04.008

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

oroxylin A Submit Updates

Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From *Andrographis paniculata* via Bioinformatics, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221149622

https://www.sciencedirect.com/science/article/pii/S0223523421007066

orphenadrine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

OSI-632 Submit Updates

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

OSI-930 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

osimertinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

oxybutynin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

pacritinib Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

panobinostat Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009840

papyriflavonol A Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

pazopanib Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

PBI-0451 Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

pentosan polysulfate Submit Updates

Bertini et al., Pentosan polysulfate inhibits attachment and infection by SARS-CoV-2 in vitro: insights into structural requirements for binding., *bioRxiv*, doi:10.1101/2021.12.19.473359

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

perphenazine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

phenformin Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

phosphodiesterase enzyme type 5 inhibitors Submit Updates

https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7883493/https://pubmed.ncbi.nlm.nih.gov/32526061/

phyllaemblinol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

pibrentasvir Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

Wang et al., Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture, *Communications Biology*, doi:10.1038/s42003-022-03101-9

pilaralisib Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

piperacillin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

piracetam Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

piroxicam Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

pleurotus ostreatus Submit Updates

dos Reis et al., Effects of bioactive compounds from Pleurotus mushrooms on COVID-19 risk factors associated with the cardiovascular system, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.07.002

Elhusseiny et al., In vitro Anti SARS-CoV-2 Activity and Docking Analysis of Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus Edible Mushrooms, *Infection and Drug Resistance*, doi:10.2147/IDR.S362823

ponatinib Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Jade et al., Identification of FDA-approved drugs against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through computational virtual screening, *Structural Chemistry*, doi:10.1007/s11224-022-02072-1

Porphyridium sp. Submit Updates

Hlima et al., In silico evidence of antiviral activity against SARS-CoV-2 main protease of oligosaccharides from Porphyridium sp., *Science of The Total Environment*, doi:10.1016/j.scitotenv.2022.155580

https://www.preprints.org/manuscript/202004.0168/v1

pralsetinib Submit Updates

Jade et al., Identification of FDA-approved drugs against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through computational virtual screening, *Structural Chemistry*, doi:10.1007/s11224-022-02072-1

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

prasugrel Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

pravastatin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

prednisolone Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

primaquine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Anju et al., Virtual screening of quinoline derived library for SARS-COV-2 targeting viral entry and replication, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2021.1913228

progesterone Submit Updates

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

proguanil Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

ProLectin-M Submit Updates

Sigamani et al., Galectin approach to lower covid transmission - Drug Development for clinical use, *medRxiv*, doi:10.1101/2022.11.09.22282151

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

protirelin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

PTC299 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

pterostilbene Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

https://www.sciencedirect.com/science/article/pii/S0223523421007066

punicalin Submit Updates

Alexova et al., Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L., *Molecules*, doi:10.3390/molecules28093772

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

Pyramax, Pyronaridine-Artesunate Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

https://www.koreabiomed.com/news/articleView.html?idxno=11556

pyridoxine Submit Updates

Bello et al., Innovative, rapid, high-throughput method for drug repurposing in a pandemic—A case study of SARS-CoV-2 and COVID-19, *Frontiers in Pharmacology*, doi:10.3389/fphar.2023.1130828

Bello et al., Erythromycin, Retapamulin, Pyridoxine, Folic acid and Ivermectin dose dependently inhibit cytopathic effect, Papain-like Protease and M^{PRO}of SARS-CoV-2, *bioRxiv*, doi:10.1101/2022.12.28.522082

pyrimidine Submit Updates

Schultz et al., Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2, *Nature*, doi:10.1038/s41586-022-04482-x

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

quinadoline B Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

ramelteon Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Cecon et al., Melatonin drugs inhibit SARS-CoV-2 entry into the brain and virus-induced damage of cerebral small vessels, bioRxiv, doi:10.1101/2021.12.30.474561

ravulizumab, ALXN1210 Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

regorafenib Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

reserpine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

retapamulin Submit Updates

Bello et al., Innovative, rapid, high-throughput method for drug repurposing in a pandemic—A case study of SARS-CoV-2 and COVID-19, *Frontiers in Pharmacology*, doi:10.3389/fphar.2023.1130828

Bello et al., Erythromycin, Retapamulin, Pyridoxine, Folic acid and Ivermectin dose dependently inhibit cytopathic effect, Papain-like Protease and M^{PRO}of SARS-CoV-2, *bioRxiv*, doi:10.1101/2022.12.28.522082

Rheum palmatum Submit Updates

Khorshiddoust et al., Efficacy of a multiple-indication antiviral herbal drug (Saliravira®) for COVID-19 outpatients: A pre-clinical and randomized clinical trial study, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.112729

https://www.sciencedirect.com/science/article/pii/S2213422021000688

rifabutin Submit Updates

https://c19early.org/treatments.html 217/571

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Gangadharan et al., Repurposing of Potential Antiviral Drugs against RNA-dependent RNA Polymerase of SARS-CoV-2 by Computational Approach, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.09.007

rivaroxaban Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

rofecoxib Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

rolapitant Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

rosmarinic acid Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008 https://link.springer.com/article/10.1007/s00894-023-05569-6

SAB-185 Submit Updates

Taiwo et al., Phase 2 safety and antiviral activity of SAB-185, a novel polyclonal antibody therapy for non-hospitalized adults with COVID-19, *The Journal of Infectious Diseases*, doi:10.1093/infdis/jiad013

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

sabizabulin Submit Updates

Barnette et al., Oral Sabizabulin for High-Risk, Hospitalized Adults with Covid-19: Interim Analysis, *NEJM Evidence*, doi:10.1056/EVIDoa2200145

https://www.trialsitenews.com/p/trialsitenews/safety-monitoring-board-stops-clinical-trial...

salvianolic acid Submit Updates

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

https://www.sciencedirect.com/science/article/pii/S0223523421007066

saracatinib Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

saridegib Submit Updates

Yin et al., Computational Screening of Repurposed Drugs Targeting Sars-Cov-2 Main Protease By Molecular Docking, *Sudan Journal of Medical Sciences*, doi:10.18502/sjms.v17i3.12125

http://journal.oiu.edu.sd/index.php/FMHS/article/view/2688

scedapin C Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

sciadopitysin Submit Updates

Zhang et al., Discovery and characterization of the covalent SARS-CoV-2 3CLpro inhibitors from Ginkgo biloba extract via integrating chemoproteomic and biochemical approaches, *Phytomedicine*, doi:10.1016/j.phymed.2023.154796

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

scutellaria baicalensis Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

sesaminol Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.sciencedirect.com/science/article/pii/S0223523421007066

sesamolin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.sciencedirect.com/science/article/pii/S0223523421007066

siltuximab Submit Updates

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

silvestrol Submit Updates

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

Silymarin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

sinapic acid Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Sinigrin Submit Updates

Al-Sehemi et al., In Silico Exploration of Binding Potentials of Anti SARS-CoV-1 Phytochemicals against Main Protease of SARS-CoV-2, Journal of Saudi Chemical Society, doi:10.1016/j.jscs.2022.101453

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

sitosterol Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

https://www.jcchems.com/index.php/JCCHEMS/article/download/1802/561

SNS-314 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

solanine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.sciencedirect.com/science/article/pii/S0223523421007066

somniferine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

Spirulina Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

https://pubmed.ncbi.nlm.nih.gov/34375189/ (In Vitro)

squalene Submit Updates

Zeyad Bazbouz et al., Plant phytochemicals as potential candidates for treating post-COVID-19 lung infections, *Phytotherapy Research*, doi:10.1002/ptr.7650

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

staurosporine Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

sulfasalazine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

sulindac Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

sunitinib Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

tadalafil Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

tamsulosin Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

tanshinone-I Submit Updates

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/

Tanshinones Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

https://www.sciencedirect.com/science/article/pii/S2213422021000688

teicoplanin Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

telaprevir Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

Ma et al., Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105419

teniposide Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

testosterone Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

thapsigargin Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

thymalfasin Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

tideglusib Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

tingenone Submit Updates

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, Journal of Integrative Medicine, doi:10.1016/j.joim.2022.08.001

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

tinocordiside Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

tinzaparin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

tirofiban Submit Updates

Sameni et al., Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study, *3 Biotech*, doi:10.1007/s13205-023-03518-x

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

tizanidine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tolcapone Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

Tollovir Submit Updates

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

https://trialsitenews.com/todos-medicals-antiviral-treatment-tollovir-reduces-covid-19-mor...

trichostatin A Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

TriSb92 Submit Updates

Mäkelä et al., Intranasal trimeric sherpabody inhibits SARS-CoV-2 including recent immunoevasive Omicron subvariants, *Nature Communications*, doi:10.1038/s41467-023-37290-6

https://www.biorxiv.org/content/10.1101/2021.12.28.474326v1

TrisS HS Submit Updates

Rodrigues Barbosa et al., Sulfated polysaccharides act as baits to interfere with the binding of the spike protein (SARS-CoV-2) to the ACE2 receptor and can be administered through food, *Journal of Functional Foods*, doi:10.1016/j.jff.2023.105532

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

troglitazone Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

tunicamycin Submit Updates

Dawood, A., Determination of binding affinity of tunicamycin with SARS-CoV-2 proteins: Proteinase, protease, nsp2, nsp9, ORF3a, ORF7a, ORF8, ORF9b, envelope and RBD of spike glycoprotein, *Vacunas*, doi:10.1016/j.vacun.2022.10.006

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

valdecoxib Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

valsartan Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

vancomycin Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

VBY-825, Submit Updates

Riva et al., A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals, *bioRxiv*, doi:10.1101/2020.04.16.044016

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

vincristine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

virgin coconut oil Submit Updates

Barberis et al., Understanding protection from SARS-CoV-2 using metabolomics, *Scientific Reports*, doi:10.1038/s41598-021-93260-2

Angeles-Agdeppa et al., Virgin coconut oil is effective in lowering C-reactive protein levels among suspect and probable cases of COVID-19, *Journal of Functional Foods*, doi:10.1016/j.jff.2021.104557

vismodegib Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

vitexin Submit Updates

Fatriansyah et al., Molecular Dynamics Simulation of Ligands from Anredera cordifolia (Binahong) to the Main Protease (Mpro) of SARS-CoV-2, *Journal of Tropical Medicine*, doi:10.1155/2022/1178228

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

vorinostat Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

withanolide R Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

withanoside IV Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, *Chemistry & Biodiversity*, doi:10.1002/cbdv.202200655

XAV-19 Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Suet-May et al., COVID-19: How Effective Are the Repurposed Drugs and Novel Agents in Treating the Infection?, *Sudan Journal of Medical Sciences*, doi:10.18502/sjms.v17i4.12550

Z-FA-FMK Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

z-guggulsterone Submit Updates

Brevini et al., FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2, *Nature*, doi:10.1038/s41586-022-05594-0

Li et al., FXR inhibition: an innovative prophylactic strategy against SARS-CoV-2 infection, *Signal Transduction and Targeted Therapy*, doi:10.1038/s41392-023-01390-y

zafırlukast Submit Updates

Naz et al., Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach, *Molecules*, doi:10.3390/molecules28072989

Lazniewski et al., Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations, *Methods*, doi:10.1016/j.ymeth.2022.02.004

zanamivir Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

zapnometinib Submit Updates

Schreiber et al., The MEK1/2 Inhibitor ATR-002 (Zapnometinib) Synergistically Potentiates the Antiviral Effect of Direct-Acting Anti-SARS-CoV-2 Drugs, *Pharmaceutics*, doi:10.3390/pharmaceutics14091776

Ludwig et al., MEK inhibitors as novel host-targeted antivirals with a dual-benefit mode of action against hyperinflammatory respiratory viral diseases, *Current Opinion in Virology*, doi:10.1016/j.coviro.2023.101304

Zataria multiflora Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Zeyad Bazbouz et al., Plant phytochemicals as potential candidates for treating post-COVID-19 lung infections, *Phytotherapy Research*, doi:10.1002/ptr.7650

zinc pyrithione Submit Updates

Kladnik et al., Zinc pyrithione is a potent inhibitor of PLPro and cathepsin L enzymes with ex vivo inhibition of SARS-CoV-2 entry and replication, *bioRxiv*, doi:10.1101/2022.03.03.482819

Kladnik et al., Zinc pyrithione is a potent inhibitor of PL^{Pro} and cathepsin L enzymes with *ex vivo* inhibition of SARS-CoV-2 entry and replication, *Journal of Enzyme Inhibition and Medicinal Chemistry*, doi:10.1080/14756366.2022.2108417

ZINC03977803 Submit Updates

Askari et al., Digging for the Discovery of SARS-CoV-2 nsp12 Inhibitors: A Pharmacophore-Based and Molecular Dynamics Simulation Study, Research Square, doi:10.21203/rs.3.rs-907714/v1

Askari et al., Digging for the discovery of SARS-CoV-2 nsp12 inhibitors: a pharmacophore-based and molecular dynamics simulation study, Future Virology, doi:10.2217/fvl-2022-0054

zingiber officinale Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

ziprasidone Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Δ9-tetrahydrocannabinol Submit Updates

Suryavanshi et al., Cannabinoids Alleviate the LPS-Induced Cytokine Storm via Attenuating NLRP3 Inflammasome Signaling and TYK2-Mediated STAT3 Signaling Pathways In Vitro, *Cells*, doi:10.3390/cells11091391

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

2-monolinolenin Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

(+)-ovatodiolide Submit Updates

Yu et al., Identification and Semisynthesis of (-)-Anisomelic Acid as Oral Agent against SARS-CoV-2 in Mice, National Science Review, doi:10.1093/nsr/nwac176

https://c19early.org/treatments.html

(+)-usniacin Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

(-)-anisomelic acid Submit Updates

Yu et al., Identification and Semisynthesis of (-)-Anisomelic Acid as Oral Agent against SARS-CoV-2 in Mice, National Science Review, doi:10.1093/nsr/nwac176

(-)-epicatechin-3-0-gallate Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

(-)-epigallocatechin Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

(E)-β-farnesene Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

(E,E) farnesol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

(S)-crizotinib Submit Updates

Kumar et al., Identification of potential COVID-19 treatment compounds which inhibit SARS Cov2 prototypic, Delta and Omicron variant infection, *Virology*, doi:10.1016/j.virol.2022.05.004

0-Hydroxyusambarensine Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

1,3,4-oxadiazole disulfide Submit Updates

https://c19early.org/treatments.html

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

1-octanol Submit Updates

Zhao et al., Identification of Potential Lead Compounds Targeting Novel Druggable Cavity of SARS-CoV-2 Spike Trimer by Molecular Dynamics Simulations, *International Journal of Molecular Sciences*, doi:10.3390/ijms24076281

10'-hydroxyusambaresine Submit Updates

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

12-deoxy witha-stramonolide Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

12-quinoxaline derivative Submit Updates

Ghufran et al., In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations, *Bioengineering*, doi:10.3390/bioengineering10010100

12α-epi-milletosin Submit Updates

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

1363-0007 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

19n01 Submit Updates

García-Vega et al., 19n01, a broadly neutralizing antibody against Omicron BA.1, BA.2, BA.4/5, and other SARS-CoV-2 variants of concern, *iScience*, doi:10.1016/j.isci.2023.106562

2'-o-ribose methyltransferase Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

2,11-didemethoxy-vepridimerine A Submit Updates

Zohora et al., Isolation and In Silico Prediction of Potential Drug-like Compounds with a New Dimeric Prenylated Quinolone Alkaloid from Zanthoxylum rhetsa (Roxb.) Root Extracts Targeted against SARS-CoV-2 (Mpro), *Molecules*, doi:10.3390/molecules27238191

2,3-dihydro withaferin A Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

2,3-Dihydrowithaferin A Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

2-5 oligoadenylates Submit Updates

Bruchelt et al., Proposal for the use of an inhalation drug containing 2-5 oligoadenylates for treatment of COVID-19, *Medical Hypotheses*, doi:10.1016/j.mehy.2022.110969

2-chlorodeoxyadenosine triphosphate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

2-deoxy-2-fluoro-D-glucose Submit Updates

Kapoor et al., In silico evaluation of potential intervention against SARS-CoV-2 RNA-dependent RNA polymerase, *Physics and Chemistry of the Earth, Parts A/B/C*, doi:10.1016/j.pce.2022.103350

2-hydroxylgenistein Submit Updates

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

2019-nCoV-HR2P Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

22-hydroxyhopan-3-one Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

22-hydroxyhopan3-one Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

24-dimethylene cycloartenol Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

27-deoxy withaferin A Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

27-deoxy-14-hvdroxvl withaferin A Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

27-deoxy-14-hydroxy withaferin A Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

27-hydroxy withanolide B Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

27-hydroxy withanone Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

3'-(3-methyl-2-butenyl)-4'-O-β-d-glucopyranosyl-4,2'-dihydroxychalcone Submit Updates

Khanal et al., Computational investigation of benzalacetophenone derivatives against SARS-CoV-2 as potential multi-target bioactive compounds, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105668

3,3'-diindolylmethane Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

3,4,5-Trimethoxyphenol Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

3,4-dicaffeoylquinic acid Submit Updates

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2023.106785

3-0-methylquercetin Submit Updates

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

3-acetylcoumarin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and

Medicine, doi:10.1016/j.compbiomed.2022.106029

3-Feruloylquinic acid Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

3-isotheaflavin-3 gallate Submit Updates

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

3-nitropropionic acid Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

3-O-methylquercetin Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

$3-O-\beta-D-glucoside$ Submit Updates

https://www.mdpi.com/2304-8158/10/9/2084/htm

4'-fluorouridine Submit Updates

Lieber et al., 4'-Fluorouridine Is a Broad-Spectrum Orally Available First-Line Antiviral That May Improve Pandemic Preparedness, *DNA and Cell Biology*, doi:10.1089/dna.2022.0312

4'-methoxyresveratrol Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

4'-0-methylbavachalcone Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

4-hydroxy-2-nonenal Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

4-hydroxycordoin Submit Updates

Khanal et al., Computational investigation of benzalacetophenone derivatives against SARS-CoV-2 as potential multi-target bioactive compounds, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105668

4-hydroxyisolonchocarpin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

5,7,3',4'-tetrahydroxy-2-(3,3-dimethylallyl) isoflavone Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

5,7-dimethoxyflavanone-4'-O-β-d-glucopyranoside Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

5,7-dimethoxyflavone Submit Updates

Dutta et al., A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis, *Heliyon*, doi:10.1016/j.heliyon.2023.e14386

5-chloro-omega-hydroxy-1-O-methylemodin Submit Updates

Byadi et al., In silico discovery of novel inhibitors from Northern African natural products database against main protease (Mpro) of SARS-CoV-2, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2040594

5109870 Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

5155877 Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

55A8 Submit Updates

Zhang et al., A first-in-human clinical study of an intranasal spray of a cocktail containing two synergetic antibodies neutralizes Omicron BA.4/5, medRxiv, doi:10.1101/2023.03.17.23287398

58G6 Submit Updates

Zhang et al., A first-in-human clinical study of an intranasal spray of a cocktail containing two synergetic antibodies neutralizes Omicron BA.4/5, *medRxiv*, doi:10.1101/2023.03.17.23287398

6-azauridine Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

6-Deaminosinefungin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

6-paradol Submit Updates

Abdallah et al., Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics, *Plants*, doi:10.3390/plants11151914

7,8-dimethylherbacetin-3-O-αL-rhamnoside Submit Updates

https://niper.gov.in/crips/Vol16No4_Page79_90.pdf

7-hydroxystaurosporine Submit Updates

Serra et al., Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab507

76clAbs Submit Updates

https://www.biorxiv.org/content/10.1101/2021.06.04.447066v2

8-chloroadenosine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

8004-8704 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

8008-2501 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

80_wt Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

80R_10 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

80R_18 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

80R_19 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

80R_21 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

80R_22 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, *Heliyon*, doi:10.1016/j.heliyon.2023.e15032

80R_23 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

80R_5 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, *Heliyon*, doi:10.1016/j.heliyon.2023.e15032

80R_6 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

80R_7 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

80R_8 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

8G3 Submit Updates

Ma et al., Efficient Neutralization of SARS-CoV-2 Omicron and Other VOCs by a Broad Spectrum Antibody 8G3, *bioRxiv*, doi:10.1101/2022.02.25.482049

[SARSHRC-PEG4]2-chol Submit Updates

de Vries et al., Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets, *Science*, doi:10.1126/science.abf4896

A-443654 Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

A-485 Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

A-ketoamide-11r Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

a-Terpeneol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

A. indica Submit Updates

Houeze et al., Comparison study of Beninese and Chinese herbal medicines in treating COVID-19, *Journal of Ethnopharmacology*, doi:10.1016/j.jep.2023.116172

A3659 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

A3777 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

A6-001 Submit Updates

Sim et al., Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition, *Cell Reports*, doi:10.1016/j.celrep.2022.111117

A8G6 Submit Updates

Li et al., The real-world effectiveness of an intranasal spray A8G6 antibody cocktail in the post-exposure prophylaxis of COVID-19, *medRxiv*, doi:10.1101/2023.03.14.23287255

abivertinib Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

abivertinib maleate Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

abrisapogenol G Submit Updates

Uhomoibhi et al., Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins, *Scientific African*, doi:10.1016/j.sciaf.2022.e01279

abrusoside A Submit Updates

Uhomoibhi et al., Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins, *Scientific African*, doi:10.1016/j.sciaf.2022.e01279

ABT450 Submit Updates

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

ABX464 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

abyssinone II Submit Updates

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

ac-430 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ACE-MAP Submit Updates

Britton et al., Engineered Multivalent Self-Assembled Binder Protein Against SARS-CoV-2 RBD, Biochemical Engineering Journal, doi:10.1016/j.bej.2022.108596

ACE2 (24-36) Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ACE2 (27-42) Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ACE2 (352-359) Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ACE2 (37-42) Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ACE2 (37-45) Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ACE2 (79-85) Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ACE2-based immunoadhesins Submit Updates

Cohen-Dvashi et al., Anti-SARS-CoV-2 immunoadhesin remains effective against Omicron and other emerging variants of concern, *iScience*, doi:10.1016/j.isci.2022.105193

ACE2-M Submit Updates

Zekri et al., Novel ACE2 fusion protein with adapting activity against SARS-CoV-2 variants in vitro, Frontiers in Immunology, doi:10.3389/fimmu.2023.1112505

ACE2.1mb Submit Updates

Tada et al., Prophylaxis and Treatment of SARS-CoV-2 infection by an ACE2 Receptor Decoy, *iScience*, doi:10.1016/j.isci.2023.106092

aceneuramic acid Submit Updates

Li et al., Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.08.016

acetaldehyde Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

acetophenazine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

acetylsalicylic acid Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

aclantate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

aclarubicin Submit Updates

Wang et al., Anthracyclines inhibit SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.01.10.523518

acotiamide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

acrocinonide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

acteoside Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

adalimumab Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, Journal of Personalized Medicine, doi:10.3390/jpm13040664

adamumab Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

adathodai kudineer Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

adathodai manappagu Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

AdCOVID Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

adefovir Submit Updates

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

adefovir diphosphate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ademetionine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

adenosine monophosphate Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

adenosine triphosphate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Adhatoda vasica Submit Updates

Zeyad Bazbouz et al., Plant phytochemicals as potential candidates for treating post-COVID-19 lung infections, *Phytotherapy Research*, doi:10.1002/ptr.7650

adiphenine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and

Medicine, doi:10.1016/j.compbiomed.2022.106029

aee-788 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

afabicin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

aflatoxin-b1 Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

AG-013608 Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

AG-14361 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

AG7404 Submit Updates

Fàbrega-Ferrer et al., Structure and inhibition of SARS-CoV-1 and SARS-CoV-2 main proteases by oral antiviral compound AG7404, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105458

agaricus bisporus Submit Updates

Elhusseiny et al., In vitro Anti SARS-CoV-2 Activity and Docking Analysis of Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus Edible Mushrooms, *Infection and Drug Resistance*, doi:10.2147/IDR.S362823

Aggrenox Submit Updates

Singla et al., A randomized controlled trial to evaluate outcomes with Aggrenox in patients with SARS-CoV-2 infection, *PLOS ONE*, doi:10.1371/journal.pone.0274243

agomelatine Submit Updates

Cecon et al., Melatonin drugs inhibit SARS-CoV-2 entry into the brain and virus-induced damage of cerebral small vessels, bioRxiv, doi:10.1101/2021.12.30.474561

AGP-14 Submit Updates

Veerasamy et al., Molecular docking unveils the potential of andrographolide derivatives against COVID-19: an in silico approach, *Journal of Genetic Engineering and Biotechnology*, doi:10.1186/s43141-022-00339-y

AGP-15 Submit Updates

Veerasamy et al., Molecular docking unveils the potential of andrographolide derivatives against COVID-19: an in silico approach, *Journal of Genetic Engineering and Biotechnology*, doi:10.1186/s43141-022-00339-y

AHB1 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

AHB2 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

AHCC Submit Updates

Singh et al., Oral Supplementation with AHCC®, a Standardized Extract of Cultured Lentinula edodes Mycelia, Enhances Host Resistance against SARS-CoV-2 Infection, *Pathogens*, doi:10.3390/pathogens12040554

Ahomo-3a-oxa-5beta-olean-12-en-3-one-28-oic acid Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

AICA-ribonucleotide Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

aimaline Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

ajugol Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Ajwain Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

al-pelisib Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Alanine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

alantolactone Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

albuterol Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

Alchemilla viridiflora Rothm Submit Updates

Suručić et al., In Silico and In Vitro Studies of Alchemilla viridiflora Rothm—Polyphenols' Potential for Inhibition of SARS-CoV-2 Internalization, *Molecules*, doi:10.3390/molecules27165174

ALE058 Submit Updates

Künzi et al., Transport of Designed Ankyrin Repeat Proteins through reconstituted human bronchial epithelia and protection against SARS-CoV-2, *Scientific Reports*, doi:10.1038/s41598-023-32269-1

alestramustine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

alfuzosin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

alitretinoin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Alkylated chalcones Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

allium sativum L Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

allopurinol Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

alloyohimbine gummadiol Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

allyl disulfide Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

allyl disulphide Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

allyl trisulfide Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

allyl trisulphide Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

aloe Submit Updates

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

aloe vera Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

aloeresin D Submit Updates

Hicks et al., Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors, *Bioorganic & Medicinal Chemistry Letters*, doi:10.1016/j.bmcl.2022.128732

aloin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

alovudine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

alpha 1-antitrypsin Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

alpha-L-arabinopyranose Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Alpha-Mangostin Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

alpha-tocopherol Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

alpha-tocopheryolquinone Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

alphaspinasterol Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

alpinia galanga Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

alprostadil Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

alsterpaullone Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

alteplase Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

alvespimycin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

AM1241 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

amantadine HCl Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

amaranth Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

amarogentin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

AMB18482225 Submit Updates

http://ao.um5.ac.ma/xmlui/handle/123456789/20002

AMB1953578 Submit Updates

http://ao.um5.ac.ma/xmlui/handle/123456789/20002

AMB29566134 Submit Updates

http://ao.um5.ac.ma/xmlui/handle/123456789/20002

ambomycin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ambroxol HCl Submit Updates

Clair et al., High-throughput SARS-CoV-2 antiviral testing method using the Celigo Image Cytometer, *Research Square*, doi:10.21203/rs.3.rs-2846848/v1

AMG-487 Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

amikacin sulphate Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

amla Submit Updates

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

amlexanox Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

amlodipin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

amodiaquine Submit Updates

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009840

amodiaquine dihydrochloride Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

amoxapine Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

amphotericin B Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, *Computation*, doi:10.3390/computation10040051

ampicillin Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

ampyrone Submit Updates

Babu et al., Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101038

amukkura churnam Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

AMY-101 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Amygdalin Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

amylase Submit Updates

Yazawa et al., Evaluation of SARS-CoV-2 isolation in cell culture from nasal/nasopharyngeal swabs or saliva specimens of patients with COVID-19, *Research Square*, doi:10.21203/rs.3.rs-2676422/v1

amyrin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

anabsinthin Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

anacardic acid Submit Updates

Hicks et al., Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors, *Bioorganic & Medicinal Chemistry Letters*, doi:10.1016/j.bmcl.2022.128732

anaferine Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

anastrozole Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

anatibant Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

andrograpanin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

andrographidine C Submit Updates

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

andrographis paniculate Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

andrographiside Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

andrographoiside Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Andrographolides Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

angelica sineusis Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

angiotensin (1-7) Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

angiotensin II Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Anhydrosafflor yellow B Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

anidulafungin Submit Updates

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

Anise Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Anisodamine Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

antazoline Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

anthocyanins Submit Updates

Dutta et al., A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis, *Heliyon*, doi:10.1016/j.heliyon.2023.e14386

anthrabenzoxocinone Submit Updates

Sayed et al., Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Microorganisms*, doi:10.3390/microorganisms8070970

anthraquinone-2-carboxylic Acid Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

anthraquinones Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

antroquinonol Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

AP5 Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

apiin Submit Updates

Adem et al., Multidimensional in silico strategy for identification of natural polyphenols-based SARS-CoV-2 main protease (Mpro) inhibitors to unveil a hope against COVID-19, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105452

apilimod dimesylate Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

APL-9 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

apratoxin \$4 Submit Updates

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

Aptamer-1 Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

Aptamer-2 Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

aptivus Submit Updates

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, Clinical Pharmacology & Therapeutics, doi:10.1002/cpt.1909

APY0201 Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

AR-A014418 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

arachidonic acid Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

ARD-61 Submit Updates

https://www.pnas.org/content/118/1/e2021450118 (In Vitro)

argiprestocin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

ARINA-1 Submit Updates

Campos-Gomez et al., Mucociliary Clearance Augmenting Drugs Block SARS-Cov-2 Replication in Human Airway Epithelial Cells, *bioRxiv*, doi:10.1101/2023.01.30.526308

aristeromycin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Arjunglucoside-I Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

ARN25592 Submit Updates

Brindani et al., Design, synthesis, docking, and biochemical characterization of non-nucleoside SARS-CoV-2 RdRp inhibitors, *Bioorganic & Medicinal Chemistry*, doi:10.1016/j.bmc.2023.117179

Arq Ajīb Submit Updates

https://www.degruyter.com/document/doi/10.1515/jcim-2021-0241/html (In Silico)

ARRY-797 Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

arteannuin Submit Updates

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

arteether Submit Updates

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

artemether Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

artesunate/pyronaridine Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

arvoside Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

arylazothiazolimines Submit Updates

Abu-Melha et al., Potential COVID-19 Drug Candidates Based on Diazinyl-Thiazol-Imine Moieties: Synthesis and Greener Pastures Biological Study, *Molecules*, doi:10.3390/molecules27020488

ASC09 Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

asc09f Submit Updates

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

ASC10 Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

ASCO9 F Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

ascorbyl palmitrate Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

asp-5878 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

asparagamine A Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

asparagine Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

astemizole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

asteriscunolide D Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

astersaponin | Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

Astragaloside IV Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

Astragalus Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

asulacrine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

AT-100 Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

at-9283 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ataciguat Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ataluren Submit Updates

Su et al., DTSEA: A network-based drug target set enrichment analysis method for drug repurposing against COVID-19, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2023.106969

atb-346 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ATN-161 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Atp1C Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

Atractylenolide III Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

atrinositol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ATV041 Submit Updates

Zhou et al., Nonsteroidal anti-inflammatory drugs (NSAIDs) and nucleotide analog GS-441524 conjugates with potent in vivo efficacy against coronaviruses, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115113

auranofin Submit Updates

Laplantine et al., The FDA-approved drug Auranofin has a dual inhibitory effect on SARS-CoV-2 entry and NF-κB signaling, iScience, doi:10.1016/j.isci.2022.105066

avanbulin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

avicularin Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

avintadil Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Aviptadil Submit Updates

Mukherjee et al., Anticipated pharmacological role of Aviptadil on COVID-19, *Environmental Science and Pollution Research*, doi:10.1007/s11356-021-17824-5

AVM0703 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

avoralstat Submit Updates

Wagoner et al., Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2, *Microbiology Spectrum*, doi:10.1128/spectrum.03331-22

avrainvillamide analog-3 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

axatilimab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

axitinib Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

AYA2012004_L Submit Updates

Ayass et al., High-Affinity Neutralizing DNA Aptamers against SARS-CoV-2 Spike Protein Variants, *COVID*, doi:10.3390/covid3040038

AYA2012004_L-M1 Submit Updates

Ayass et al., High-Affinity Neutralizing DNA Aptamers against SARS-CoV-2 Spike Protein Variants, *COVID*, doi:10.3390/covid3040038

ayanin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

Ayurcov Submit Updates

Sankhe et al., A Randomized, Controlled, Blinded, Parallel Group, Clinical Trial to study the role of Ayurcov (AyurCoro3), one day regimen as an adjuvant therapy for COVID-19 disease management, at dedicated Covid Hospital (DCH) in India., Complementary Therapies in Medicine, doi:10.1016/j.ctim.2022.102824

AYUSH 64 Submit Updates

Chopra et al., Co-administration of AYUSH 64 as an adjunct to standard of care in mild and moderate COVID-19: A randomized, controlled, multicentric clinical trial, *PLOS ONE*, doi:10.1371/journal.pone.0282688

aza-diradionolide Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool.

azacitidine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

azadirachtani Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

azadirachtin B Submit Updates

Das et al., Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: an insilico approach, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102534

azadirachtin-H Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

azadirachtin-l Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

azadirachtin-Q Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

azadiracta indica Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

Azaindole 1 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

azaleatin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

azathioprine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

azd-8055 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

AZD1656 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

azd3514 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

AZD8055 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

azoximer bromide Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

azudine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

b-Carophyllene Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

B-eudesmol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

B38 Submit Updates

Hernandez et al., Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus, Heliyon, doi:10.1016/j.heliyon.2023.e15032

bacampicillin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

bafetinib Submit Updates

Serra et al., Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab507

bafilomycin A1 Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

balicatib Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

balsalazide Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

balsaminone A Submit Updates

Kar et al., Identification of phytocompounds as newer antiviral drugs against COVID-19 through molecular docking and simulation based study, *Journal of Molecular Graphics and Modelling*, doi:10.1016/j.jmgm.2022.108192

bamlanivimab Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

bananin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

barasertib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

bardoxolone Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

barettin Submit Updates

Virtucio et al., Virtual Screening for SARS-COV-2 Entry Inhibitors by Dual Targeting of TMPRSS2 and CTSL, *Pharmacophore*, doi:10.51847/6IMWqjwVPa

barmastine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

batatasin | Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

bavachin Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

bavachinin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

BAY-2402234 Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

bazedoxifene Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

BB-Cl-amidine Submit Updates

Pasquero et al., Novel antiviral activity of PAD inhibitors against human beta-coronaviruses HCoV-0C43 and SARS-CoV-2, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105278

BD750 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

beauvericin Submit Updates

Al Khoury et al., In silico evidence of beauvericin antiviral activity against SARS-CoV-2, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2021.105171

beclabuvir Submit Updates

Talluri, S., Molecular Docking and Virtual Screening Based Prediction of Drugs for COVID-19, *Combinatorial Chemistry & High Throughput Screening*, doi:10.2174/1386207323666200814132149

beclometasone Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

beclomethasone dipropionate Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

Belachinal Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

belinostat Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

beloranib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

bemiparine Submit Updates

Monserrat Villatoro et al., A Case-Control of Patients with COVID-19 to Explore the Association of Previous Hospitalisation Use of Medication on the Mortality of COVID-19 Disease: A Propensity Score Matching Analysis, *Pharmaceuticals*, doi:10.3390/ph15010078

bemnifosbuvir hemisulfate Submit Updates

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

benfotiamine Submit Updates

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

benperidol Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

benserazide Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

benserazide hydrochlorideseradie Submit Updates

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

bentamapimod Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

bentiamine Submit Updates

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

benzathine benzylpenicillin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

benzathine penicillin Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

benznidazole Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

benzo(a)pyrene Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Benzoic acid Submit Updates

https://www.mdpi.com/2304-8158/10/9/2084/htm

Benzoin Siam resinoid Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

Benzoin Sumatra resinoid Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

benzoylgedunin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

benzpiperylon Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

benzyl (2-oxopropyl) carbamate Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

benzylpenicilloyl G Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

bepotastine Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

bepridil Submit Updates

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

berchemol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

berenil Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

berzosertib Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Beta Carotene Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

beta-escin Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, *Computation*, doi:10.3390/computation10040051

beta-estradiol Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

betaxanthin Submit Updates

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

betulin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

betulinic acid Submit Updates

https://link.springer.com/article/10.1007/s00894-023-05569-6

betulonal Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

bezafibrate Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

bictegravir Submit Updates

Oner et al., Investigation of antiviral substances in Covid 19 by Molecular Docking: In Silico Study, *African Health Sciences*, doi:10.4314/ahs.v23i1.4

Bicyclogermacrene Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Biflavone Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

bilberry Submit Updates

Karaoğlu et al., Chewable tablet with herbal extracts and propolis arrests Wuhan and Omicron variants of SARS-CoV-2 virus, *Journal of Functional Foods*, doi:10.1016/j.jff.2023.105544

bilobetin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

bimakalim Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

binimetinib Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

BIO-acetoxime Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

biochanin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

biochanin A Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

bipenamol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

biperiden Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Bis-demethoxycurcumin Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

bis-thiadiazoles Submit Updates

Said et al., Synthesis and Greener Pastures Biological Study of Bis-thiadiazoles as Potential Covid-19 Drug Candidates, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2022.104101

bisacodyl Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

bisantrene Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

bisdemethoxycurcumin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

bisfenazone Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

bisindolylmaleimide IV Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

bismahanimboline Submit Updates

https://niper.gov.in/crips/Vol16No4_Page79_90.pdf

Bismuth Subsalicylate Submit Updates

Beth Yacyshyn et al., Feasibility study of Bismuth Subsalicylate (BSS) as an addition to standard of care for COVID-19 therapy, Current Therapeutic Research, doi:10.1016/j.curtheres.2022.100667

bisphenol-a Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

BIX-01294 Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

black bayberry Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

black cumin Submit Updates

Bijelić et al., Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, *Antibiotics*, doi:10.3390/antibiotics11111614

Black Seed Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

blonanserin Submit Updates

Jang et al., Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2024302118

Blue cypress EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

blue light Submit Updates

Kocher et al., Visible blue light inactivates SARS-CoV-2 variants and inhibits Delta replication in differentiated human airway epithelia, *bioRxiv*, doi:10.1101/2022.01.25.477616

bms-754807 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

bms-911543 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

boeravinone H Submit Updates

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

boesenbergia rotunda Submit Updates

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

bomidin Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Bonducellpin D Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

boron citrate Submit Updates

Akbari et al., Possible therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19: A pilot randomized, double-blind, clinical trial, *Journal of Trace Elements in Medicine and Biology*, doi:10.1016/j.jtemb.2022.126945

bortezomib Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

BPI-002 Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

breathing exercises Submit Updates

Kader et al., Effects of short-term breathing exercises on respiratory recovery in patients with COVID-19: a quasi-experimental study, *BMC Sports Science, Medicine and Rehabilitation*, doi:10.1186/s13102-022-00451-z

brepocitinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International*

Journal of Molecular Sciences, doi:10.3390/ijms231911009

brexanolone Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

BRII-196 Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

BRII-196/BRII-198 Submit Updates

https://trialsitenews.com/brii-bio-initiates-submission-of-emergency-use-authorization-fil...

BRII-198 Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, Journal of Clinical Medicine, doi:10.3390/jcm12082893

Broussochalcone A Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Broussochalcone B Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

bruceantin Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

brusatol Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

brutinib Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

bucladesine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

buffexamac Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, *Medical Research Archives*, doi:10.18103/mra.v11i2.3595

bufotaline Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

bupleurum Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

bupropion Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

buspirone Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

butadiazamide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International*

Journal of Molecular Sciences, doi:10.3390/ijms231911009

buthionine-sulfoximine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

butoconazole Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

butorfanol Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

BX-795 Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

C-21 Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

C-Methyl flavone Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

C. aurantiifolia Submit Updates

Houeze et al., Comparison study of Beninese and Chinese herbal medicines in treating COVID-19, *Journal of Ethnopharmacology*, doi:10.1016/j.jep.2023.116172

C073-3515 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

C073-3679 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

C073-4726 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

C073-6209 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

C135-LS/C144-LS Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

C16 Submit Updates

Jain et al., RNASeq profiling of COVID19-infected patients identified an EIF2AK2 inhibitor as a potent SARS-CoV-2 antiviral, Clinical and Translational Medicine, doi:10.1002/ctm2.1098

C565-0200 Submit Updates

Shi et al., Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA, *Journal of Molecular Modeling*, doi:10.1007/s00894-023-05534-3

C60 fullerene Submit Updates

https://www.nature.com/articles/s41598-021-97268-6

C646 Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

CAA-0225 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

cabazitaxel Submit Updates

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

Cabralealactone Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

Cabreuva red EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

cacticin Submit Updates

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

Cactus opuntia Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Cadambine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Cade crude ex-sabine EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

cadmium-chloride Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Caesalmin B Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

caesalpinia pulcherrima Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

caftaric acid Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

caiaisoflavone Submit Updates

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Calamus Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

calcipotriene Submit Updates

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

calcipotriol Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

calcium Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

calcium citrate Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

calendula glycoside B Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

callophysin A Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

calpain inhibitor I Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

camellia sinensis Submit Updates

Leka et al., In vitro antiviral activity against SARS-CoV -2 of common herbal medicinal extracts and their bioactive compounds, *Phytotherapy Research*, doi:10.1002/ptr.7463

camphor Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

camphorating D Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

canadine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

canderastan cilexetil Submit Updates

Lazniewski et al., Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations, *Methods*, doi:10.1016/j.ymeth.2022.02.004

candesartan cilexetil Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

candoxatril Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

cangrelor Submit Updates

Ugurel et al., Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13), *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2020.09.138

cannabidinol Submit Updates

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

cannabigerolic acid Submit Updates

Liu et al., Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity, *Molecules*, doi:10.3390/molecules27186127

Cannabinoids Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

capmatinib Submit Updates

Jade et al., Identification of FDA-approved drugs against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through computational virtual screening, *Structural Chemistry*, doi:10.1007/s11224-022-02072-1

carbamazepine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

carbetocin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

carbon-tetrachloride Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

carboplatin Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Caretroside A Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

carfilzomib Submit Updates

Su et al., DTSEA: A network-based drug target set enrichment analysis method for drug repurposing against COVID-19, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2023.106969

cariporide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

carisoprodol Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

carminic acid Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

carprazidil Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

carragelose Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

carvacryl acetate Submit Updates

ÖZHAN KOCAKAYA et al., Docking Studies of Natural Product Derived Carvacrol Type Aromatic Monoterpenes Against COVID-19 and Comparison with Used Synthetic Drugs: Potential of Carvacryl Acetate Against SARS-CoV-2 (COVID-19), Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, doi:10.55007/dufed.1184096

caspofungin Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

catechin gallate Submit Updates

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

cathepsin Inhibitor 1 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

caulerpin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

CBDA Submit Updates

Liu et al., Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity, *Molecules*, doi:10.3390/molecules27186127

CBGA Submit Updates

Liu et al., Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity, *Molecules*, doi:10.3390/molecules27186127

CC-223 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

CCG-222740 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

CD04872SC Submit Updates

Reyes-Alcaraz et al., A Small Molecule That In Vitro Neutralizes Infection of SARS-CoV-2 and Its Most Infectious Variants, Delta, and Omicron, *Biomedicines*, doi:10.3390/biomedicines11030916

CD24Fc Submit Updates

Welker et al., Efficacy and safety of CD24Fc in hospitalised patients with COVID-19: a randomised, double-blind, placebo-controlled, phase 3 study, *The Lancet Infectious Diseases*, doi:10.1016/S1473-3099(22)00058-5

CE-224,535 Submit Updates

Lécuyer et al., The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.04.05.531513

cefalotin Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

cefoperazone Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

cefotaxime Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

cefpodoxime Submit Updates

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

ceftaroline fosamil Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ceftibuten Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

cefuroxime pivoxetil Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

celastrol Submit Updates

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

cenicriviroc Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

cenisertib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

cep-11981 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

cephalexin Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

cephalosporin derivatives Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

CERC-002 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

cerevisterol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

cetocycline Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

CF101 Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

CGP 40215A Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

CGP 48664A Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

CGP-35753 Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

CGP-42112A Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

CGP-60474 Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

CGP39937 Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

CGP42112A Submit Updates

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

Chai-Hu-Gui-Zi-Gan-Jiang-Tang Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

Chamomile Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Chebulic myrobaan Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

chebulinic acid Submit Updates

Rudrapal et al., Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.101826

chelerythrine chloride Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

CHEMBL2229121 Submit Updates

Faisal et al., Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches, *Molecules*, doi:10.3390/molecules27165241

ChemBridge63310525 Submit Updates

Ghufran et al., In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations, *Bioengineering*, doi:10.3390/bioengineering10010100

chenodeoxycholic acid Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

chitosan Submit Updates

Jaber et al., A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19, *Journal of Applied Microbiology*, doi:10.1111/jam.15202

Chitosan-Zeolite-ZnO Submit Updates

Gopal et al., Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope?, *Antibiotics*, doi:10.3390/antibiotics12040665

chlorhexidine gluconate Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

chlorine dioxide Submit Updates

Alonso et al., A Retrospective Observational Study of Chlorine Dioxide Effectiveness to Covid19-like Symptoms Prophylaxis in Relatives Living with COVID19 Patients, *International Journal of Multidisciplinary Research and Analysis*, doi:10.47191/ijmra/v4-i8-02

chlorphenesin carbamate Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

chlorproguanil Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

chlorprothixene Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

chlortalidone Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

ChloViD2020 Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

ChloViD2022 Submit Updates

Rabie et al., Strong Dual Antipolymerase/Antiexonuclease Actions of Some Aminothiadiazole Antioxidants: A Promising In-Silico/In-Vitro Repurposing Research Study against the COVID-19 Omicron Virus (B.1.1.529.3 Lineage), Advances in Redox Research, doi:10.1016/j.arres.2023.100064

CHOL-C-Temporin L Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

CHOL-CGG-Temporin L Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

cholecalciferol Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

choline salicylate Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

cholorogenic acid Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

chromone-4c Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Chrysanthemum Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

chrysophanol Submit Updates

Kushari et al., An integrated computational approach towards the screening of active plant metabolites as potential inhibitors of SARS-CoV-2: an overview, *Structural Chemistry*, doi:10.1007/s11224-022-02066-z

CHS 828 Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Chyawanprash Submit Updates

https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8291116/

cichoric acid Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

ciclosporin Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, Journal of Personalized Medicine, doi:10.3390/jpm13040664

CID 10606127 Submit Updates

Samad et al., Identification of novel inhibitors for SARS-CoV-2 as therapeutic options using machine learning-based virtual screening, molecular docking and MD simulation, *Frontiers in Molecular Biosciences*, doi:10.3389/fmolb.2023.1060076

CID 2011756 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

CID 44256914 Submit Updates

Samad et al., Identification of novel inhibitors for SARS-CoV-2 as therapeutic options using machine learning-based virtual screening, molecular docking and MD simulation, *Frontiers in Molecular Biosciences*, doi:10.3389/fmolb.2023.1060076

CID 457885 Submit Updates

Samad et al., Identification of novel inhibitors for SARS-CoV-2 as therapeutic options using machine learning-based virtual screening, molecular docking and MD simulation, *Frontiers in Molecular Biosciences*, doi:10.3389/fmolb.2023.1060076

CID 5318857 Submit Updates

Samad et al., Identification of novel inhibitors for SARS-CoV-2 as therapeutic options using machine learning-based virtual screening, molecular docking and MD simulation, *Frontiers in Molecular Biosciences*, doi:10.3389/fmolb.2023.1060076

CID 91895373 Submit Updates

Samad et al., Identification of novel inhibitors for SARS-CoV-2 as therapeutic options using machine learning-based virtual screening, molecular docking and MD simulation, *Frontiers in Molecular Biosciences*, doi:10.3389/fmolb.2023.1060076

CIGB-325 Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

ciglitazone Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

cilastatin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

cilazapril Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

cinametic acid Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

cinchocaine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

cinchona Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

cinchonine Submit Updates

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

cinitapride Submit Updates

Parameswaran et al., Molecular networking-based drug repurposing strategies for SARS-CoV-2 infection by targeting alpha-1-antitrypsin (SERPINA1), *Research Square*, doi:10.21203/rs.3.rs-2800746/v1

cinnamaldehyde Submit Updates

Nag et al., Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105552

Cinnamic amides Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

ciraparantag Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

cirsimaritin Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

cisplatin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

cisplatina Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

citiolone Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

citriquinochroman Submit Updates

Sayed et al., Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Microorganisms*, doi:10.3390/microorganisms8070970

Citronellol Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

Citrus sp. Submit Updates

Utomo et al., Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection, *MDPI AG*, doi:10.20944/preprints202003.0214.v1

CL-275838 Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

Cl-amidine Submit Updates

Pasquero et al., Novel antiviral activity of PAD inhibitors against human beta-coronaviruses HCoV-0C43 and SARS-CoV-2, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105278

cladribine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

clantifen Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

clauraila A Submit Updates

https://niper.gov.in/crips/Vol16No4_Page79_90.pdf

clavulanic acid Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

cleistocaltone a Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

clemastine Submit Updates

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

clemastine fumarate Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Cleomiscosin C Submit Updates

Kuang et al., Discovery of 3CLpro inhibitor of SARS-CoV-2 main protease, *Future Science OA*, doi:10.2144/fsoa-2023-0020

Clionamine D Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

clioquinol Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

clitoria ternatea, Asian pigeonwings, bluebellvine, blue pea, butterfly pea, cordofan pea, Darwin pea Submit Updates

https://www.wjpr.net/abstract_show/19601

clodronic-acid Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

clofarabine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

clofoctol Submit Updates

Belouzard et al., Clofoctol inhibits SARS-CoV-2 replication and reduces lung pathology in mice, *bioRxiv*, doi:10.1101/2021.06.30.450483

clomifene Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

clonazepam Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

clonidine Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

cloperastine Submit Updates

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

Clove Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

clozapine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

CLSP-2 Submit Updates

You et al., Structural characterization and SARS-CoV-2 inhibitory activity of a sulfated polysaccharide from Caulerpa lentillifera, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2021.119006

CMK Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

CNP0061237 Submit Updates

Ang et al., Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Biology*, doi:10.3390/biology12040519

CNP0366487 Submit Updates

Ang et al., Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Biology*, doi:10.3390/biology12040519

CNP0375828 Submit Updates

Ang et al., Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Biology*, doi:10.3390/biology12040519

CNP0381522 Submit Updates

Ang et al., Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Biology*, doi:10.3390/biology12040519

Cobalamin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

coblopasvir Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

cocaethylene Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

cocarboxylase Submit Updates

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

coclaurine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

coclobine Submit Updates

Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102277

Coconut Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

codeine Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

Codivir Submit Updates

https://www.jpost.com/health-and-wellness/israeli-scientists-say-their-antiviral-drug-coul..

coh-29 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Cola Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

colforsin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

collagen-polyvinylpyrrolidone Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

compstatin 40 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

concanamycin A Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, *Computation*, doi:10.3390/computation10040051

coniferyl aldehyde Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

COPPER Submit Updates

Sameni et al., Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study, *3 Biotech*, doi:10.1007/s13205-023-03518-x

copper(II) gluconate Submit Updates

https://www.biorxiv.org/content/10.1101/2021.09.17.460613v1

coptisine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

cordifolide A Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

cordifolioside A Submit Updates

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, *Chemistry & Biodiversity*, doi:10.1002/cbdv.202200655

cordifoliside Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

cordioside Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

Coriandrin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

coriandrum sativum Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

corniculatusin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

cornuside Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

corticosterone Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

cortisone Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

cortivazol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

corylifol A Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Coumarin-EM04 Submit Updates

Mir et al., Molecular modeling and simulations of some antiviral drugs, benzylisoquinoline alkaloid, and coumarin molecules to investigate the effects on Mpro main viral protease inhibition, *Biochemistry and Biophysics Reports*, doi:10.1016/j.bbrep.2023.101459

coumaroylquinic acids Submit Updates

Jose et al., Potential of phytocompounds from Brassica oleracea targeting S2-domain of SARS-CoV-2 spike glycoproteins: Structure and molecular insights, Journal of Molecular Structure, doi:10.1016/j.molstruc.2022.132369

coumestrol Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

coumetarol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

CoV2-6C3 Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

CoV2-RBD-1C Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

CoV2-RBD-4C Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

COVI-AMG/COVI-DROPS Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

COVI-GUARD Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, Current Research in Pharmacology and Drug Discovery, doi:10.1016/j.crphar.2022.100086

COVID19-0001-USR Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

CoViTris2020 Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

CoViTris2022 Submit Updates

Rabie et al., Strong Dual Antipolymerase/Antiexonuclease Actions of Some Aminothiadiazole Antioxidants: A Promising In-Silico/In-Vitro Repurposing Research Study against the COVID-19 Omicron Virus (B.1.1.529.3 Lineage), Advances in Redox Research, doi:10.1016/j.arres.2023.100064

CP-690334-01 Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

cp-724714 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

CpdD Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

CPEC Submit Updates

Leonidou et al., New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells, PLOS Computational Biology, doi:10.1371/journal.pcbi.1010903

CQ_2 Submit Updates

Aissaoui et al., Diversifying the chloroquinoline scaffold against SARS-COV-2 main protease: Virtual screening approach using cross-docking, sitemap analysis and molecular dynamics simulation, *Journal of the Serbian Chemical Society*, doi:10.2298/JSC221017003A

CQ_22 Submit Updates

Aissaoui et al., Diversifying the chloroquinoline scaffold against SARS-COV-2 main protease: Virtual screening approach using cross-docking, sitemap analysis and molecular dynamics simulation, *Journal of the Serbian Chemical Society*, doi:10.2298/JSC221017003A

CQ_56 Submit Updates

Aissaoui et al., Diversifying the chloroquinoline scaffold against SARS-COV-2 main protease: Virtual screening approach using cross-docking, sitemap analysis and molecular dynamics simulation, *Journal of the Serbian Chemical Society*, doi:10.2298/JSC221017003A

CR-31-B-(-) Submit Updates

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

CR3014 Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

CR3022 Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

crambescidin 786 Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

crambescidin 826 Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

crinine Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

Crocetin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

cryptomerin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

cryptophycin 1 Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

cryptophycin 52 Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

crytospirolepine Submit Updates

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

CSA0001 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

CTB-ACE2 gum Submit Updates

https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(21)005...

cucurbitacin D Submit Updates

Tiwari et al., Molecular docking studies on the phytoconstituents as therapeutic leads against SARS-CoV-2, *Polimery*, doi:10.14314/polimery.2022.7.8

Cucurbitacin G 2-glucoside Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

cuminaldehyde Submit Updates

ÖZHAN KOCAKAYA et al., Docking Studies of Natural Product Derived Carvacrol Type Aromatic Monoterpenes Against COVID-19 and Comparison with Used Synthetic Drugs: Potential of Carvacryl Acetate Against SARS-CoV-2 (COVID-19), Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, doi:10.55007/dufed.1184096

curcuma longa Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

curcumenol Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

cyanidin 3-(6"-malonylglucoside) Submit Updates

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

cyanidin 3-0-(6"-p-coumaroyl-glucoside) Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

cyanidin 3-0-sambubioside 5-0-glucoside Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

Cyanidin 3-glucoside Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

cyanidin 5-O-β-D-glucoside Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

cyanidin-3-0-glucoside Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

cyanidin-3-sophoroside-5-glucoside Submit Updates

Das et al., Identification of novel phytochemicals from Hibiscus rosa sinensis flower as a prospective inhibitor targeting the 3CLpro enzyme of SARS-CoV-2 using computational approaches., *Research Square*, doi:10.21203/rs.3.rs-2837087/v3

cyanofuran Submit Updates

Jeong et al., Chemical screen uncovers novel structural classes of inhibitors of the papain-like protease of coronaviruses, *iScience*, doi:10.1016/j.isci.2022.105254

CYC116 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

cyclazodone Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

cyclic adenosine monophosphate Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

cyclizine Submit Updates

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

cyclocurcumin Submit Updates

322/571

Rajamanickam et al., Molecular insight of phytocompounds from Indian spices and its hyaluronic acid conjugates to block SARS-CoV-2 viral entry, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2121757

cycloguanil Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

cycloheximide Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

cyclohexyl methyl Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

cyclosporin A Submit Updates

Wang et al., Anthracyclines inhibit SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.01.10.523518

cyclosporin-aa Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

cynaroside Submit Updates

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

CYNK-001 Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

cyprazepam Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

cyproquinate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Cysteine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

cystodion E Submit Updates

Byadi et al., In silico discovery of novel inhibitors from Northern African natural products database against main protease (Mpro) of SARS-CoV-2, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2040594

cytochalasin Z8 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

CZ415 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

D-myo-inositol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

D-α-tocopherol polyethylene glycol succinate, TPGS Submit Updates

Pacl et al., Water-soluble tocopherol derivatives inhibit SARS-CoV-2 RNA-dependent RNA polymerase, *bioRxiv*, doi:10.1101/2021.07.13.449251

D3F Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

dacarbazine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

dacomitinib Submit Updates

Li et al., Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.08.016

dactolisib Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

dalbraminol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Dandelion Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

dantonic Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

dantrolene Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

dapagliflozin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

daphnodrine M Submit Updates

Bagabir, S., Investigating the potential of natural compounds as novel inhibitors of SARS-CoV-2 RdRP using computational approaches, *Biotechnology and Genetic Engineering Reviews*, doi:10.1080/02648725.2023.2195240

darifenacin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Darunavir Ethanolate Submit Updates

https://www.sciencedirect.com/science/article/pii/S2772417421000133

DAS181 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

dasabuvir Submit Updates

Ma et al., Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105419

dasantafil Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Daturaolone Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

ddctp Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

DDFEDY Submit Updates

Liu et al., Bionics design of affinity peptide inhibitors for SARS-CoV-2 RBD to block SARS-CoV-2 RBD-ACE2 interactions, *Heliyon*, doi:10.1016/j.heliyon.2023.e12890

deacetylcentapicrin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

deacetylnomilin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

decoyinine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

deferasirox Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

degarelix Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

deguelin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

dehydrocostus lactone Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

dehydrodiisoeugenol Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

delapril Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

delavirdine Submit Updates

https://con.antppublishing.com/index.php/ittpcovid19/article/view/183

Delphinidin Submit Updates

https://www.mdpi.com/2304-8158/10/9/2084/htm

delphinidin 3-O-rutinoside Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

delphinidin-3-O-glucoside Submit Updates

https://pub.qu.edu.sa/index.php/journal/article/view/7719

DeltaRex-G Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

demeclocycline Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

demethoxy-curcumin Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

Demethylzeylasteral Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

demoxytocin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

deoxy-11,12-didehydroandrographolide Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

deoxycylindrospermopsin Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

deoxynortryptoquivaline Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

deptropine Submit Updates

Babu et al., Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101038

deserpidine Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

desidustat Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

deslanoside Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

desmethylanethol trithione Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

desvenlafaxine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

devazepide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

dexamethasone acetate Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

dexanabinol Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

dexchlorpheniramine Submit Updates

https://www.sciencedirect.com/science/article/abs/pii/S1094553921000018 (*Retrospective Study*)

dextromethorphan Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

DEYEDY Submit Updates

Liu et al., Bionics design of affinity peptide inhibitors for SARS-CoV-2 RBD to block SARS-CoV-2 RBD-ACE2 interactions, *Heliyon*, doi:10.1016/j.heliyon.2023.e12890

Dfo Submit Updates

Shahanshah et al., In-silico screening to delineate novel antagonists to SARS-CoV-2 nucleocapsid protein, *Physics and Chemistry of the Earth, Parts A/B/C*, doi:10.1016/j.pce.2022.103188

DFV890 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

DFVEDY Submit Updates

Liu et al., Bionics design of affinity peptide inhibitors for SARS-CoV-2 RBD to block SARS-CoV-2 RBD-ACE2 interactions, *Heliyon*, doi:10.1016/j.heliyon.2023.e12890

DG8735000 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

diabeta Submit Updates

Parameswaran et al., Molecular networking-based drug repurposing strategies for SARS-CoV-2 infection by targeting alpha-1-antitrypsin (SERPINA1), *Research Square*, doi:10.21203/rs.3.rs-2800746/v1

diacetylcurcumin Submit Updates

Singh et al., Potential of turmeric-derived compounds against RNA-dependent RNA polymerase of SARS-CoV-2: An in-silico approach, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104965

diallyl tetrasulfde Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

diammonium glycyrrhizinate Submit Updates

https://academic.oup.com/gjmed/advance-article/doi/10.1093/gjmed/hcab184/6329274

Diarylheptanoids Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

dibromochloromethaneivermectin Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

dicannabidiol Submit Updates

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

dichlorisone acetate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

dichloroacetic-acid Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

diclofenac Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

didanosine Submit Updates

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

dieckol 1 Submit Updates

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, *Journal of Integrative Medicine*, doi:10.1016/j.joim.2022.08.001

dieldrin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

diethylcarbamazine Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

diethylstilbestrol Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

difeterol Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

differin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

digitoxigenin Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

digoxigenin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

dihydralazine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

dihydroartemisinin Submit Updates

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

dihydroartemisinine Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

dihydrocelastrol Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

dihydrocurcumin Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

dihydrokaempferol Submit Updates

Zhu et al., Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E, *Virology*, doi:10.1016/j.virol.2022.04.005

Dihydronitidine Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

Dihydrotanshinone 1 Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

dihydrotanshinone I Submit Updates

Yang et al., Potential medicinal plants involved in inhibiting 3CLpro activity: A practical alternate approach to combating COVID-19, Journal of Integrative Medicine, doi:10.1016/j.joim.2022.08.001

dillenetin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

diltiazem HCl Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

Dimethyl Sulfoxide Submit Updates

https://pubmed.ncbi.nlm.nih.gov/32473509/

dimethylnitrosamine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

dinaciclib Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

dinoprost Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

dinucleotide Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

Dioscorea batatas Decne Submit Updates

Zeyad Bazbouz et al., Plant phytochemicals as potential candidates for treating post-COVID-19 lung infections, *Phytotherapy Research*, doi:10.1002/ptr.7650

diosgenin Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

dioxybenzone Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

diperodon Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

diphenoxylate Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

diphenylpyraline Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

DL-thiorphan Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

dlunarizine Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

DM-1 Submit Updates

Chaube et al., A hypothesis on designing strategy of effective RdRp inhibitors for the treatment of SARS-CoV-2, *3 Biotech*, doi:10.1007/s13205-022-03430-w

DMP 777 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

DNL758 Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, Current Research in Pharmacology and Drug Discovery, doi:10.1016/j.crphar.2022.100086

dobutamine Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

docetaxel Submit Updates

Bagabir, S., Investigating the potential of natural compounds as novel inhibitors of SARS-CoV-2 RdRP using computational approaches, *Biotechnology and Genetic Engineering Reviews*, doi:10.1080/02648725.2023.2195240

dociparastat sodium Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

dolasetron Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

dolastatin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

domatinostat Submit Updates

Li et al., Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.08.016

domoprednate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

domperidone Submit Updates

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

dorzolamide Submit Updates

Babu et al., Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101038

dovitinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

doxercalciferol Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

dpnh Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

droperidol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

DUR-928 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

DX-027 Submit Updates

Wu et al., Discovery and characterization of highly potent and selective covalent inhibitors of SARS-CoV-2 PLpro, *bioRxiv*, doi:10.1101/2023.05.02.539082

DX600 Submit Updates

Zamai, L., The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients, *Cells*, doi:10.3390/cells9071704

EC-18 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

echinacin Submit Updates

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

echinatin Submit Updates

Xu et al., Bioactive compounds from Huashi Baidu decoction possess both antiviral and antiinflammatory effects against COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2301775120

eckol Submit Updates

Arunkumar et al., Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1921032

ECOZAA Submit Updates

Clayton et al., Prophylactic and therapeutic potential zinc metallodrugs drug discovery: Identification of SARS-CoV-2 replication and spike/ACE2 inhibitors, *Current Computer-Aided Drug Design*, doi:10.2174/1573409918999220921100030

edotecarin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

edoxaban Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

EDP1867 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

efonidipine Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

EG-HPCP-03a Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

EGCG octaacetate Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

EHT 1864 2HCl Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

eicosadienoic acid Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

eicosapentaenoic acid Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

EIDD-1931 Submit Updates

Bluemling et al., The prophylactic and therapeutic efficacy of the broadly active antiviral ribonucleoside N-Hydroxycytidine (EIDD-1931) in a mouse model of lethal Ebola virus infection, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105453

EK1 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1-C16 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1-GSGSGC Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1-scrambled Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1C Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1C1 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1C2 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1C3 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1C5 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1C6 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1C7 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1P Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1P12HC Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1P24HC Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1P4HC Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1P8HC Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1V1 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EK1V2 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKL1 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKL1P Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKL2 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKL2C Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKL2P Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKL3 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKL3C Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKL3P Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKLIC Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKLO Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKLOC Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

EKLOP Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

elbasvir Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

eldeline Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

eldercherry Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Elemi gum Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

ellagitannins Submit Updates

Alexova et al., Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L., *Molecules*, doi:10.3390/molecules28093772

ellipticine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, Annals of Medicine and Surgery, doi:10.1016/j.amsu.2022.104125

elopiprazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

eltenac Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

emblicannin A Submit Updates

Das et al., Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: an insilico approach, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102534

emend Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

emodine 8-glucosides Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

empagliflozin Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

enflurane Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

enfuvirtide Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

engineered ACE2 Submit Updates

Ikemura et al., Engineered ACE2 counteracts vaccine-evading SARS-CoV-2 Omicron variant, bioRxiv, doi:10.1101/2021.12.22.473804

eniporide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

enisamium Submit Updates

Holubovska et al., RNA polymerase inhibitor enisamium for treatment of moderate COVID-19 patients: a randomized, placebo-controlled, multicenter, double-blind phase 3 clinical trial, *medRxiv*, doi:10.1101/2022.08.21.22279036

enjuvia Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

enmd-2076 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

entecavir Submit Updates

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

entecavir triphosphate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

enterodiol Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

entinostat Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

entospletinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

enviradene Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

enzastaurin Submit Updates

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

epacadostat Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ephedra Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

Ephedra sinica Stapf Submit Updates

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

Epicatechin5-O-beta-D-glucopyranoside-3-benzoate Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

epiexcelsin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

epigallocatechin-3-gallate Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

Epimedium Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

epirizole Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

epirubicin Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

eplerenone Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

epoprostenol Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

eprinomectin Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051

eprosartan Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

ergoloid Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

ergosterol Submit Updates

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

eribulin Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

erlotinib Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

ertugliflozin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International*

Journal of Molecular Sciences, doi:10.3390/ijms231911009

esomeprazole Submit Updates

Kim et al., Histamine-2 Receptor Antagonists and Proton Pump Inhibitors Are Associated With Reduced Risk of SARS-CoV-2 Infection Without Comorbidities Including Diabetes, Hypertension, and Dyslipidemia: A Propensity Score-Matched Nationwide Cohort Study, *Journal of Korean Medical Science*, doi:10.3346/jkms.2023.38.e99

estradiol valerate Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

estragole Submit Updates

https://www.mdpi.com/1424-8247/14/9/892

estriol Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

estrogen Submit Updates

Sund et al., Association between pharmaceutical modulation of oestrogen in postmenopausal women in Sweden and death due to COVID-19: a cohort study, *BMJ Open*, doi:10.1136/bmjopen-2021-053032

estrone Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

estropipate Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

etacrynic acid Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

etasuline Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ethacridine Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

ethaverine Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

ethinyl-estradiol Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

ethotoin Submit Updates

Babu et al., Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101038

ethyl lauroyl arginine Submit Updates

https://www.researchsquare.com/article/rs-842564/v1 (In Vitro)

ethynodiol diacetate Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

etiocholanolone Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

etofylline Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

etravirine Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

eucatropine Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Euchrenone Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

euchrestaflavanone A Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

eupatolitin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

evodiamine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

examorelin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

EXO-CD24 Submit Updates

https://www.jpost.com/health-science/covid-90-percent-of-patients-treated-with-new-israeli...

F0514-5148 Submit Updates

Wu et al., Identifying Drug Candidates for COVID-19 with Large-Scale Drug Screening, *International Journal of Molecular Sciences*, doi:10.3390/ijms24054397

F26G18 Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

F26G19 Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

F2883-0639 Submit Updates

Wu et al., Identifying Drug Candidates for COVID-19 with Large-Scale Drug Screening, *International Journal of Molecular Sciences*, doi:10.3390/ijms24054397

F3077-0136 Submit Updates

Wu et al., Identifying Drug Candidates for COVID-19 with Large-Scale Drug Screening, *International Journal of Molecular Sciences*, doi:10.3390/ijms24054397

F3F Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

F447-0645 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

F701-0504 Submit Updates

Shi et al., Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA, *Journal of Molecular Modeling*, doi:10.1007/s00894-023-05534-3

F725-0694 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

F863-0301 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

F863-0769 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

F865-0690 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

F871-0384 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

fanetizole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

fansidar Submit Updates

Arshad et al., Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics, *Clinical Pharmacology & Therapeutics*, doi:10.1002/cpt.1909

faradiol Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Farnesiferol B Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

farnesol Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

fasudil Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

FAV-eno Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

FAV-keto Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

FBR-002 Submit Updates

Luczkowiak et al., Potent Neutralizing Activity of Polyclonal Equine Antibodies against SARS-CoV-2 Variants of Concern, *The Journal of Infectious Diseases*, doi:10.1093/infdis/jiac331

Febcin Submit Updates

Munshi et al., An open-labelled, randomised, controlled, proof of concept clinical trial to evaluate the efficacy of AYUSH interventions (Cap.Torchnil + Tab. Febcin) as add-on therapy in the clinical management of moderate Covid-19 patients, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2022.100559

fenbufen Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Fennel Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

fenoterol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

fenretinide Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Ferrocene derivatives Submit Updates

Abbas et al., Synthesis and investigation of anti-COVID19 ability of ferrocene Schiff base derivatives by quantum chemical and molecular docking, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2021.132242

ferroquine Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

FGA145 Submit Updates

Medrano et al., Peptidyl Nitroalkene Inhibitors of Main Protease (Mpro) rationalized by Computational/Crystallographic Investigations as Antivirals against SARS-CoV-2, *Research Square*, doi:10.21203/rs.3.rs-2740892/v1

FGA146 Submit Updates

Medrano et al., Peptidyl Nitroalkene Inhibitors of Main Protease (Mpro) rationalized by Computational/Crystallographic Investigations as Antivirals against SARS-CoV-2, *Research Square*, doi:10.21203/rs.3.rs-2740892/v1

FGA147 Submit Updates

Medrano et al., Peptidyl Nitroalkene Inhibitors of Main Protease (Mpro) rationalized by Computational/Crystallographic Investigations as Antivirals against SARS-CoV-2, *Research Square*, doi:10.21203/rs.3.rs-2740892/v1

fibrin-derived peptide Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

fidarestat Submit Updates

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

filibuvir Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

finggerroot extract Submit Updates

Kongratanapasert et al., Pharmacological Activities of Fingerroot Extract and Its Phytoconstituents Against SARS-CoV-2 Infection in Golden Syrian Hamsters, *Journal of Experimental Pharmacology*, doi:10.2147/JEP.S382895

flavanthrin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

flavin mononucleotide Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

flemiflavanone D Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

FLOVID-20 Submit Updates

https://flowpharma.com/product/flovid-20/

floxuridine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

fludrocortisone Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

flumetasone Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

flunarizine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

flunisolide Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

fluocinoloneacetonide Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

fluocinonide Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

fluorescein Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

fluorometholone Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

fluoroquinolones Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

fluorouracil Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

flurbiprofen Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

fluticasone Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

fluticasone furoate Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

fluticasone propionate Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

flutonidine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

foliosidine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

fomecin A Submit Updates

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

fondaparinux Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Foralumab Submit Updates

G. Moreira et al., Nasal administration of anti-CD3 mAb (Foralumab) downregulates *NKG7* and increases *TGFB1* and *GIMAP7* expression in T cells in subjects with COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2220272120

formoterol Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

Forodesine-TP Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

forsythia Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

Forsythoside I Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

fosdenopterin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

fosinopril Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

fosmanogepix Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

fosravuconazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

fp.006 Submit Updates

https://www.science.org/doi/10.1126/sciimmunol.ade0958

fumaric acid Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

fumonisin-b1 Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

furaltadone Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

furan Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

furazolidone Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

furosemide Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

fursultiamine Submit Updates

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

fusicoccin Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051

FuXi-Tiandi-Wuxing Submit Updates

Feng et al., Clinical efficacy of combination therapy of FuXi-Tiandi-Wuxing Decoction and anti-viral drugs in the treatment of novel coronavirus pneumonia: A prospective interventional study, *Journal of Herbal Medicine*, doi:10.1016/j.hermed.2023.100627

FVR-MCS-ALG-NPs Submit Updates

Alcantara et al., Enhanced Nasal Deposition and Anti-Coronavirus Effect of Favipiravir-Loaded Mucoadhesive Chitosan–Alginate Nanoparticles, *Pharmaceutics*, doi:10.3390/pharmaceutics14122680

G368-0082 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

G935-1760 Submit Updates

Shi et al., Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA, *Journal of Molecular Modeling*, doi:10.1007/s00894-023-05534-3

gabapentin Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

galangal Submit Updates

Utomo et al., Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection, *MDPI AG*, doi:10.20944/preprints202003.0214.v1

galanthamine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Galbanum resinoid Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

gallinamide Submit Updates

Dinda et al., Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19, *European Journal of Medicinal Chemistry Reports*, doi:10.1016/j.ejmcr.2022.100079

gamma-mangostin Submit Updates

unknown, u., Trainee Poster Honorable Mention Poster Abstracts Presented at the 123rd Annual Meeting of the American Association of Colleges of Pharmacy, July 23-27, 2022, *American Journal of Pharmaceutical Education*, doi:10.5688/ajpe9169

ganaplacide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Gancao-Banxia Submit Updates

Luo et al., Clinical data mining reveals Gancao-Banxia as a potential herbal pair against moderate COVID-19 by dual binding to IL-6/STAT3, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105457

gandotinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

garcinia kola Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

gardenin A Submit Updates

Abdallah et al., Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics, *Plants*, doi:10.3390/plants11151914

gastrodin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

gatifloxacin Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

GB-1 Submit Updates

Tsai et al., Potential inhibitor for blocking binding between ACE2 and SARS-CoV-2 spike protein with mutations, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.112802

GBE50 Submit Updates

Zhang et al., Discovery and characterization of the covalent SARS-CoV-2 3CLpro inhibitors from Ginkgo biloba extract via integrating chemoproteomic and biochemical approaches, *Phytomedicine*, doi:10.1016/j.phymed.2023.154796

GBPA Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

GC-373 Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

GC-373 Submit Updates

Davarpanah et al., Combination of Spironolactone and Sitagliptin Improves Clinical Outcomes of Outpatients with COVID-19: An Observational Study, *medRxiv*, doi:10.1101/2022.01.21.22269322

GC4419 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

GDC-0349 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

GE-2270A Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

gentamicin Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

geraniin Submit Updates

Alexova et al., Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L., *Molecules*, doi:10.3390/molecules28093772

geraniol Submit Updates

Cerqueira et al., Edible alginate-based films with anti-SARS-CoV-2 activity, *Food Microbiology*, doi:10.1016/j.fm.2023.104251

gigantol Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

gingen Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

gitoformate Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, *Computation*, doi:10.3390/computation10040051

givinostat Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

glabrene Submit Updates

Jiang et al., Exploration of Fuzheng Yugan Mixture on COVID-19 based on network pharmacology and molecular docking, *Medicine*, doi:10.1097/MD.000000000032693

glabrolide Submit Updates

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

glabrone Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

glafenine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

glaucine HBr Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

gliclazide Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

GLS-1027 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Glucobrassicin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

glucogallin Submit Updates

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

glucosulfamide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

glucuronomannan Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

Glutamine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Glyasperin F Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

glybuthiazol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International*

Journal of Molecular Sciences, doi:10.3390/ijms231911009

glybuzole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

glycocholic acid Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

glycycrrhizin Submit Updates

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

glycyrrhisoflavone Submit Updates

Xu et al., Bioactive compounds from Huashi Baidu decoction possess both antiviral and antiinflammatory effects against COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2301775120

glycyrrhiza Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

glycyrrhiza uralensi Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

glycyrrhiza uralensis Submit Updates

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

https://c19early.org/treatments.html

glyprothiazol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

glysobuzole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Glyzyrrhizin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

GMC 2-113 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

GMC 2-29 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

gnidicin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

gniditrin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

golvatinib Submit Updates

Shen et al., The antiviral activity of a small molecule drug targeting the NSP1-ribosome complex against Omicron, especially in elderly patients, *Frontiers in Cellular and Infection Microbiology*, doi:10.3389/fcimb.2023.1141274

gossypol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

GR 127935 Submit Updates

Nag et al., Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105552

gramine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

grazopavir Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

GRL-0920 Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

GRL-1720 Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

GS-441524 Submit Updates

Wang et al., Preclinical Pharmacokinetics and In Vitro Properties of GS-441524, a Potential Oral Drug Candidate for COVID-19 Treatment, *Frontiers in Pharmacology*, doi:10.3389/fphar.2022.918083

gs-461203 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

GS-5245 Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

GS-9876 (lanraplenib) Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

gsk-2239633 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

gsk-461364 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

gsk-690693 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

GSK2656157 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

GST-HG171 Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

qtp Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Guaiacwood EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

guanadrel Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

guanethidine Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

guanoxan Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

guduchi Submit Updates

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

gusacitinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

GW 803430 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

GW-8510 Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

gycyrrhizin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Gypsogenic acid Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

gyssypol acetic acid Submit Updates

Zhang et al., Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method, *Viruses*, doi:10.3390/v15040891

H. perforatum Submit Updates

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

H84T-BanLec Submit Updates

Chan et al., A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo, *Cell Reports Medicine*, doi:10.1016/j.xcrm.2022.100774

hACE2-PMPs Submit Updates

Li et al., Functionalized protein microparticles targeting hACE2 as a novel preventive strategy for SARS-CoV-2 infection, *International Journal of Pharmaceutics*, doi:10.1016/j.ijpharm.2023.122921

hACE2.16 Submit Updates

Chaouat et al., Anti-human ACE2 antibody neutralizes and inhibits virus production of SARS-CoV-2 variants of concern, *iScience*, doi:10.1016/j.isci.2022.104935

halichondrin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

halopredone acetate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

hanshi zufei Submit Updates

Li et al., Exploration of hanshi zufei prescription for treatment of COVID-19 based on network pharmacology, *Chinese Herbal Medicines*, doi:10.1016/j.chmed.2021.06.006

harringtonine Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

harsingar Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

heliomycin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

hemanthamine Submit Updates

Dutta et al., A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis, *Heliyon*, doi:10.1016/j.heliyon.2023.e14386

Herba Dei Submit Updates

Bencze et al., Development of a novel, entirely herbal-based mouthwash effective against common oral bacteria and SARS-CoV-2, *BMC Complementary Medicine and Therapies*, doi:10.1186/s12906-023-03956-3

Hesperidine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

hexachlorophene Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

$\label{point} \textbf{Hexadecenoic-Temporin L} \quad \text{Submit Updates}$

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

high molecular weight hyaluronic acid Submit Updates

Campos-Gomez et al., Mucociliary Clearance Augmenting Drugs Block SARS-Cov-2 Replication in Human Airway Epithelial Cells, *bioRxiv*, doi:10.1101/2023.01.30.526308

hinokitiol Submit Updates

Tao et al., Inhibition of SARS-CoV-2 replication by zinc gluconate in combination with hinokitiol, *Journal of Inorganic Biochemistry*, doi:10.1016/j.jinorgbio.2022.111777

hirsutenone Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

hispidulin Submit Updates

Moezzi, M., Comprehensive in silico screening of flavonoids against SARS-CoV-2 main protease, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2142297

Histidine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

HKI-357 Submit Updates

Li et al., Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.08.016

holothurian sulfated glycans Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

holyrine B Submit Updates

Sayed et al., Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Microorganisms*, doi:10.3390/microorganisms8070970

homo-harringtonine Submit Updates

Ma et al., Homo-harringtonine, highly effective against coronaviruses, is safe in treating COVID-19 by nebulization, *Science China Life Sciences*, doi:10.1007/s11427-021-2093-2

homovanillic acid Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

honey Submit Updates

https://www.medrxiv.org/content/10.1101/2020.10.30.20217364v4

Honeysuckle Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Hops Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

hortensin Submit Updates

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

HP2P243 M2 Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

hr2.016 Submit Updates

https://www.science.org/doi/10.1126/sciimmunol.ade0958

HR2P Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

hrsACE2 Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

hruceine A Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

HTCC Submit Updates

Gopal et al., Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope?, *Antibiotics*, doi:10.3390/antibiotics12040665

human defensin-5 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

human defensin-6 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

HUP0109 Submit Updates

Wu et al., Discovery and characterization of highly potent and selective covalent inhibitors of SARS-CoV-2 PLpro, *bioRxiv*, doi:10.1101/2023.05.02.539082

hydrazinocurcumin Submit Updates

Rajamanickam et al., Molecular insight of phytocompounds from Indian spices and its hyaluronic acid conjugates to block SARS-CoV-2 viral entry, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2121757

hydrocodone Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

hydrocotarnine Submit Updates

Babu et al., Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101038

hydrogen sulfide Submit Updates

Oza et al., Utility of NO and H2S donating platforms in managing COVID-19: Rationale and promise, *Nitric Oxide*, doi:10.1016/j.niox.2022.08.003

hydroquinidine Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

hydroxycarbamide Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

hydroxymethylglutaryl-coa reductase inhibitors Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

HYDZ-1 Submit Updates

Adjissi et al., Synthesis, characterization, DFT, antioxidant, antibacterial, pharmacokinetics and inhibition of SARS-CoV-2 main protease of some heterocyclic hydrazones, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.134005

HYDZ-2 Submit Updates

Adjissi et al., Synthesis, characterization, DFT, antioxidant, antibacterial, pharmacokinetics and inhibition of SARS-CoV-2 main protease of some heterocyclic hydrazones, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.134005

HYDZ-3 Submit Updates

Adjissi et al., Synthesis, characterization, DFT, antioxidant, antibacterial, pharmacokinetics and inhibition of SARS-CoV-2 main protease of some heterocyclic hydrazones, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.134005

Hygromycin B Submit Updates

Al-Sehemi et al., In Silico Exploration of Binding Potentials of Anti SARS-CoV-1 Phytochemicals against Main Protease of SARS-CoV-2, *Journal of Saudi Chemical Society*, doi:10.1016/j.jscs.2022.101453

hymecromone Submit Updates

Mitev et al., Colchicine, Bromhexine, and Hymecromone as Part of COVID-19 Treatment-Cold, Warm, Hot, *Current Overview on Disease and Health Research Vol. 10*, doi:10.9734/bpi/codhr/v10/5310A

Hyssop Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

I-13e Submit Updates

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

I-13h Submit Updates

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

I-13i Submit Updates

Xu et al., An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges, *Biochemical Pharmacology*, doi:10.1016/j.bcp.2022.115279

IAEK Submit Updates

Gambacorta et al., Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease, *Biomedicines*, doi:10.3390/biomedicines10051067

IBP02V1 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP02V2 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP02V3 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP02V4 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP02V5 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP20 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP21 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP22 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP23 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP24 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP25 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP26 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IBP27 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ibrutinib Submit Updates

Heimfarth et al., Drug repurposing and cytokine management in response to COVID-19: A review, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106947

ibudilast Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

icariin Submit Updates

Ur Rehman et al., Flavonoids and other polyphenols against SARS-CoV-2, *Application of Natural Products in SARS-CoV-2*, doi:10.1016/B978-0-323-95047-3.00014-9

icodulinum Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

icosapent ethyl Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

idelalisib Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

idoxuridine Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

idralfidine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

IDX184 Submit Updates

Chinnamadhu et al., Dynamics and binding affinity of nucleoside and non-nucleoside inhibitors with RdRp of SARS-CoV-2: a molecular screening, docking, and molecular dynamics simulation study, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2154844

IFN-β1a Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

IFN-β1b Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

ifosfamide Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

IFX-1 Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

IKK-2 inhibitor VIII Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

ilaprazole Submit Updates

Kim et al., Histamine-2 Receptor Antagonists and Proton Pump Inhibitors Are Associated With Reduced Risk of SARS-CoV-2 Infection Without Comorbidities Including Diabetes, Hypertension, and Dyslipidemia: A Propensity Score-Matched Nationwide Cohort Study, *Journal of Korean Medical Science*, doi:10.3346/jkms.2023.38.e99

Ilex Asprella Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

ilexin B Submit Updates

Aloufi et al., Antiviral Efficacy of Selected Natural Phytochemicals against SARS-CoV-2 Spike Glycoprotein Using Structure-Based Drug Designing, Molecules, doi:10.3390/molecules27082401

ilexsaponin B2 Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

illicium henryi Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

iloprost Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

imatinib mesylate Submit Updates

Mok et al., Evaluation of In Vitro and In Vivo Antiviral Activities of Vitamin D for SARS-CoV-2 and Variants, *Pharmaceutics*, doi:10.3390/pharmaceutics15030925

imidapril Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

imipenem Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

imipramine Submit Updates

Homolak et al., Widely available lysosome targeting agents should be considered as potential therapy for COVID-19, *International Journal of Antimicrobial Agents*, doi:10.1016/j.ijantimicag.2020.106044

immunoglobulin Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

imperialine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Imusil Submit Updates

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

INBO3 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

INC424 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

incadronic acid Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

indapamide Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

Indian Frankincense Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

indicaxanthin Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

indigo blue Submit Updates

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

indisulam Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

indole Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

indole-3-carbinol Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

indoprofen Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

INH14 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

INM005 Submit Updates

Farizano Salazar et al., Safety and effectiveness of RBD-specific polyclonal equine $F(ab')_2$ fragments for the treatment of hospitalized patients with severe Covid-19 disease: a retrospective cohort study., medRxiv, doi:10.1101/2022.04.07.22273558

inosine Submit Updates

Kapoor et al., In silico evaluation of potential intervention against SARS-CoV-2 RNA-dependent RNA polymerase, *Physics and Chemistry of the Earth, Parts A/B/C*, doi:10.1016/j.pce.2022.103350

$interferon-\alpha 2b$ Submit Updates

Kamyshnyi et al., Therapeutic Effectiveness of Interferon-α2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience, *International Journal of Molecular Sciences*, doi:10.3390/ijms24086887

interferon lamba Submit Updates

Chong et al., Nasally-delivered interferon-λ protects mice against upper and lower respiratory tract infection of SARS-CoV-2 variants including Omicron, *bioRxiv*, doi:10.1101/2022.01.21.477296

interleukin-2 Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

iopromide Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

IPAVF Submit Updates

Gambacorta et al., Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease, *Biomedicines*, doi:10.3390/biomedicines10051067

IPB01 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IPB02 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IPB03 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IPB04 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IPB05 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IPB06 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IPB07 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IPB08 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

IPB09 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ipi-549 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

iquindamine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

IRES RNA Submit Updates

Rodríguez-Pulido et al., Non-coding RNAs derived from the foot-and-mouth disease virus genome trigger broad antiviral activity against coronaviruses, *Frontiers in Immunology*, doi:10.3389/fimmu.2023.1166725

isaglidole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Isatis indigotica root Submit Updates

https://www.sciencedirect.com/science/article/pii/S2213422021000688

isavuconazonium Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

ISD-3 Submit Updates

Adegbola et al., Potential inhibitory properties of structurally modified quercetin/isohamnetin glucosides against SARS-CoV-2 Mpro; molecular docking and dynamics simulation strategies, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101167

ISH0339 Submit Updates

Yang et al., Preclinical evaluation of ISH0339, a tetravalent broadly neutralizing bispecific antibody against SARS-CoV-2 with long-term protection, *Antibody Therapeutics*, doi:10.1093/abt/tbad003

ISIS 721744 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

isoalantolactone Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

isocarboxazide Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

isochlorogenic acid A Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

isochlorogenic acid B Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

isocolumbin Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

isodecortinol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Isodihydroaminocadambine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Isoferulic acid Submit Updates

https://www.mdpi.com/2304-8158/10/9/2084/htm

isoginkget Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

isoiguesterin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Isolicoflavonol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

isoliensinine Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, *Signal Transduction and Targeted Therapy*, doi:10.1038/s41392-020-00343-z

isoliquiritigenin Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

isometheptene Submit Updates

Zhao et al., Identification of Potential Lead Compounds Targeting Novel Druggable Cavity of SARS-CoV-2 Spike Trimer by Molecular Dynamics Simulations, *International Journal of Molecular Sciences*, doi:10.3390/ijms24076281

isookanin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

isoprednidene Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

isoquercitin Submit Updates

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

isorhamnetin-3-O-glucoside Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

isorhoeadine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

isorientin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

isoschaftoside Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

isosilybin B Submit Updates

Aloufi et al., Antiviral Efficacy of Selected Natural Phytochemicals against SARS-CoV-2 Spike Glycoprotein Using Structure-Based Drug Designing, Molecules, doi:10.3390/molecules27082401

isosulpride Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Isotrifolin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Isovallesiachotamine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

isovitexin Submit Updates

https://www.jcchems.com/index.php/JCCHEMS/article/download/1802/561

Isovitexin-2"-O-rhamnoside Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

IT1t dihydrochloride Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

itacitinib Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

itolizumab Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

itraconazole Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

ITX5061 Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

JAK3-IN-1 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

jakotinib Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

Java Tea Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Jin-Zhen Submit Updates

Dong et al., Jin-Zhen oral liquid for pediatric coronavirus disease (COVID-19): A randomly controlled, open-label, and non-inferiority trial at multiple clinical centers, *Frontiers in Pharmacology*, doi:10.3389/fphar.2023.1094089

JM-2-17-Fc Submit Updates

Chen et al., Screening and Characterization of Shark-Derived VNARs against SARS-CoV-2 Spike RBD Protein, *International Journal of Molecular Sciences*, doi:10.3390/ijms231810904

JM-2-18-Fc Submit Updates

Chen et al., Screening and Characterization of Shark-Derived VNARs against SARS-CoV-2 Spike RBD Protein, *International Journal of Molecular Sciences*, doi:10.3390/ijms231810904

JM-2-5-Fc Submit Updates

Chen et al., Screening and Characterization of Shark-Derived VNARs against SARS-CoV-2 Spike RBD Protein, *International Journal of Molecular Sciences*, doi:10.3390/ijms231810904

JMX0286 Submit Updates

Samrat et al., Allosteric inhibitors of the main protease of SARS-CoV-2, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105381

JMX0301 Submit Updates

Samrat et al., Allosteric inhibitors of the main protease of SARS-CoV-2, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105381

JMX0941 Submit Updates

Samrat et al., Allosteric inhibitors of the main protease of SARS-CoV-2, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105381

jnj-39393406 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

JNJ-54175446 Submit Updates

Lécuyer et al., The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection, bioRxiv, doi:10.1101/2023.04.05.531513

JQ1 Submit Updates

Qiao et al., Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2021450118

JS016 Submit Updates

https://trialsitenews.com/chinese-monoclonal-antibody-product-sees-expansion-in-use-worldw...

JTV519 hemifumarate Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Juglanin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

K-strophanthidin Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

K063-0051 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

K202.B Submit Updates

Kim et al., Novel bispecific human antibody platform specifically targeting a fully open spike conformation potently neutralizes multiple SARS-CoV-2 variants, *Antiviral Research*, doi:10.1016/j.antiviral.2023.105576

K279-0710 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

Kaempferitrin Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

kaempferol 3-0-sophoroside 7-0-glucoside Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

kaempferol 3-O-sophoroside 7-O-glucoside Submit Updates

Wu et al., Identifying Drug Candidates for COVID-19 with Large-Scale Drug Screening, *International Journal of Molecular Sciences*, doi:10.3390/ijms24054397

kaempferol sulphates Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

kaempferol-3-0-robinobioside Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

kaempferol-3-0-rutinoside Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

kaempferol2 Submit Updates

Wang et al., Anti-inflammatory or anti-SARS-CoV-2 ingredients in Huashi Baidu Decoction and their corresponding targets: target screening and molecular docking study, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104663

kaempferol3 Submit Updates

Wang et al., Anti-inflammatory or anti-SARS-CoV-2 ingredients in Huashi Baidu Decoction and their corresponding targets: target screening and molecular docking study, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104663

kakkontokasenkyushin'i Submit Updates

Ono et al., Kampo Medicine Promotes Early Recovery From Coronavirus Disease 2019-Related Olfactory Dysfunction: A Retrospective Observational Study, *Frontiers in Pharmacology*, doi:10.3389/fphar.2022.844072

Kalmegh Submit Updates

https://de.nachrichten.yahoo.com/thailand-gefaengnis-insassen-stellen-ihr-covid-heilmittel...

Kan Jang Submit Updates

Ratiani et al., Efficacy of Kan Jang® in Patients with Mild COVID-19: Interim Analysis of a Randomized, Quadruple-Blind, Placebo-Controlled Trial, *Pharmaceuticals*, doi:10.3390/ph15081013

kanamycin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Kansetin Submit Updates

Zhang et al., An ACE2-Based Decoy Inhibitor Effectively Neutralizes SARS-CoV-2 Omicron BA.5 Variant, *Viruses*, doi:10.3390/v14112387

kappa-carrageenan Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

karakoline Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

karanjin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

karuppu vishnu chakram Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, Journal of Ayurveda and Integrative Medicine, doi:10.1016/j.jaim.2023.100706

Kazinol A Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Kazinol B Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Kazinol F Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Kazinol I Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

keigairengyoto Submit Updates

Ono et al., Kampo Medicine Promotes Early Recovery From Coronavirus Disease 2019-Related Olfactory Dysfunction: A Retrospective Observational Study, *Frontiers in Pharmacology*, doi:10.3389/fphar.2022.844072

ketamine Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

ketazolam Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

ketorolac tromethamine Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

khellin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

KIN001 Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

kinetin Submit Updates

Souza et al., Identification and preclinical development of kinetin as a safe error-prone SARS-CoV-2 antiviral and anti-inflammatory therapy, *Research Square*, doi:10.21203/rs.3.rs-1533971/v1

KIOM-C Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

KN-92 phosphate Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

KN-93 phosphate Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

kobe2602 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Kobophenol A Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

kouitchenside | Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

KR 31,378 Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

KU-0063794 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

kushenol-w Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

kutki Submit Updates

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

kuwanon A Submit Updates

Tiwari et al., Molecular docking studies on the phytoconstituents as therapeutic leads against SARS-CoV-2, *Polimery*, doi:10.14314/polimery.2022.7.8

KW-2449 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

L-163491 Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, Journal of Pharmacological Sciences, doi:10.1016/j.jphs.2023.02.004

L-Citrulline Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

L-cycloserine Submit Updates

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

L-glutamine Submit Updates

Cengiz et al., Effect of oral l-Glutamine supplementation on Covid-19 treatment, *Clinical Nutrition Experimental*, doi:10.1016/j.yclnex.2020.07.003

I-tyrosine Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

L369-0078 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

L977-1025 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

Labdanum gum refined Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

labetalol Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Lacticaseibacillus rhamnosus UCO-25A Submit Updates

Valdebenito-Navarrete et al., Can Probiotics, Particularly Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A, Be Preventive Alternatives against SARS-CoV-2?, *Biology*, doi:10.3390/biology12030384

Lactucopicrin 15-oxalate Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

lambda-carrageenan Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

laminarin Submit Updates

Arunkumar et al., Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2021.1921032

lamivudine triphosphate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

lamotrigine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

lamtidine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

lanadelumab Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

lanatoside C Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

laninamivir Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

laniquidar Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

lanreotide Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

lapatinib Submit Updates

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

larotrectinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Las 51620429 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Las 51620435 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

LAU-7b Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

lauric acid Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

laurolistine Submit Updates

Kushari et al., An integrated computational approach towards the screening of active plant metabolites as potential inhibitors of SARS-CoV-2: an overview, *Structural Chemistry*, doi:10.1007/s11224-022-02066-z

lauruside Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

lazertinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

LB1148 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

LCB1 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

LCB3 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

LEAF-4L6715 Submit Updates

Mertes et al., LEAF- 4L6715 enhances oxygenation in patients with acute respiratory distress syndrome (ARDS) due to severe COVID-19: Final results of a phase I/II clinical trial, *medRxiv*, doi:10.1101/2022.09.07.22279668

Lectin Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

LED Spirulina Submit Updates

Tzachor et al., Photosynthetically Controlled Spirulina, but Not Solar Spirulina, Inhibits TNF-α Secretion: Potential Implications for COVID-19-Related Cytokine Storm Therapy, *Marine Biotechnology*, doi:10.1007/s10126-021-10020-z

lefamulin Submit Updates

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

lenalidomide Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

lentinula edodes Submit Updates

Elhusseiny et al., In vitro Anti SARS-CoV-2 Activity and Docking Analysis of Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus Edible Mushrooms, *Infection and Drug Resistance*, doi:10.2147/IDR.S362823

lercanidipine Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

lerociclib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

leucinocaine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

leucopelargonidin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

levetiracetam Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

levilimab Submit Updates

https://link.springer.com/article/10.1007/s00011-021-01507-5 (RCT)

levocarnitine Submit Updates

Sameni et al., Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study, *3 Biotech*, doi:10.1007/s13205-023-03518-x

levodropropizine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Levomefolic Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

levomefolic acid Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

levopropoxyphene Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

LGH-447 Submit Updates

Jang et al., Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2024302118

licochalcone B Submit Updates

Xu et al., Bioactive compounds from Huashi Baidu decoction possess both antiviral and antiinflammatory effects against COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2301775120

licoisoflavone A Submit Updates

Xu et al., Bioactive compounds from Huashi Baidu decoction possess both antiviral and antiinflammatory effects against COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2301775120

Licoisoflavone B Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Licorice Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

licorice-saponin A3 Submit Updates

England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, *Life*, doi:10.3390/life13030617

liensinine Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

lifarizine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

lignans Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Limonene Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

limonoic acid Submit Updates

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

Limosilactobacillus fermentum UCO-979C Submit Updates

Valdebenito-Navarrete et al., Can Probiotics, Particularly Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A, Be Preventive Alternatives against SARS-CoV-2?, *Biology*, doi:10.3390/biology12030384

linalool Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

linarotene Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

linezolid Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

linifanib Submit Updates

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

linoleic acid Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

Lipanpaidu Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

liquiritigenin Submit Updates

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, *Chemistry & Biodiversity*, doi:10.1002/cbdv.202200655

lirequinil Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

lisavanbulin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

lithium-chloride Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

lithocholic acid Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Liu Shen Wan Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

lobelanidine Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

lobelin Submit Updates

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

lobeline HCl Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

lodoxamide Submit Updates

Li et al., Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.08.016

lomibuvir Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

lomitapide Submit Updates

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

longyizhengqi Submit Updates

Wang et al., Efficacy and Safety of Longyizhengqi Granule in Treatment of Mild COVID-19 Patients Caused by SARS-CoV-2 Omicron Variant: A Prospective Study, *Infection and Drug Resistance*, doi:10.2147/IDR.S389883

Lonicerae japonicae Submit Updates

Gao et al., Chemical Composition of Honeysuckle (Lonicerae japonicae) Extracts and Their Potential in Inhibiting the SARS-CoV-2 Spike Protein and ACE2 Binding, Suppressing ACE2, and Scavenging Radicals, Journal of Agricultural and Food Chemistry, doi:10.1021/acs.jafc.3c00584

loniflavone Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

https://c19early.org/treatments.html

loperamide Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

lorglumide Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

losmapimod Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Lovage root EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

lovastatin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Lu AE58054 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

lubabegron Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

lucidenic acid A Submit Updates

https://www.sciencedirect.com/science/article/abs/pii/S0278691522006366

lumefantrine Submit Updates

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

luminespib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Lung Cleansing and Detoxifying Decoction Submit Updates

Wu et al., Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.615287

lupeol Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

lupinifolin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

lurasidone Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

luteolin-7-O-rutinoside Submit Updates

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

luteoloside Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

LY-255283 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

ly-2608204 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ly-3200882 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

LY2835219 Submit Updates

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009840

LY3127804 Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

lycorine chloride Submit Updates

Ju et al., A novel cell culture system modeling the SARS-CoV-2 life cycle, *PLOS Pathogens*, doi:10.1371/journal.ppat.1009439

lycorine hydrochloride Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

lymecycline Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

lyocrine Submit Updates

Dutta et al., A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis, *Heliyon*, doi:10.1016/j.heliyon.2023.e14386

lypressin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

m-digallic acid Submit Updates

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

M. charantia Submit Updates

Houeze et al., Comparison study of Beninese and Chinese herbal medicines in treating COVID-19, *Journal of Ethnopharmacology*, doi:10.1016/j.jep.2023.116172

M5049 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Ma Huang Tang Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

Macaflavanone E Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Mace Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

macitentan Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

maldevi chenduram Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

maleylsulfathiazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

mallotophilippen D Submit Updates

Khanal et al., Computational investigation of benzalacetophenone derivatives against SARS-CoV-2 as potential multi-target bioactive compounds, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105668

malonic acid Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

malvidin 3,5-0-diglucoside Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, Computational and Structural Biotechnology Journal, doi:10.1016/j.csbj.2021.09.022

https://c19early.org/treatments.html 422/571

malvidin 3-0-(6"-p-coumaroyl-glucoside) Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

manganese Submit Updates

Shetler et al., Therapeutic potential of metal ions for COVID-19: insights from the papain-like protease of SARS-CoV-2, *Biochemical Journal*, doi:10.1042/BCJ20220380

manidipine Submit Updates

https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009840

Manuka honey Submit Updates

https://qspace.qu.edu.qa/handle/10576/24398

Maoto Submit Updates

Nabeshima et al., Maoto, a traditional herbal medicine, for post-exposure prophylaxis for Japanese healthcare workers exposed to COVID-19: A single center study, *Journal of Infection and Chemotherapy*, doi:10.1016/j.jiac.2022.03.014

MAPK13-IN-1 Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

maprotiline Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

marboran Submit Updates

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

MART-10 Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

MasitinibL Submit Updates

Durojaye et al., MasitinibL shows promise as a drug-like analog of masitinib that elicits comparable SARS-Cov-2 3CLpro inhibition with low kinase preference, *Scientific Reports*, doi:10.1038/s41598-023-33024-2

masoprocol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

mavelertinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

max-40279 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

MAZ51 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

MBD-4 (11-40) Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

MCOPPB Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

MDL-28170 Submit Updates

Riva et al., A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals, *bioRxiv*, doi:10.1101/2020.04.16.044016

Mearnsitrin Submit Updates

https://www.mdpi.com/2304-8158/10/9/2084/htm

meclocycline Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

medicagenic acid Submit Updates

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

medicagol Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

medicarpin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

medrysone Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

mefenamic acid Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

mefloquine hydrochloride Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

melitracen Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

melphalan Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Menadione Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Menaquinone Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Mentha Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

mepyramine theophylline acetate Submit Updates

Monserrat Villatoro et al., A Case-Control of Patients with COVID-19 to Explore the Association of Previous Hospitalisation Use of Medication on the Mortality of COVID-19 Disease: A Propensity Score Matching Analysis, *Pharmaceuticals*, doi:10.3390/ph15010078

MERS-LP Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

mesalazine Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

mesenchymal stromal cells Submit Updates

Grumet et al., Efficacy of MSC in Patients with Severe COVID-19: Analysis of the Literature and a Case Study, *Stem Cells Translational Medicine*, doi:10.1093/stcltm/szac067

MesenCure Submit Updates

https://www.jpost.com/health-and-wellness/coronavirus/israeli-drug-for-severe-covid-reduce...

meso-dihydroguaiaretic acid Submit Updates

Li et al., Effects of diarylbutane lignans from Schisandra chinensis fruit on SARS-CoV-2 3CLpro and PLpro proteases and their in vitro anti-inflammatory properties, *Phytomedicine Plus*, doi:10.1016/j.phyplu.2023.100432

mesoridazine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

metenkefalin Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

metformin glycinate Submit Updates

Ventura-López et al., Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomized, double-blind, Phase IIb clinical trial, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113223

methapyrilene Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

methdilazine Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

methimazole Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

methisazone Submit Updates

Shah et al., In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, *Life Sciences*, doi:10.1016/j.lfs.2020.117652

methotrimeprazine maleate Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

methoxamine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

methoxychlor Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Methyl rosmarinates Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

methyl stearate Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

Methylcobalamin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

methyldopate Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Methylephedrine Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

methylnaltrexone Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

methylochnaflavon Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

methylselenocysteine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

metocurine Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

metopimazine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

mevalonic acid Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

mexiletine HCl Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

MFCD00832476 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

MFCD02180753 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

MG-132 Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

MHI Submit Updates

Gambacorta et al., Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease, *Biomedicines*, doi:10.3390/biomedicines10051067

MI-09 Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

MI-1851 Submit Updates

Pászti-Gere et al., In vitro characterization of the furin inhibitor MI-1851: Albumin binding, interaction with cytochrome P450 enzymes and cytotoxicity, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113124

Mi-2 Submit Updates

Nakajima et al., Antiviral Activity of Micafungin and Its Derivatives against SARS-CoV-2 RNA Replication, *Viruses*, doi:10.3390/v15020452

MI-30 Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Mi-5 Submit Updates

Nakajima et al., Antiviral Activity of Micafungin and Its Derivatives against SARS-CoV-2 RNA Replication, *Viruses*, doi:10.3390/v15020452

mianserin Submit Updates

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

midostaurin Submit Updates

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

mifepristone Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

milk thistle Submit Updates

Aloufi et al., Antiviral Efficacy of Selected Natural Phytochemicals against SARS-CoV-2 Spike Glycoprotein Using Structure-Based Drug Designing, *Molecules*, doi:10.3390/molecules27082401

mimosine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

miransertib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

miricetine-3-glucoside Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

mitoguazone Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

miyabenol C Submit Updates

Wang et al., Two Resveratrol Oligomers Inhibit Cathepsin L Activity to Suppress SARS-CoV-2 Entry, Journal of Agricultural and Food Chemistry, doi:10.1021/acs.jafc.2c07811

mizoribine Submit Updates

Wang et al., Screening Potential Drugs for COVID-19 Based on Bound Nuclear Norm Regularization, Frontiers in Genetics, doi:10.3389/fgene.2021.749256

MK-2206 Submit Updates

https://c19early.org/treatments.html 432/571

Gassen et al., SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals, *Nature Communications*, doi:10.1038/s41467-021-24007-w

MK-3207 Submit Updates

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

MK-3577 Submit Updates

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

mk-51081 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

mk-6186 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

mk-6592 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ML-300 Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

ML414 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

MLN-3897 Submit Updates

Riva et al., A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals, *bioRxiv*, doi:10.1101/2020.04.16.044016

modafinil Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

molgramostim Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

mometasone furoate Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Momordin Ic Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

momordinic Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

monalizumab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

monensin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

monensin sodium Submit Updates

Ju et al., A novel cell culture system modeling the SARS-CoV-2 life cycle, *PLOS Pathogens*, doi:10.1371/journal.ppat.1009439

monorden Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

monotropane Submit Updates

Bagabir, S., Investigating the potential of natural compounds as novel inhibitors of SARS-CoV-2 RdRP using computational approaches, *Biotechnology and Genetic Engineering Reviews*, doi:10.1080/02648725.2023.2195240

morelloflavone Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

moringa oleifera Submit Updates

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

morniflumate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Mortaparib Submit Updates

Kumar et al., Computational and *in vitro* experimental analyses of the anti-COVID-19 potential of Mortaparib and MortaparibPlus, *Bioscience Reports*, doi:10.1042/BSR20212156

morusin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

motexafin gadolinium Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

moupinamide Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

moxonidine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

MPI43 Submit Updates

Alugubelli et al., A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2022.114596

MPI44 Submit Updates

Alugubelli et al., A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2022.114596

MPI46 Submit Updates

Alugubelli et al., A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2022.114596

MPro 13b Submit Updates

Davarpanah et al., Combination of Spironolactone and Sitagliptin Improves Clinical Outcomes of Outpatients with COVID-19: An Observational Study, *medRxiv*, doi:10.1101/2022.01.21.22269322

MPro N3 Submit Updates

Davarpanah et al., Combination of Spironolactone and Sitagliptin Improves Clinical Outcomes of Outpatients with COVID-19: An Observational Study, *medRxiv*, doi:10.1101/2022.01.21.22269322

MPT0B640 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

MR14 Submit Updates

Liu et al., Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice, *Cell Reports Medicine*, doi:10.1016/j.xcrm.2023.100918

MSDC-0602K Submit Updates

Sun et al., Inhibition of MPC Simultaneously Mitigates Hyperinflammation and Hyperglycemia in COVID-19, *B106. FROM ACUTE TO LONG COVID-19*, doi:10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A4375

MUC1 Submit Updates

https://www.biorxiv.org/content/10.1101/2021.10.29.466402v1

Mugwort Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

mukolidine Submit Updates

https://niper.gov.in/crips/Vol16No4_Page79_90.pdf

mukonal Submit Updates

https://niper.gov.in/crips/Vol16No4_Page79_90.pdf

mukonidine Submit Updates

https://niper.gov.in/crips/Vol16No4_Page79_90.pdf

multimeric soluble ACE2 Submit Updates

Kayabolen et al., Protein scaffold-based multimerization of soluble ACE2 efficiently blocks SARS-CoV-2 infection in vitro and in vivo, *bioRxiv*, doi:10.1101/2021.01.04.425128

MW33 Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

MWA010 Submit Updates

Künzi et al., Transport of Designed Ankyrin Repeat Proteins through reconstituted human bronchial epithelia and protection against SARS-CoV-2, *Scientific Reports*, doi:10.1038/s41598-023-32269-1

mycolactone Submit Updates

Asiedu et al., Mycolactone: A Broad Spectrum Multitarget Antiviral Active in the Picomolar Range for COVID-19 Prevention and Cure, International Journal of Molecular Sciences, doi:10.3390/ijms24087151

mycophenolate Submit Updates

Sajgure et al., Safety and efficacy of mycophenolate in COVID-19: a nonrandomised prospective study in western India, *The Lancet Regional Health - Southeast Asia*, doi:10.1016/j.lansea.2023.100154

myricentin Submit Updates

Zhu et al., Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E, *Virology*, doi:10.1016/j.virol.2022.04.005

myricetin 3-o-beta-d-glucopyranoside Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/?tool..

myricetin hexaacetat Submit Updates

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

myristicin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

myristoleic acid Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

N-(2-aminoethyl)-1 aziridineethanamine Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*. doi:10.1093/bib/bbab114

N-98 Submit Updates

Shao et al., Discovery of inhibitors against SARS-CoV-2 main protease using fragment-based drug design, Chemico-Biological Interactions, doi:10.1016/j.cbi.2023.110352

N-acetylmannosamine Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

N-methylspiperone Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

N6-methyladenosine Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

nabumetone Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

NACH Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

nadide Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

nadolol Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

naloxone Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

naltrexone Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

naltrindole isothiocyanate Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

nanchangmycin Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

nangibotide Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

nanochitosan Submit Updates

Gopal et al., Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope?, *Antibiotics*, doi:10.3390/antibiotics12040665

napelline Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

naphazoline Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

naphthoquine Submit Updates

Song et al., Naphthoquine: A Potent Broad-Spectrum Anti-Coronavirus Drug In Vitro, Molecules, doi:10.3390/molecules27030712

Naphthoquinone Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

narasin Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

narciclasine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

narcotine Submit Updates

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

naringen Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

natto extract Submit Updates

https://www.sciencedirect.com/science/article/pii/S0006291X21010718

nattokinase Submit Updates

Tanikawa et al., Degradative Effect of Nattokinase on Spike Protein of SARS-CoV-2, *Molecules*, doi:10.3390/molecules27175405

navarixin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

NBCoV63 Submit Updates

Curreli et al., Discovery of Highly Potent Small Molecule Pan-Coronavirus Fusion Inhibitors, *Viruses*, doi:10.3390/v15041001

NCI-ID715319 Submit Updates

Faisal et al., Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches, *Molecules*, doi:10.3390/molecules27165241

nCoV_S1-Apti Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

NCT-503 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

negillicine, negillidine Submit Updates

https://www.sciencedirect.com/science/article/pii/S1319562X21007968

nellikkai leghyam Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

neobavaisoflavone Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

Neochlorogenic acid Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

neohesperidoe Submit Updates

Bagabir, S., Investigating the potential of natural compounds as novel inhibitors of SARS-CoV-2 RdRP using computational approaches, *Biotechnology and Genetic Engineering Reviews*, doi:10.1080/02648725.2023.2195240

neomvcin Submit Updates

Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, *Pharmaceuticals*, doi:10.3390/ph13120443

neomycin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Neopellitorin B Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

neosporin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

neostigmine bromide Submit Updates

Babu et al., Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101038

nepafenac Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Nepeta bracteata Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

neplanocin A Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

neratinib Submit Updates

Li et al., Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.08.016

netupitant Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Neu5Ac2en-OAcOMe Submit Updates

Yang et al., Targeting intracellular Neu1 for Coronavirus Infection Treatment, *iScience*, doi:10.1016/j.isci.2023.106037

neutrophil defensin 1 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

neutrophil defensin 2 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

neutrophil defensin 3 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

neutrophil defensin 4 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

Niacin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

nialamide Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

nicardipine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

niceritrol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

niceverine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

nicofurate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

nicomorphine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Nicotianamine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Nicotinamide Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

nicotinamide adenine Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

nicotinamide mononucleotide Submit Updates

https://www.egaceutical.com/wp-content/uploads/2021/12/rapid-clinical-improvement-in-ill-c...

Nicotinic Acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

nictoflorin Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

nifenazone Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

niflumic acid Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

nifuralide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

nifuroxide Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

Nigelladine A Submit Updates

Miraz et al., Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study, *International Journal of Clinical Practice*, doi:10.1155/2023/9917306

Nigelladine B Submit Updates

Miraz et al., Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study, *International Journal of Clinical Practice*, doi:10.1155/2023/9917306

nigellidine sulphate Submit Updates

Miraz et al., Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study, *International Journal of Clinical Practice*, doi:10.1155/2023/9917306

nigericin sodium Submit Updates

Ju et al., A novel cell culture system modeling the SARS-CoV-2 life cycle, *PLOS Pathogens*, doi:10.1371/journal.ppat.1009439

nigricanoside A Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

nigricanoside B Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

nilavembu kudineer Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, Journal of Ayurveda and Integrative Medicine, doi:10.1016/j.jaim.2023.100706

nimesulide Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

nimodipine Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

nimolicinol Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool.

nipecotic acid Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

niraparib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

nirmatrelvir Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

nisbuterol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

nitisinone Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

nitrogen Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

nitroglycerin Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

nochi kudineer Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

nomilin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Noni Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

nordihydroguaiaretic acid Submit Updates

Li et al., Effects of diarylbutane lignans from Schisandra chinensis fruit on SARS-CoV-2 3CLpro and PLpro proteases and their in vitro anti-inflammatory properties, *Phytomedicine Plus*, doi:10.1016/j.phyplu.2023.100432

norepinephrine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

norreticulin Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

novaferon Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

novobiocin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

NOX66 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

np-g2-044 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

NPC320891 Submit Updates

Sayaf et al., Pharmacotherapeutic Potential of Natural Products to Target the SARS-CoV-2 PLpro Using Molecular Screening and Simulation Approaches, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04466-1

NPC474594 Submit Updates

Sayaf et al., Pharmacotherapeutic Potential of Natural Products to Target the SARS-CoV-2 PLpro Using Molecular Screening and Simulation Approaches, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04466-1

NPC474595 Submit Updates

Sayaf et al., Pharmacotherapeutic Potential of Natural Products to Target the SARS-CoV-2 PLpro Using Molecular Screening and Simulation Approaches, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04466-1

NS-3728 Submit Updates

Jang et al., Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay, Proceedings of the National Academy of Sciences, doi:10.1073/pnas.2024302118

NSC 33994 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

nuciferine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

NuSepin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Nutmeg Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

NVP 231 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Nympholide A Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

0-74 Submit Updates

Shao et al., Discovery of inhibitors against SARS-CoV-2 main protease using fragment-based drug design, Chemico-Biological Interactions, doi:10.1016/j.cbi.2023.110352

o-TX-O-DiAA Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

Oakmoss absolute Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

obatoclax Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

obeldesivir Submit Updates

https://pubchem.ncbi.nlm.nih.gov/compound/Obeldesivir

oberadilol Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

obeticholic acid Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

obtivo Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

OC43-LP Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

ochratoxin-a Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

ocimum sanctum Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, Journal of Ayurveda and Integrative Medicine, doi:10.1016/j.jaim.2023.100706

octacosanol Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

odalasvir Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

ofloxacin Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

okadaic acid Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051

olaparib Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

Oleander Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

oleanderolide Submit Updates

Kar et al., Identification of phytocompounds as newer antiviral drugs against COVID-19 through molecular docking and simulation based study, *Journal of Molecular Graphics and Modelling*, doi:10.1016/j.jmgm.2022.108192

oleandrin Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051

Oleanic acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

oleoylethanolamide Submit Updates

Akbari et al., Possible therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19: A pilot randomized, double-blind, clinical trial, *Journal of Trace Elements in Medicine and Biology*, doi:10.1016/j.jtemb.2022.126945

Olibanumol H Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

Olive Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

olmesartan Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

olpadronic acid Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

olumiant Submit Updates

Su et al., DTSEA: A network-based drug target set enrichment analysis method for drug repurposing against COVID-19, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2023.106969

olysio Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

omalizumab Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

ombuin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

omefloxacin Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

omnibiotic Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

omtriptolide Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ONO 5334 Submit Updates

Riva et al., A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals, *bioRxiv*, doi:10.1101/2020.04.16.044016

ononin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

ontazolast Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Oolonghomobisflavan-A Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

OP-101 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

OP145 Submit Updates

Geng et al., Inhibitory activity of a sulfated oligo-porphyran from Pyropia yezoensis against SARS-CoV-2, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120173

ophtamesone Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Opium Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Orange Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

orantinib Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

ornipressin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

oroxylin Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

otilimab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

otosiban Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

oubain Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Ouercetin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

ouinacrine Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

ovatodiolide Submit Updates

Chiou et al., Ovatodiolide inhibits SARS-CoV-2 replication and ameliorates pulmonary fibrosis through suppression of the TGF- β /T β Rs signaling pathway, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2023.114481

oxadiazole Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

oxagrelate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

OXAZEPAM Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

oxcarbazepine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

oxelaidin Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, *Medical Research Archives*, doi:10.18103/mra.v11i2.3595

oxetacaine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

oxi-4503 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

oxidopamine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

oxprenolol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

oxygen-ozone immunoceutical therapy Submit Updates

Franzini et al., Oxygen-ozone (O2-O3) immunoceutical therapy for patients with COVID-19. Preliminary evidence reported, *International Immunopharmacology*, doi:10.1016/j.intimp.2020.106879

oxymetholone Submit Updates

Zhou et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, *Cell Discovery*, doi:10.1038/s41421-020-0153-3

oxymorphone Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Oxypeucedanin hydrate Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

OYA1 Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

P-57AS3 Submit Updates

Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051

p-coumaroyltriacetic acid lactone Submit Updates

Bhowmick et al., Identification of potent food constituents as SARS-CoV-2 papain-like protease modulators through advanced pharmacoinformatics approaches, *Journal of Molecular Graphics and Modelling*, doi:10.1016/j.jmgm.2021.108113

p-TX-O-DiAA Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

PAC5 Submit Updates

Zuo et al., A hnRNPA2B1 agonist effectively inhibits HBV and SARS-CoV-2 omicron *in vivo*, *Protein & Cell*, doi:10.1093/procel/pwac027

pachypodol Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

Pallidol Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

palm jaggery Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

palmidrol Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

palmitic acid Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

palmitoylated ACE2 Submit Updates

https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202103471

palmitoylethanolamide Submit Updates

Fessler et al., Palmitoylethanolamide Reduces Proinflammatory Markers in Unvaccinated Adults Recently Diagnosed with COVID-19: A Randomized Controlled Trial, *The Journal of Nutrition*, doi:10.1093/jn/nxac154

palonosetron Submit Updates

MacRaild et al., Systematic Down-Selection of Repurposed Drug Candidates for COVID-19, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911851

pamapimod Submit Updates

Setz et al., Synergistic Antiviral Activity of Pamapimod and Pioglitazone against SARS-CoV-2 and Its Variants of Concern, International Journal of Molecular Sciences, doi:10.3390/ijms23126830

Panax ginseng Submit Updates

Shin et al., Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome, *Journal of Ginseng Research*, doi:10.1016/j.jgr.2022.09.004

pancuronium bromide Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

panicolin Submit Updates

Nguyen et al., The Potential of Ameliorating COVID-19 and Sequelae From *Andrographis paniculata* via Bioinformatics, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221149622

pantoprazole Submit Updates

Kim et al., Histamine-2 Receptor Antagonists and Proton Pump Inhibitors Are Associated With Reduced Risk of SARS-CoV-2 Infection Without Comorbidities Including Diabetes, Hypertension, and Dyslipidemia: A Propensity Score-Matched Nationwide Cohort Study, *Journal of Korean Medical Science*, doi:10.3346/jkms.2023.38.e99

para-nitrosulfathiazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

paramethasone acetate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

patentiflorin A Submit Updates

Tiwari et al., Molecular docking studies on the phytoconstituents as therapeutic leads against SARS-CoV-2, *Polimery*, doi:10.14314/polimery.2022.7.8

PATH-6 Submit Updates

Ramachandran et al., Novel inhibitors against COVID-19 main protease suppressed viral infection, bioRxiv, doi:10.1101/2022.11.05.515305

PATH-7 Submit Updates

Ramachandran et al., Novel inhibitors against COVID-19 main protease suppressed viral infection, bioRxiv, doi:10.1101/2022.11.05.515305

PATH-8 Submit Updates

Ramachandran et al., Novel inhibitors against COVID-19 main protease suppressed viral infection, bioRxiv, doi:10.1101/2022.11.05.515305

patuletin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

pavala parpam Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

pavetannin C1 Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

pazopanib HCl Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

PB28 Submit Updates

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

PC000361 Submit Updates

Bhowmick et al., Identification of bio-active food compounds as potential SARS-CoV-2 PLpro inhibitors-modulators via negative image-based screening and computational simulations, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105474

PC000550 Submit Updates

Bhowmick et al., Identification of bio-active food compounds as potential SARS-CoV-2 PLpro inhibitors-modulators via negative image-based screening and computational simulations, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105474

PC000558 Submit Updates

Bhowmick et al., Identification of bio-active food compounds as potential SARS-CoV-2 PLpro inhibitors-modulators via negative image-based screening and computational simulations, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105474

PC000573 Submit Updates

Bhowmick et al., Identification of bio-active food compounds as potential SARS-CoV-2 PLpro inhibitors-modulators via negative image-based screening and computational simulations, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105474

PD-0325901 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

PD-1 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

PD-144418 Submit Updates

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

pedalitin Submit Updates

Azeem et al., Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies, *International Journal of Immunopathology and Pharmacology*, doi:10.1177/03946320221142793

pedunculoside Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

pegylated interferon alpha-2b, PEG IFN-α2b Submit Updates

https://www.sciencedirect.com/science/article/pii/S1201971221006779 (RCT)

peimisine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

pemetrexed Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

pemziviptadil Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

penciclovir Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

penciclovir triphosphate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

penimethavone A Submit Updates

Sayed et al., Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Microorganisms*, doi:10.3390/microorganisms8070970

pentachlorophenol Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Pentadecanoic-Temporin L Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

pentagastrin Submit Updates

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

pentarlandir Submit Updates

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

pentasodium diethylenetriamine pentaacetate, DTPA Submit Updates

Imam et al., Efficacy of pentasodium diethylenetriamine pentaacetate in ameliorating anosmia post COVID-19, *American Journal of Otolaryngology*, doi:10.1016/j.amjoto.2023.103871

Pentyle ester of chlorogenic acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

peramivir Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

perampanel Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

perfenazine Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

perilla aldehyde Submit Updates

Le-Trilling et al., Universally available herbal teas based on sage and perilla elicit potent antiviral activity against SARS-CoV-2 variants of concern by HMOX-1 upregulation in human cells, *bioRxiv*, doi:10.1101/2020.11.18.388710

perillyl alcohol Submit Updates

Le-Trilling et al., Universally available herbal teas based on sage and perilla elicit potent antiviral activity against SARS-CoV-2 variants of concern by HMOX-1 upregulation in human cells, *bioRxiv*, doi:10.1101/2020.11.18.388710

perindopril Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

periplocoside Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

Petitgrain mandarin EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

petunidin 3,5-Odiglucoside Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

petunidin 3-0-(6"-p-coumaroyl-glucoside) Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, Computational and Structural Biotechnology Journal, doi:10.1016/j.csbj.2021.09.022

pexidartinib Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

PF-00835231 Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

pf-03758309 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

PF-04691502 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

pf-06459988 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

PF-07304814 Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

PF-07321332 Submit Updates

Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac628

PF-4708671 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

PFK15 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

PHA-00851261E Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

pha-793887 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

phaitanthrin D Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

phaseolinisoflavan Submit Updates

Jiang et al., Exploration of Fuzheng Yugan Mixture on COVID-19 based on network pharmacology and molecular docking, *Medicine*, doi:10.1097/MD.000000000032693

phenethicillin Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

phenethyl-isothiocyanate Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

phenoxybenzamine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

phentolamine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Phenylalanine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Phlorotannins Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

pHOXWELL Submit Updates

Balmforth et al., Evaluating the efficacy and safety of a novel prophylactic nasal spray in the prevention of SARS-CoV-2 infection: A multi-centre, double blind, placebo-controlled, randomised trial., *Journal of Clinical Virology*, doi:10.1016/j.jcv.2022.105248

PHR160 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

phthalocyanine Submit Updates

https://www.nature.com/articles/s41598-021-99013-5 (RCT)

phthalylsulfamethizole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

phthalylsulfathiazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

phycocyanobilin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Phyllaemblicin B Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

472/571

https://c19early.org/treatments.html

phylloflavan Submit Updates

Aloufi et al., Antiviral Efficacy of Selected Natural Phytochemicals against SARS-CoV-2 Spike Glycoprotein Using Structure-Based Drug Designing, *Molecules*, doi:10.3390/molecules27082401

Phylloquinone Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

PI 103 hydrochloride Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

piceatannol Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

piceid Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

piclidenoson Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

picotamide Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

picrasidine M Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

picrasidine N Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Picrocrocin Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

pictilisib Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

pidotimod Submit Updates

Ucciferri et al., New Therapeutic Options in Mild Moderate COVID-19 Outpatients, *Microorganisms*, doi:10.3390/microorganisms10112131

pifithrin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

pilocarpine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

pimethixene Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

pinacidil Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

pinostrobin Submit Updates

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

piper cubeba Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, Journal of Ayurveda and Integrative Medicine, doi:10.1016/j.jaim.2023.100706

piper nigrum Submit Updates

https://www.jcchems.com/index.php/JCCHEMS/article/download/1802/561

piperacetazine Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

piperaquine Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

pipercyclobutanamide B Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

piperidine Submit Updates

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

piperidolate Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

piperlongumine Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

Piperolactam A Submit Updates

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

pirbenicillin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

pirfenidone Submit Updates

Artigas et al., In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm, *PLOS ONE*, doi:10.1371/journal.pone.0240149

pirinixic acid Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

pityriacitrin B Submit Updates

Sayed et al., Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Microorganisms*, doi:10.3390/microorganisms8070970

pixatimod Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

plantamajoside Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

platycodin d Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

plazomicin Submit Updates

Wu et al., In silico identification of drug candidates against COVID-19, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2020.100461

plicamycin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

plx-51107 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

PLX5622 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

PNU-0230031 Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

podocarpusflavone A Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

podophyllotoxin Submit Updates

Rehman et al., *In Silico* molecular docking and dynamic analysis of natural compounds against major non-structural proteins of SARS-COV-2, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2139766

Poly-hydroxyflavones Submit Updates

https://www.sciencedirect.com/science/article/pii/S2590257121000523 (In Silico)

Poly-methoxyflavones Submit Updates

https://www.sciencedirect.com/science/article/pii/S2590257121000523 (In Silico)

polydatin Submit Updates

Ugurel et al., Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13), *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2020.09.138

polyenes Submit Updates

Mehmood et al., Polyenes and SARS-CoV-2, Application of Natural Products in SARS-CoV-2, doi:10.1016/B978-0-323-95047-3.00010-1

polyguluronate sulfate Submit Updates

Yang et al., Inhibitory activities of alginate phosphate and sulfate derivatives against SARS-CoV-2 in vitro, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2022.11.311

Polyketide isochaetochromin D1 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

polymannuronate phosphate Submit Updates

Yang et al., Inhibitory activities of alginate phosphate and sulfate derivatives against SARS-CoV-2 in vitro, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2022.11.311

polymyxin B1 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

pomalidomide Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

pomiferin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

pomisartan Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

posin Submit Updates

Bagabir, S., Investigating the potential of natural compounds as novel inhibitors of SARS-CoV-2 RdRP using computational approaches, *Biotechnology and Genetic Engineering Reviews*, doi:10.1080/02648725.2023.2195240

posizolid Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

potassium Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., *medRxiv*, doi:10.1101/2022.08.14.22278751

poziotinib Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

PQR620 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

pracinostat Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

pralatrexate Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

pralmorelin Submit Updates

Kanhed et al., Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach, *Molecular Diversity*, doi:10.1007/s11030-020-10130-1

pramipexole Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

Pranayama Submit Updates

Sarwal et al., Efficacy of Pranayama in Preventing COVID-19 in Exposed Healthcare Professionals: A Quasi-Randomized Clinical Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2022.100586

pranlukast Submit Updates

Lazniewski et al., Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations, *Methods*, doi:10.1016/j.ymeth.2022.02.004

pranosal Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

prasterone Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

pravastatin sodium Submit Updates

Mok et al., Evaluation of In Vitro and In Vivo Antiviral Activities of Vitamin D for SARS-CoV-2 and Variants, *Pharmaceutics*, doi:10.3390/pharmaceutics15030925

prazosin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

pregomisin Submit Updates

Li et al., Effects of diarylbutane lignans from Schisandra chinensis fruit on SARS-CoV-2 3CLpro and PLpro proteases and their in vitro anti-inflammatory properties, *Phytomedicine Plus*, doi:10.1016/j.phyplu.2023.100432

prenol Submit Updates

Paidi et al., Prenol, but Not Vitamin C, of Fruit Binds to SARS-CoV-2 Spike S1 to Inhibit Viral Entry: Implications for COVID-19, *The Journal of Immunology*, doi:10.4049/jimmunol.2200279

prexasertib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

primulic acid Submit Updates

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

pritelivir Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

proanthocyanidins Submit Updates

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

probenecid Submit Updates

https://www.nature.com/articles/s41598-021-97658-w (Animal Study)

probiorinse Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

proceragenin A Submit Updates

Kar et al., Identification of phytocompounds as newer antiviral drugs against COVID-19 through molecular docking and simulation based study, *Journal of Molecular Graphics and Modelling*, doi:10.1016/j.jmgm.2022.108192

prochlorperazine Submit Updates

Roy et al., G4-binding drugs, chlorpromazine and prochlorperazine, repurposed against COVID-19 infection in hamsters, Frontiers in Molecular Biosciences, doi:10.3389/fmolb.2023.1133123

procyanidin A Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

procyanidin A2 Submit Updates

https://pub.qu.edu.sa/index.php/journal/article/view/7719

procyanidin b2 Submit Updates

http://www.jahm.co.in/index.php/jahm/article/view/686

procynidin B1 Submit Updates

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

progabide Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

proglumetacin Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

propadimine Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

propiomazine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

propolis sulabiroin-A Submit Updates

https://www.sciencedirect.com/science/article/pii/S1018364721003694

propranolol Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

propranolol hydrochloride Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

propylene glycol alginate sodium sulfate Submit Updates

Yang et al., Inhibitory activities of alginate phosphate and sulfate derivatives against SARS-CoV-2 in vitro, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2022.11.311

proscillaridin Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

protiofate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

protopanaxatriol Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

protoporphyrin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

proximicin C Submit Updates

Sayed et al., Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro), *Microorganisms*, doi:10.3390/microorganisms8070970

PRT062607 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

prunella vulgaris Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

PS3061 Submit Updates

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

PSC078 Submit Updates

Künzi et al., Transport of Designed Ankyrin Repeat Proteins through reconstituted human bronchial epithelia and protection against SARS-CoV-2, *Scientific Reports*, doi:10.1038/s41598-023-32269-1

Pseudoephedrine Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

pseudopelletierine Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

Psiadia punctulata Submit Updates

Abdallah et al., Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics, *Plants*, doi:10.3390/plants11151914

psicofuranine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

Psidium guajava Submit Updates

Heppy et al., The effect of Psidium guajava Leaves' extract for mild and asymptomatic corona virus Disease-19, *Saudi Pharmaceutical Journal*, doi:10.1016/j.jsps.2023.02.012

psychosaponin B2 Submit Updates

Bagabir, S., Investigating the potential of natural compounds as novel inhibitors of SARS-CoV-2 RdRP using computational approaches, *Biotechnology and Genetic Engineering Reviews*, doi:10.1080/02648725.2023.2195240

PTEN Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Pterocarpus macrocarpus Kurz Submit Updates

Wahyuni et al., In silico anti-SARS-CoV-2, antiplasmodial, antioxidant, and antimicrobial activities of crude extracts and homopterocarpin from heartwood of Pterocarpus macrocarpus Kurz, *Heliyon*, doi:10.1016/j.heliyon.2023.e13644

PUL-042 Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

puromycin Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

pycnamine Submit Updates

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

pyrazolanthrone Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

pyridine Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

pyridoxal phosphate Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

pyronaridine Submit Updates

https://www.biorxiv.org/content/10.1101/2021.09.30.462449v1

Q34 Submit Updates

Cui et al., Compound screen identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 infection, *iScience*, doi:10.1016/j.isci.2021.103684

QD-6 Submit Updates

Adegbola et al., Potential inhibitory properties of structurally modified quercetin/isohamnetin glucosides against SARS-CoV-2 Mpro; molecular docking and dynamics simulation strategies, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101167

Qiangzhi decoction Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

Qishen Gubiao Submit Updates

Yang et al., An integrated approach of HPLC-MS-based chemical profiling, network pharmacology, and molecular docking to reveal the potential mechanisms of Qishen Gubiao Granules for treating COVID-19, *Journal of Separation Science*, doi:10.1002/jssc.202200953

QL-X-138 Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

QL-XII-47 Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

QM-2 Submit Updates

Adegbola et al., Potential inhibitory properties of structurally modified quercetin/isohamnetin glucosides against SARS-CoV-2 Mpro; molecular docking and dynamics simulation strategies, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101167

quercetagetin Submit Updates

Uma Reddy et al., Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2, *Microbial Pathogenesis*, doi:10.1016/j.micpath.2022.105512

quercetin 3-0-glucuronide Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

quercetin 3-galactopyranoside Submit Updates

Adedayo et al., In-silico studies of Momordica charantia extracts as potential candidates against SARS-CoV-2 targeting human main protease enzyme (MPRO), Informatics in Medicine Unlocked, doi:10.1016/j.imu.2023.101216

quercetin 3-galactoside Submit Updates

Samodra et al., Molecular docking study on COVID-19 drug activity of quercetin derivatives with glucose groups as potential main protease inhibitor, *AIP Conference Proceedings*, doi:10.1063/5.0105741

quercetin 3-O-diglucoside Submit Updates

Samodra et al., Molecular docking study on COVID-19 drug activity of quercetin derivatives with glucose groups as potential main protease inhibitor, *AIP Conference Proceedings*, doi:10.1063/5.0105741

quercetin 3-0-malonylglucoside Submit Updates

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

quercetin glucoside Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

quercetin-3'-o-phosphate Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

quercetin-3-beta-galactoside Submit Updates

Giordano et al., Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, *Molecules*, doi:10.3390/molecules28062470

quercetin-3-D-xyloside Submit Updates

Hossain et al., Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2023.106785

quercetin-3-O-glucuronide Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Quercetin-3-O-neohesperidoside Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

quercetin-3-o-xyloside Submit Updates

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

quercetin-3-oglucuronide Submit Updates

Bajrai et al., In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea, *Scientific Reports*, doi:10.1038/s41598-022-26157-3

quercetin-3-rutinoside Submit Updates

https://pub.qu.edu.sa/index.php/journal/article/view/7719

Quinadoline Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

quinapril Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

quinolone Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

quinonoid Submit Updates

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

quinpirole Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

quizartinib Submit Updates

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

R14 Submit Updates

Liu et al., Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice, *Cell Reports Medicine*, doi:10.1016/j.xcrm.2023.100918

rAAV-P2C5-Fc Submit Updates

Esmagambetov et al., rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19, *Frontiers in Immunology*, doi:10.3389/fimmu.2023.1129245

rabeprazole Submit Updates

Kim et al., Histamine-2 Receptor Antagonists and Proton Pump Inhibitors Are Associated With Reduced Risk of SARS-CoV-2 Infection Without Comorbidities Including Diabetes, Hypertension, and Dyslipidemia: A Propensity Score-Matched Nationwide Cohort Study, *Journal of Korean Medical Science*, doi:10.3346/jkms.2023.38.e99

radicicol Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

Radish Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

radix isatidis Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

radotinib Submit Updates

Mosharaf et al., Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing, *Scientific Reports*, doi:10.1038/s41598-022-08073-8

raf-265 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ralimetinib Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

ranitidine Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

RBD-PB6 Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

rbd.042 Submit Updates

https://www.science.org/doi/10.1126/sciimmunol.ade0958

RBT-9 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

rCIG Submit Updates

Wayham et al., A Potent Recombinant Polyclonal Antibody Therapeutic for Protection Against New SARS-CoV-2 Variants of Concern, *The Journal of Infectious Diseases*, doi:10.1093/infdis/jiad102

RD-X19 Submit Updates

https://www.medrxiv.org/content/10.1101/2021.10.17.21265058v1

rdv-tp Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Red Cinchona Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

REGN3048 Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

REGN3051 Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

Rejuveinix Submit Updates

Uckun et al., Clinical and Non-clinical Proof of Concept Supporting the Development of RJX As an Adjunct to Standard of Care Against Severe COVID-19, *medRxiv*, doi:10.1101/2022.02.12.22270748

remoxipride Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

Renessans Submit Updates

Nawaz et al., Renessans Helps in Early Clearance of SARS-CoV-2: In-Vivo Activity of the Iodine Complex in Rhesus macaque, *Life*, doi:10.3390/life12091424

reproterol Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

rescimetol Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

retusin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

Reyanning mixture Submit Updates

Xu et al., Efficacy and safety of Reyanning mixture in patients infected with SARS-CoV-2 Omicron variant: A prospective, open-label, randomized controlled trial, *Phytomedicine*, doi:10.1016/j.phymed.2022.154514

rhamnan sulfate Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

rhamnazin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

rhamnetin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

Rhizoma Cibotii Submit Updates

https://www.sciencedirect.com/science/article/pii/S2213422021000688

rhodionin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

rhTPO Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Riboprine-TP Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

ridaforolimus Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

rifampicin Submit Updates

Zeng et al., Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning, Journal of Proteome Research, doi:10.1021/acs.jproteome.0c00316

rilonacept Submit Updates

Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471

rimantadine Submit Updates

Fam et al., Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites, *Scientific Reports*, doi:10.1038/s41598-023-31764-9

rimonabant Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

rintatolimod Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

risankizumab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

risedronic acid Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

risperdal Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

ritodrine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

RLS-0071 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

roburicacid Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

robustaflavone Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Rocket absolute Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

romidepsin Submit Updates

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

romifidine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

rosabulin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Rosemarinic acid Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Rosmanol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

rosoxacin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

rotenone Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

rottlerin Submit Updates

Glaab et al., Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and *in Vitro* Experimental Validation of Computationally Screened Inhibitors, *Journal of Chemical Information and Modeling*, doi:10.1021/acs.jcim.1c00258

RP7214 Submit Updates

Nair et al., A Phase 2, Randomized, Double-blind, Placebo-controlled Study of oral RP7214, a DHODH inhibitor, in Patients with Symptomatic Mild SARS-CoV-2 Infection, *medRxiv*, doi:10.1101/2023.02.08.23285565

RU-301 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Ruconest Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

rupintrivir Submit Updates

Fàbrega-Ferrer et al., Structure and inhibition of SARS-CoV-1 and SARS-CoV-2 main proteases by oral antiviral compound AG7404, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105458

rutaecarpine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

Rutan Submit Updates

Salikhov et al., Repurposing of Rutan showed effective treatment for COVID-19 disease, *Research Square*, doi:10.21203/rs.3.rs-2724208/v1

ruzasvir Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

S-15176 difumarate Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

S-adenosyl methionine Submit Updates

Ghosh et al., Interactome-Based Machine Learning Predicts Potential Therapeutics for COVID-19, *ACS Omega*, doi:10.1021/acsomega.3c00030

S1RA Submit Updates

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

\$230 Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

S2A2C1 Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

S43 Submit Updates

Liu et al., Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice, *Cell Reports Medicine*, doi:10.1016/j.xcrm.2023.100918

SA53-0231 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

SA58 Submit Updates

Song et al., Post-Exposure Prophylaxis with SA58 (anti-COVID-19 monoclonal antibody) Nasal Spray for the prevention of symptomatic Coronavirus Disease 2019 in healthy adult workers: A randomized, single-blind, placebo-controlled clinical study, *medRxiv*, doi:10.1101/2022.12.28.22283666

sabeluzole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

saffron Submit Updates

Mujwar et al., In silico evaluation of food-derived carotenoids against SARS-CoV -2 drug targets: Crocin is a promising dietary supplement candidate for COVID -19, *Journal of Food Biochemistry*, doi:10.1111/jfbc.14219

Sage Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

saikosaponin D Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Saikosaponins Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

salazosulfathiazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

salbutamol sulphate Submit Updates

Monserrat Villatoro et al., A Case-Control of Patients with COVID-19 to Explore the Association of Previous Hospitalisation Use of Medication on the Mortality of COVID-19 Disease: A Propensity Score Matching Analysis, *Pharmaceuticals*, doi:10.3390/ph15010078

salidroside Submit Updates

Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2023.101230

Saliravira Submit Updates

Khorshiddoust et al., Efficacy of a multiple-indication antiviral herbal drug (Saliravira®) for COVID-19 outpatients: A pre-clinical and randomized clinical trial study, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.112729

salmeterol Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

salvianolic acid A Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

salvianolic acid B Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

samatasvir Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

sambucus nigra Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

Sandalwood EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

sangivamycin Submit Updates

Patten et al., Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization., *iScience*, doi:10.1016/j.isci.2022.104925

sappan wood Submit Updates

Utomo et al., Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection, *MDPI AG*, doi:10.20944/preprints202003.0214.v1

sapropterin Submit Updates

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

saquanivir Submit Updates

Lazniewski et al., Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations, *Methods*, doi:10.1016/j.ymeth.2022.02.004

SAR443122 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

sarakalim Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

saRBD-1 Submit Updates

Weinstein et al., A potent alpaca-derived nanobody that neutralizes SARS-CoV-2 variants, *iScience*, doi:10.1016/j.isci.2022.103960

SARS-BLOCK Submit Updates

Watson et al., Peptide Antidotes to SARS-CoV-2 (COVID-19), bioRxiv, doi:10.1101/2020.08.06.238915

sarsasapogenin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

saxagliptin Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

SB 271046 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

SB-202190 Submit Updates

Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network, *Briefings in Bioinformatics*, doi:10.1093/bib/bbac456

SB203580 Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

SC-43 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

SCH 644342 Submit Updates

Peralta-Moreno et al., Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 Mpro Main Protease Inhibitors, *Pharmaceuticals*, doi:10.3390/ph16040585

SCH 644343 Submit Updates

Peralta-Moreno et al., Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 Mpro Main Protease Inhibitors, *Pharmaceuticals*, doi:10.3390/ph16040585

schaftoside Submit Updates

Yi et al., Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2022.07.017

Schisandra Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

SCOV-L-02 Submit Updates

Lawal et al., In silico study of Novel Niclosamide Derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104654

SCOV-L-09 Submit Updates

Lawal et al., In silico study of Novel Niclosamide Derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104654

SCOV-L-10 Submit Updates

Lawal et al., In silico study of Novel Niclosamide Derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104654

SCOV-L-15 Submit Updates

Lawal et al., In silico study of Novel Niclosamide Derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104654

SCOV-L-18 Submit Updates

Lawal et al., In silico study of Novel Niclosamide Derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104654

SCOV-L-22 Submit Updates

Lawal et al., In silico study of Novel Niclosamide Derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates, *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2023.104654

scutellariae radix Submit Updates

Zhang et al., Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19, *BioScience Trends*, doi:10.5582/bst.2022.01534

sd-0006 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sd1.040 Submit Updates

https://www.science.org/doi/10.1126/sciimmunol.ade0958

SD146 Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

sea cucumber sulfated polysaccharide, SCSP Submit Updates

https://pubs.rsc.org/en/content/articlelanding/2020/fo/d0fo02017f/unauthdoi:10.2174/138161...

seclidemstat Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

secukinumab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

selinexor Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

selumetinib Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Semilicoisoflavone-B Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

senicapoc Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

senna Submit Updates

Ikram et al., Senna: As immunity boosting herb against Covid-19 and several other diseases, *Journal of Herbal Medicine*, doi:10.1016/j.hermed.2023.100626

Sepiapterin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

sepimostat Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Seraph 100 Microbind Affinity filter Submit Updates

Schmidt et al., Interim-analysis of the COSA (COVID-19 patients treated with the Seraph® 100 Microbind® Affinity filter) registry, Nephrology Dialysis Transplantation, doi:10.1093/ndt/gfab347

Serine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

serratiopeptidase, serratia E-15 protease, serralysin, serratiaprotease, serrapeptase Submit Updates

Sharma et al., Serratiopeptidase, A Serine Protease Anti-Inflammatory, Fibrinolytic, and Mucolytic Drug, Can Be a Useful Adjuvant for Management in COVID-19, *Frontiers in Pharmacology*, doi:10.3389/fphar.2021.603997

sertaconazoe Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

sesamolinol Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

sevoflurane Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

shallot Submit Updates

https://iopscience.iop.org/article/10.1088/1755-1315/995/1/012024/meta

shatavari Submit Updates

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

Shen-Fu Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

shenfu Submit Updates

Mardaneh et al., Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1

shinpterocarpin Submit Updates

Jiang et al., Exploration of Fuzheng Yugan Mixture on COVID-19 based on network pharmacology and molecular docking, *Medicine*, doi:10.1097/MD.000000000032693

shogaol Submit Updates

Srivastava et al., The role of herbal plants in the inhibition of SARS-CoV-2 main protease: A computational approach, *Journal of the Indian Chemical Society*, doi:10.1016/j.jics.2022.100640

shosaikotokakikyosekko Submit Updates

Ono et al., Kampo Medicine Promotes Early Recovery From Coronavirus Disease 2019-Related Olfactory Dysfunction: A Retrospective Observational Study, *Frontiers in Pharmacology*, doi:10.3389/fphar.2022.844072

Shuang Huang Lian Submit Updates

https://www.sciencedirect.com/science/article/pii/S2213422021000688

shuanghuanglian Submit Updates

Kronenberger et al., COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease, *Drug Discovery Today*, doi:10.1016/j.drudis.2023.103579

Shufeng Jiedu Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

SI-F019 Submit Updates

Tsai et al., ACE2-Fc fusion protein overcomes viral escape by potently neutralizing SARS-CoV-2 variants of concern, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105271

Siam wood EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

sildenafil Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

silodosin Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

silydianin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

SIMR3030 Submit Updates

Hersi et al., Discovery of novel papain-like protease inhibitors for potential treatment of COVID-19, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115380

sinapoyl D glucoside Submit Updates

Jose et al., Potential of phytocompounds from Brassica oleracea targeting S2-domain of SARS-CoV-2 spike glycoproteins: Structure and molecular insights, Journal of Molecular Structure, doi:10.1016/j.molstruc.2022.132369

siramesine Submit Updates

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

sirukumab Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

sitaxentan Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

SLV213 Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

SMFM Submit Updates

Nasirzadeh et al., Inhibiting IL-6 During Cytokine Storm in COVID-19: Potential Role of Natural Products, *MDPI AG*, doi:10.20944/preprints202106.0131.v1

SMI-16a Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

SN00074072 Submit Updates

Power et al., Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein, *Bioorganic Chemistry*, doi:10.1016/j.bioorg.2021.105574

SN00162745 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

SN00334175 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

SNG001 Submit Updates

Monk et al., Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial, *The Lancet Respiratory Medicine*, doi:10.1016/S2213-2600(20)30511-7

SNG001II Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

sodium bicarbonate Submit Updates

https://oaltoacre.com/pesquisa-do-acre-tem-resultado-positivo-no-uso-do-bicarbonato-contra...

solamargine Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

solanum nigrum Submit Updates

Sharma et al., Solanum nigrum L. in COVID-19 and post-COVID complications: a propitious candidate, *Molecular and Cellular Biochemistry*, doi:10.1007/s11010-022-04654-3

solnatide Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

solvanol Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

somatotropin Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

somniferin Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

sonidegib Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

sophaline Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

sorafenib tosylate Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

sotalol Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

Soy Bean Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

SP6 Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

sparfloxacin Submit Updates

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

sparsentan Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Speciophylline Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

SPECS AK-91811684151 Submit Updates

Faisal et al., Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches, *Molecules*, doi:10.3390/molecules27165241

spectinomycin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

spermidine Submit Updates

Gassen et al., SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals, *Nature Communications*, doi:10.1038/s41467-021-24007-w

spermine Submit Updates

Gassen et al., SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals, *Nature Communications*, doi:10.1038/s41467-021-24007-w

Sphaeropsidin A Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

Spinach absolute Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

spinasaponin A Submit Updates

Bagabir, S., Investigating the potential of natural compounds as novel inhibitors of SARS-CoV-2 RdRP using computational approaches, *Biotechnology and Genetic Engineering Reviews*, doi:10.1080/02648725.2023.2195240

spiperone Submit Updates

Bahadur Gurung et al., An in silico approach unveils the potential of antiviral compounds in preclinical and clinical trials as SARS-CoV-2 Omicron inhibitors, *Saudi Journal of Biological Sciences*, doi:10.1016/j.sjbs.2022.103297

spirapril Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

SSYA10-001 Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

ST-6 Submit Updates

Chen et al., Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection, *Cell Reports Physical Science*, doi:10.1016/j.xcrp.2023.101249

St. John's Wort Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

stearic acid Submit Updates

Ali et al., Computational Prediction of Nigella sativa Compounds as Potential Drug Agents for Targeting Spike Protein of SARS-CoV-2, *Pakistan BioMedical Journal*, doi:10.54393/pbmj.v6i3.853

stenoparib Submit Updates

https://www.biorxiv.org/content/10.1101/2021.11.03.467186v1

Stevia Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

steviol Submit Updates

Das et al., Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: an insilico approach, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102534

Stevioside Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

STF-62247 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

STI-1558 Submit Updates

Săndulescu et al., Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice, *Frontiers in Microbiology*, doi:10.3389/fmicb.2023.1132501

STI-9167 Submit Updates

Duty et al., Discovery and Intranasal Administration of a SARS-CoV-2 Broadly-Acting Neutralizing Antibody with Activity against multiple Omicron sub variants, *Med*, doi:10.1016/j.medj.2022.08.002

stigmasterol Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

STO-609 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Storax gum Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

Storax resinoid Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

strictinin Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

strychnine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

strychnopentamine Submit Updates

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

stychnopentamine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

SU11274 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

SU5408 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

succinylsulfathiazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sufotidine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfaclorazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfadimidine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

sulfaethidole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfaguanole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfamethizol Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfamethoxazole Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

sulfamoxole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfaphenazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfasomizole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfated ENC Submit Updates

Carvajal-Barriga et al., Sulfated endospermic nanocellulose crystals prevent the transmission of SARS-CoV-2 and HIV-1, *Scientific Reports*, doi:10.1038/s41598-023-33686-y

sulfated galactan Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

sulfated galactofucan Submit Updates

Eilts et al., The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, *Carbohydrate Polymers*, doi:10.1016/j.carbpol.2022.120167

sulfathiazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfatroxazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfatrozole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfazamet Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfinpyrazone Submit Updates

Chapola et al., A COMPARATIVE STUDY OF COVID-19 TRANSCRIPTIONAL SIGNATURES BETWEEN CLINICAL SAMPLES AND PRECLINICAL CELL MODELS IN THE SEARCH FOR DISEASE MASTER REGULATORS AND DRUG REPOSITIONING CANDIDATES, Virus Research, doi:10.1016/j.virusres.2023.199053

sulfisoxazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

sulfonatoporphyrin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

sulodexide Submit Updates

Charfeddine et al., Sulodexide Significantly Improves Endothelial Dysfunction and Alleviates Chest Pain and Palpitations in Patients With Long-COVID-19: Insights From TUN-EndCOV Study, *Frontiers in Cardiovascular Medicine*, doi:10.3389/fcvm.2022.866113

sultopride Submit Updates

Parameswaran et al., Molecular networking-based drug repurposing strategies for SARS-CoV-2 infection by targeting alpha-1-antitrypsin (SERPINA1), *Research Square*, doi:10.21203/rs.3.rs-2800746/v1

surufatinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

susalimod Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

suvorexant Submit Updates

Gantla et al., Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning, *Medicine in Drug Discovery*, doi:10.1016/j.medidd.2022.100148

Sweet almond Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Sweet Wormwood Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

swertianolin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

swertiapuniside Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, European Journal of Medicinal Chemistry, doi:10.1016/j.ejmech.2023.115292

SY110 Submit Updates

https://europepmc.org/article/PMC/PMC10018608

syzygium aromaticum Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

tadalaf 1 Submit Updates

Pham et al., A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing, *Nature Machine Intelligence*, doi:10.1038/s42256-020-00285-9

Taiwanhomoflavone A Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

TAK-659 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

TAK-671 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

TAK-981 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

talarozole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tamarixetin Submit Updates

https://www.mdpi.com/1420-3049/28/9/3766 (In Silico)

tamibarotene Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

tanespimycin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

taniborbactam Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tanshinone IIA Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

tanzisertib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

taribavirin Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

Taroxaz-26 Submit Updates

Rabie et al., Strong Dual Antipolymerase/Antiexonuclease Actions of Some Aminothiadiazole Antioxidants: A Promising In-Silico/In-Vitro Repurposing Research Study against the COVID-19 Omicron Virus (B.1.1.529.3 Lineage), *Advances in Redox Research*, doi:10.1016/j.arres.2023.100064

tasimelteon Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

tazarotene Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

tazobactum Submit Updates

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

TBAJ-876 Submit Updates

Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, *Letters in Drug Design & Discovery*, doi:10.2174/1570180818666211007111105

TCHB Submit Updates

Liu et al., Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity, *Molecules*, doi:10.3390/molecules27186127

TCID Submit Updates

Hicks et al., Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors, *Bioorganic & Medicinal Chemistry Letters*, doi:10.1016/j.bmcl.2022.128732

TCM5280343 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

TCM5280445 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

TCM5280805 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

TCM5280863 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

TCM5458190 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

TD-0903 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

tecastemizole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tectochrysin Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

tedizolid phosphate Submit Updates

Jade et al., Identification of FDA-approved drugs against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through computational virtual screening, *Structural Chemistry*, doi:10.1007/s11224-022-02072-1

tegafur Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

tegobuvir Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

telavancin Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

telcagepant Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

temazepam Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

TEMPOL Submit Updates

Maio et al., TEMPOL inhibits SARS-CoV-2 replication and development of lung disease in the Syrian hamster model, *iScience*, doi:10.1016/j.isci.2022.105074

temporin L Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

tenecteplase Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

tenofovir alafenamide Submit Updates

Frediansyah et al., Antivirals for COVID-19: A critical review, *Clinical Epidemiology and Global Health*, doi:10.1016/j.cegh.2020.07.006

tenufolin Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

terbinafine Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

terbogrel Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

terflavin A Submit Updates

Rudrapal et al., Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.101826

teriparatide Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

terminalia chebula Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

ternatin-4 Submit Updates

Gordon et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, *Nature*, doi:10.1038/s41586-020-2286-9

terpenoid EA Submit Updates

Dutta et al., A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis, *Heliyon*, doi:10.1016/j.heliyon.2023.e14386

terpyridine Submit Updates

Karthick et al., Pyridine Derivatives as Potential Inhibitors for Coronavirus SARS-CoV-2: A Molecular Docking Study, *Bioinformatics and Biology Insights*, doi:10.1177/11779322221146651

terrestrimine Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

Tetra-O-galloyl-beta-D-glucose Submit Updates

Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, *Life*, doi:10.3390/life13020386

$Tetra-O-galloyl-\beta-d-glucose \quad \hbox{Submit Updates}$

Mukherjee et al., Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications, *Phytomedicine*, doi:10.1016/j.phymed.2022.153930

tetrabenazine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

tetrachloroethylene Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

tetracycline Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

tetradrine Submit Updates

Trivedi et al., Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, *Journal of Xenobiotics*, doi:10.3390/jox12040020

tetrahydrobiopterin Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

tetrahydrocannabinol Submit Updates

BİLGİNER et al., Molecular Docking Study of Several Seconder Metabolites from Medicinal Plants as Potential Inhibitors of COVID-19 Main Protease, *Turkish Journal of Pharmaceutical Sciences*, doi:10.4274/tjps.galenos.2021.83548

tetrahydrocannabutol Submit Updates

Liu et al., Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity, *Molecules*, doi:10.3390/molecules27186127

tetrahydrocurcumin Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

Tetrodotoxin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

TF27 Submit Updates

Hahn et al., The Trimeric Artesunate Analog TF27, a Broadly Acting Anti-Infective Model Drug, Exerts Pronounced Anti-SARS-CoV-2 Activity Spanning Variants and Host Cell Types, *Pharmaceutics*, doi:10.3390/pharmaceutics15010115

thalidomide Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

thalimonine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

thalisathi churnam Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2023.100706

theafavin monogallate Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, *Inflammation Research*, doi:10.1007/s00011-022-01642-7

Theaflavin digallate Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

theaflavin gallate Submit Updates

Maiti et al., Epigallocatechin-Gallate and Theaflavin-Gallate Interaction in SARS CoV-2 Spike-Protein Central-Channel with Reference to the Hydroxychloroquine Interaction: Bioinformatics and Molecular Docking Study, *MDPI AG*, doi:10.20944/preprints202004.0247.v1

Theaflavin-3-Ogallate Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Theasinensin-D Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

theophylline Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

thiadiazole Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

thiamazole Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

thimerosal Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

thioguanine Submit Updates

Mirabelli et al., Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2105815118

thioperamide Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

thiophene Submit Updates

Jeong et al., Chemical screen uncovers novel structural classes of inhibitors of the papain-like protease of coronaviruses, *iScience*, doi:10.1016/j.isci.2022.105254

thioridazine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

thioridazine HCl Submit Updates

Yuan et al., Screening for inhibitors against SARS-CoV-2 and its variants, *Biosafety and Health*, doi:10.1016/j.bsheal.2022.05.002

thiosemicarbazide Submit Updates

Jeong et al., Rapid discovery and classification of inhibitors of coronavirus infection by pseudovirus screen and amplified luminescence proximity homogeneous assay, *Antiviral Research*, doi:10.1016/j.antiviral.2022.105473

thiostrepton Submit Updates

Mosharaf et al., Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing, *Scientific Reports*, doi:10.1038/s41598-022-08073-8

thippili rasayanam Submit Updates

Johnson et al., Safety and Efficacy of Siddha management as adjuvant care for COVID-19 patients admitted in a tertiary care hospital - An open-label, proof-of-concept Randomized Controlled Trial, Journal of Ayurveda and Integrative Medicine, doi:10.1016/j.jaim.2023.100706

thonzonium bromide Submit Updates

Wang et al., Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses, *Bioorganic Chemistry*, doi:10.1016/j.bioorg.2022.106264

Thyme Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

thymic peptides Submit Updates

Ramos-Zaldívar et al., A nonrandomized phase 2 trial of oral thymic peptides in hospitalized patients with Covid-19, medRxiv, doi:10.1101/2021.12.05.21267318

thymohydroquinone Submit Updates

Rajamanickam et al., Molecular insight of phytocompounds from Indian spices and its hyaluronic acid conjugates to block SARS-CoV-2 viral entry, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2121757

thymol Submit Updates

Rajamanickam et al., Molecular insight of phytocompounds from Indian spices and its hyaluronic acid conjugates to block SARS-CoV-2 viral entry, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2121757

tiagabine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

tiamenidine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tibolone Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

tigecycline Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

tiliroside Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

tilorone Submit Updates

Ke et al., Artificial intelligence approach fighting COVID-19 with repurposing drugs, *Biomedical Journal*, doi:10.1016/j.bj.2020.05.001

tiludronic acid Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

timegadine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tinofoviralafenamide Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Tinospora cordifolia Submit Updates

Mousavi et al., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies, *Canadian Journal of Infectious Diseases and Medical Microbiology*, doi:10.1155/2022/2044282

tinosporin Submit Updates

Das et al., Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: an insilico approach, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102534

tiotropium bromide Submit Updates

Beck et al., Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.03.025

tioxidazole Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tipentosin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tipifarnib Submit Updates

Jang et al., Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay, Proceedings of the National Academy of Sciences, doi:10.1073/pnas.2024302118

tiracizine Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

tiratricol Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

tirucallin A Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

Tiryāq-i-Wabāī Submit Updates

Anwar et al., Analytical review of Tiryāq-i-Wabāī – A Unani panacea for the control of COVID-19, Journal of Herbal Medicine, doi:10.1016/j.hermed.2023.100653

tixanox Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

TJ003234 Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

TJM2 Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

TKB245 Submit Updates

Higashi-Kuwata et al., Identification of SARS-CoV-2 Mpro inhibitors containing P1' 4-fluorobenzothiazole moiety highly active against SARS-CoV-2, *Nature Communications*, doi:10.1038/s41467-023-36729-0

TKB248 Submit Updates

Higashi-Kuwata et al., Identification of SARS-CoV-2 Mpro inhibitors containing P1' 4-fluorobenzothiazole moiety highly active against SARS-CoV-2, *Nature Communications*, doi:10.1038/s41467-023-36729-0

TL-895 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

tobramycin Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

Tocopherol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Tocotrienol Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

tofacitinibfedratinib Submit Updates

Pillaiyar et al., Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy, *Journal of Medicinal Chemistry*, doi:10.1021/acs.jmedchem.1c00335

tofisopam Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

tolperosone Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

tolterodine Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156

Tolu resinoid Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

tomatidine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

Tomatine Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Tomentin A Submit Updates

De et al., Exploring the pharmacological aspects of natural phytochemicals against SARS-CoV-2 Nsp14 through an in silico approach, *In Silico Pharmacology*, doi:10.1007/s40203-023-00143-7

Tomentin E Submit Updates

Rahman et al., In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2022.929430

tonabersat Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

topotecan Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

toradol Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

Torchnil Submit Updates

Munshi et al., An open-labelled, randomised, controlled, proof of concept clinical trial to evaluate the efficacy of AYUSH interventions (Cap.Torchnil + Tab. Febcin) as add-on therapy in the clinical management of moderate Covid-19 patients, *Journal of Ayurveda and Integrative Medicine*, doi:10.1016/j.jaim.2022.100559

torin-2 Submit Updates

Mosharaf et al., Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing, *Scientific Reports*, doi:10.1038/s41598-022-08073-8

torososide B Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

Torreya nucifera Submit Updates

https://www.sciencedirect.com/science/article/pii/S2213422021000688

tozadenant Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tozumab Submit Updates

Sarkar et al., Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.572870

tp-1287 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tp-271 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

TP201565 Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

TPNT1 Submit Updates

Chang et al., Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses, *Scientific Reports*, doi:10.1038/s41598-021-87254-3

trabectedin Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

tradipitant Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

tramadol Submit Updates

Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751

trandolapril Submit Updates

Chen et al., The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2022.11.022

tranexamic acid Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

trans sodium crocetinate Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

trans-1 Submit Updates

Wang et al., Novel Tetrahydroisoquinoline-Based Heterocyclic Compounds Efficiently Inhibit SARS-CoV-2 Infection In Vitro, Viruses, doi:10.3390/v15020502

trans-E-viniferin Submit Updates

Wang et al., Two Resveratrol Oligomers Inhibit Cathepsin L Activity to Suppress SARS-CoV-2 Entry, *Journal of Agricultural and Food Chemistry*, doi:10.1021/acs.jafc.2c07811

transcrocetin Submit Updates

Mertes et al., LEAF- 4L6715 enhances oxygenation in patients with acute respiratory distress syndrome (ARDS) due to severe COVID-19: Final results of a phase I/II clinical trial, *medRxiv*, doi:10.1101/2022.09.07.22279668

trapoxin B Submit Updates

Li et al., Potential clinical drugs as covalent inhibitors of the priming proteases of the spike protein of SARS-CoV-2, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2020.08.016

triamcinolone Submit Updates

Alamgir et al., Drug repositioning candidates identified using in-silico quasi-quantum molecular simulation demonstrate reduced COVID-19 mortality in 1.5M patient records, *medRxiv*, doi:10.1101/2021.03.22.21254110

triamterene Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

triazole Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

triazoloquinazoline Submit Updates

Jeong et al., Chemical screen uncovers novel structural classes of inhibitors of the papain-like protease of coronaviruses, *iScience*, doi:10.1016/j.isci.2022.105254

tribavirin Submit Updates

Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbac024

Tribulus saponin aglycone 3 Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

tributyltin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

trichloroethylene Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

triclosan Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

Tridecanoic-Temporin L Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

trifluomeprazine 2-butenedioate Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

trifluoperazine 2HCl Submit Updates

https://c19early.org/treatments.html 542/571

Yuan et al., Screening for inhibitors against SARS-CoV-2 and its variants, *Biosafety and Health*, doi:10.1016/j.bsheal.2022.05.002

trifucol Submit Updates

Arunkumar et al., Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1921032

trimebutine Submit Updates

Rudramurthy et al., In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595

trimebutine maleate Submit Updates

Khan et al., Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays, *International Journal of Biological Macromolecules*, doi:10.1016/j.ijbiomac.2023.123540

trimethoprim Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

triptolide Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

trovafloxacin Submit Updates

Taguchi et al., A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, *PLOS ONE*, doi:10.1371/journal.pone.0238907

trypan blue Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

ttc-352 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tubeimoside | Submit Updates

Ju et al., A novel cell culture system modeling the SARS-CoV-2 life cycle, *PLOS Pathogens*, doi:10.1371/journal.ppat.1009439

tubercidin Submit Updates

Bekheit et al., Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2, *European Journal of Medicinal Chemistry*, doi:10.1016/j.ejmech.2023.115292

tubocurarine Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

tucatinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

tulsi Submit Updates

Abhyankar et al., The Efficacy and Safety of Imusil® Tablets in the Treatment of Adult Patients With Mild COVID-19: A Prospective, Randomized, Multicenter, Open-Label Study, *Cureus*, doi:10.7759/cureus.35881

Turmeric Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Turmeric oleoresin Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

tuvatidine Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

TX-AA Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

TX-NH-AA Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

TX-O-AA Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

TX-S-AA Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

TX-SH Submit Updates

https://journals.tubitak.gov.tr/chem/vol47/iss2/4/

TXA127 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Tyrosine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Tyrphostin AG 1296 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

tyrphostin AG 879 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

tyrphostin-AG-1478 Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

TZLS-501 Submit Updates

Talukder et al., Drugs for COVID-19 Treatment: A New Challenge, *Applied Biochemistry and Biotechnology*, doi:10.1007/s12010-023-04439-4

ubiquinone Submit Updates

https://elifesciences.org/articles/68165

ucb-1184197 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

uldazepam Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

ulinastatin Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

umbilical cord mesenchymal stem cell Submit Updates

Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, *Journal of Personalized Medicine*, doi:10.3390/jpm13040664

umbralisib Submit Updates

Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, *Journal of Clinical Medicine*, doi:10.3390/jcm12082893

Uncaric acid Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

Uncarine F Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

Undecanoic-Temporin L Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

UNII-09H5KY11SV Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

upamostat Submit Updates

Plasse et al., Randomized, placebo-controlled pilot study of upamostat, a host-directed serine protease inhibitor, for outpatient treatment of COVID-19, *International Journal of Infectious Diseases*, doi:10.1016/j.ijid.2022.12.003

urethane Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

urocanic acid Submit Updates

Zhao et al., Identification of Potential Lead Compounds Targeting Novel Druggable Cavity of SARS-CoV-2 Spike Trimer by Molecular Dynamics Simulations, *International Journal of Molecular Sciences*, doi:10.3390/ijms24076281

Urso-deoxycholic acid Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

urtica dioica agglutinin Submit Updates

Vanhulle et al., Carbohydrate-Binding Protein from Stinging Nettle as Fusion Inhibitor for SARS-CoV-2 Variants of Concern, bioRxiv, doi:10.1101/2022.07.08.499297

usambarensine Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

usararotenoid A Submit Updates

Ali et al., Implication of in silico studies in the search for novel inhibitors against SARS-CoV-2, *Archiv der Pharmazie*, doi:10.1002/ardp.202100360

usnic acid Submit Updates

Galla et al., Effects of Usnic Acid to Prevent Infections by Creating a Protective Barrier in an In Vitro Study, *International Journal of Molecular Sciences*, doi:10.3390/ijms24043695

V009-0308 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

V011-1348 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

V011-1641 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

V012-1053 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

V017-0757 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

valaciclovir Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

valganciclovir Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

Vallesiachotamine Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

vandetanib Submit Updates

Puhl et al., Vandetanib Blocks the Cytokine Storm in SARS-CoV-2-Infected Mice, *ACS Omega*, doi:10.1021/acsomega.2c02794

vanillin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

vapreotide Submit Updates

Jamalipour Soufi et al., Potential inhibitors of SARS-CoV-2: recent advances, *Journal of Drug Targeting*, doi:10.1080/1061186X.2020.1853736

varlitinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

venetoclax Submit Updates

Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, *Iranian Journal of Pharmaceutical Research*, doi:10.5812/ijpr-131577

venlafaxine Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

veratridine Submit Updates

Zhang et al., A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-020-00343-z

verbascoside Submit Updates

Uhomoibhi et al., Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins, *Scientific African*, doi:10.1016/j.sciaf.2022.e01279

Veru-111 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Vetiver EO Submit Updates

Strub et al., Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts, *Scientific Reports*, doi:10.1038/s41598-022-18676-w

VIB7734 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

Vibsanol B Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

vicenin Submit Updates

Rani et al., Modern drug discovery applications for the identification of novel candidates for COVID-19 infections, *Annals of Medicine and Surgery*, doi:10.1016/j.amsu.2022.104125

vidupiprant Submit Updates

Liu et al., Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, *Bioinformatics*, doi:10.1093/bioinformatics/btaa224

vildagliptin Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

vilobelimab Submit Updates

Raghav et al., Potential treatments of COVID-19: Drug repurposing and therapeutic interventions, *Journal of Pharmacological Sciences*, doi:10.1016/j.jphs.2023.02.004

vinblastine Submit Updates

Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, *bioRxiv*, doi:10.1101/2022.03.24.485618

vincamine Submit Updates

deAndrés-Galiana et al., Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.106029

vincapusine Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

Vincosamide-N-oxide Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

vindolinine Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

Viola odorata L. Submit Updates

Adel Mehraban et al., Efficacy and safety of add-on Viola odorata L. in the treatment of COVID-19: A randomized double-blind controlled trial, *Journal of Ethnopharmacology*, doi:10.1016/j.jep.2022.116058

violet extract Submit Updates

http://jmums.mazums.ac.ir/article-1-18614-en.html

viomycin Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

VIR-7831/VIR-7832 Submit Updates

Basu et al., Therapeutics for COVID-19 and post COVID-19 complications: An update, *Current Research in Pharmacology and Drug Discovery*, doi:10.1016/j.crphar.2022.100086

VIR251 Submit Updates

Wu et al., Polyphenols as alternative treatments of COVID-19, *Computational and Structural Biotechnology Journal*, doi:10.1016/j.csbj.2021.09.022

viramidine Submit Updates

Esam et al., In silico investigation of the therapeutic and prophylactic potential of medicinal substances bearing guanidine moieties against COVID-19, *Chemical Papers*, doi:10.1007/s11696-022-02528-y

vitamin B1 Submit Updates

Eskandari, V., Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein, *Journal of Molecular Modeling*, doi:10.1007/s00894-022-05138-3

Vitamin B3 Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Vitamin K Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

vitamin K1 Submit Updates

Pandya et al., Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.100951

vitamin K2 Submit Updates

Pandya et al., Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.100951

vodobatinib Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

vorinostata Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

vortioxetine Submit Updates

Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, *Precision Clinical Medicine*, doi:10.1093/pcmedi/pbab001

VPS34-IN1 Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

VUWCOV059 Submit Updates

http://hdl.handle.net/10523/13405

VUWCOV270 Submit Updates

http://hdl.handle.net/10523/13405

VWCOV267 Submit Updates

http://hdl.handle.net/10523/13405

warfarin Submit Updates

MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, *Open Forum Infectious Diseases*, doi:10.1093/ofid/ofac156

WAY-278534 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

WAY-324709 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

WAY-358024 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

WAY-600 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

WAY-635109 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

WAY-648936 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

wedelolactone Submit Updates

Katuwal et al., In Silico Study of Coumarins: Wedelolactone as a Potential Inhibitor of the Spike Protein of the SARS-CoV-2 Variants, *Journal of Tropical Medicine*, doi:10.1155/2023/4771745

wintercherry Submit Updates

Kumar et al., COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery, *Genes & Diseases*, doi:10.1016/j.gendis.2022.12.019

witha-stramonolide Submit Updates

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013230/pdf/42535_2023_Article_601.pdf/? tool..

withanoside II Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

withanoside II Submit Updates

Choe et al., The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS-CoV-2 and Cytokine Storm, Chemistry & Biodiversity, doi:10.1002/cbdv.202200655

withanoside X Submit Updates

Ramli et al., Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, *Microorganisms*, doi:10.3390/microorganisms11041000

WNK-IN-11 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

wogonoside Submit Updates

Guerra et al., Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules, *ACS Omega*, doi:10.1021/acsomega.2c05766

Wormwood Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

wortmannin Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

WR1 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

WYE-125132 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

WYE-354 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

X01 nAb Submit Updates

Xiong et al., The neutralizing breadth of antibodies targeting diverse conserved epitopes between SARS-CoV and SARS-CoV-2, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2204256119

X10 nAb Submit Updates

Xiong et al., The neutralizing breadth of antibodies targeting diverse conserved epitopes between SARS-CoV and SARS-CoV-2, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2204256119

X17 nAb Submit Updates

Xiong et al., The neutralizing breadth of antibodies targeting diverse conserved epitopes between SARS-CoV and SARS-CoV-2, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2204256119

xanthohumol Submit Updates

Dabrowski et al., Humulus lupus extract rich in xanthohumol improves the clinical course in critically ill COVID-19 patients, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.114082

XC221 Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

xl-888 Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

Y-27632 Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

Y070-2684 Submit Updates

Nabati et al., Virtual screening based on the structure of more than 105 compounds against four key proteins of SARS-CoV-2: MPro, SRBD, RdRp, and PLpro, *Informatics in Medicine Unlocked*, doi:10.1016/j.imu.2022.101134

Y16 Submit Updates

Bojkova et al., Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform, *iScience*, doi:10.1016/j.isci.2023.105944

Yardenone Submit Updates

DIABATE et al., Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening, *Research Square*, doi:10.21203/rs.3.rs-2673755/v1

YinChaiXiaoDu Submit Updates

Xing, H., Current situation of COVID-19 treating with combination of traditional Chinese and Western medicine, *TMR Integrative Medicine*, doi:10.53388/TMRIM202307009

yohimibine Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

yruvic acid calcium isoniazid Submit Updates

Haritha et al., Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2022.2120537

Z LVG CHN2 Submit Updates

Riva et al., A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals, *bioRxiv*, doi:10.1101/2020.04.16.044016

Z-gly-leu-phechloromethyl ketone Submit Updates

Chen et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, *Frontiers in Pharmacology*, doi:10.3389/fphar.2020.592737

Z-Tyr-Ala-CHN2 Submit Updates

Doijen et al., Identification of Z-Tyr-Ala-CHN2, a Cathepsin L Inhibitor with Broad-Spectrum Cell-Specific Activity against Coronaviruses, including SARS-CoV-2, *Microorganisms*, doi:10.3390/microorganisms11030717

z-VEID-fmk Submit Updates

Chu et al., Coronaviruses exploit a host cysteine-aspartic protease for replication, *Nature*, doi:10.1038/s41586-022-05148-4

zabofoxacin Submit Updates

Rieder et al., A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease, *Neurotoxicity Research*, doi:10.1007/s12640-022-00542-2

zansecimab Submit Updates

Liu et al., DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, *Viruses*, doi:10.3390/v15040820

zanubrutinib Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

zavegepant Submit Updates

Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, *Therapeutic Advances in Vaccines and Immunotherapy*, doi:10.1177/25151355221144845

ZBC260 Submit Updates

Qiao et al., Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2, *Proceedings of the National Academy of Sciences*, doi:10.1073/pnas.2021450118

zearalenone Submit Updates

Sperry et al., Different HMGCR-inhibiting statins vary in their association with increased survival in patients with COVID-19, *medRxiv*, doi:10.1101/2022.04.12.22273802 (Table 2)

zeaxanthin Submit Updates

Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, *International Journal of Molecular Sciences*, doi:10.3390/ijms231911009

zelboraf Submit Updates

Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, *Scientific Reports*, doi:10.1038/s41598-023-30095-z

zeylanone Submit Updates

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

zileuton Submit Updates

Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, *Briefings in Bioinformatics*, doi:10.1093/bib/bbab114

zinc chloride Submit Updates

Sameni et al., Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study, *3 Biotech*, doi:10.1007/s13205-023-03518-x

ZINC00000634921 Submit Updates

Shen et al., Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study, *International Journal of Molecular Sciences*, doi:10.3390/ijms24044237

ZINC00000930519 Submit Updates

Shen et al., Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study, *International Journal of Molecular Sciences*, doi:10.3390/ijms24044237

ZINC00009464451 Submit Updates

Faisal et al., Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches, *Molecules*, doi:10.3390/molecules27165241

ZINC000011867103 Submit Updates

Pohler et al., Potential Coronaviral Inhibitors of the Nucleocapsid Protein Identified In Silico and In Vitro from a Large Natural Product Library, *Pharmaceuticals*, doi:10.3390/ph15091046

ZINC000013444414 Submit Updates

Manandhar et al., Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: a structure-based virtual screening and molecular dynamics study, *Structural Chemistry*, doi:10.1007/s11224-022-01921-3

ZINC000023909009 Submit Updates

Shen et al., Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study, *International Journal of Molecular Sciences*, doi:10.3390/ijms24044237

ZINC000027215482 Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

ZINC000072307130 Submit Updates

Onyango et al., In Silico Identification of New Anti-SARS-CoV-2 Main Protease (Mpro) Molecules with Pharmacokinetic Properties from Natural Sources Using Molecular Dynamics (MD) Simulations and Hierarchical Virtual Screening, Journal of Tropical Medicine, doi:10.1155/2022/3697498

ZINC000085488163 Submit Updates

Zhao et al., Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10, *Biochemical and Biophysical Research Communications*, doi:10.1016/j.bbrc.2022.08.029

ZINC000085488189 Submit Updates

Zhao et al., Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10, *Biochemical and Biophysical Research Communications*, doi:10.1016/j.bbrc.2022.08.029

ZINC000085488238 Submit Updates

Zhao et al., Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10, *Biochemical and Biophysical Research Communications*, doi:10.1016/j.bbrc.2022.08.029

ZINC000085489178 Submit Updates

Zhao et al., Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10, *Biochemical and Biophysical Research Communications*, doi:10.1016/j.bbrc.2022.08.029

ZINC000103666966 Submit Updates

Garg et al., In silico prediction of the animal susceptibility and virtual screening of natural compounds against SARS-CoV-2: Molecular dynamics simulation based analysis, *Frontiers in Genetics*, doi:10.3389/fgene.2022.906955

ZINC000104071421 Submit Updates

Pohler et al., Potential Coronaviral Inhibitors of the Nucleocapsid Protein Identified In Silico and In Vitro from a Large Natural Product Library, *Pharmaceuticals*, doi:10.3390/ph15091046

ZINC000137976768 Submit Updates

Manandhar et al., Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: a structure-based virtual screening and molecular dynamics study, *Structural Chemistry*, doi:10.1007/s11224-022-01921-3

ZINC000143375720 Submit Updates

Manandhar et al., Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: a structure-based virtual screening and molecular dynamics study, *Structural Chemistry*, doi:10.1007/s11224-022-01921-3

ZINC000252515584 Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

ZINC000253504766 Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

ZINC000253504770 Submit Updates

Kadioglu et al., Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2021.104359

ZINC001772610688 Submit Updates

https://www.researchgate.net/profile/Akila-Kannaiyan/publication/368779412_PREDICTION_OF_P.

ZINC001772610689 Submit Updates

https://www.researchgate.net/profile/Akila-Kannaiyan/publication/368779412_PREDICTION_OF_P.

ZINC001772612043 Submit Updates

https://www.researchgate.net/profile/Akila-Kannaiyan/publication/368779412_PREDICTION_OF_P.

ZINC002146610 Submit Updates

Brunt et al., Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations, *Scientific Reports*, doi:10.1038/s41598-022-24695-4

ZINC02111387 Submit Updates

Power et al., Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein, *Bioorganic Chemistry*, doi:10.1016/j.bioorg.2021.105574

ZINC02122196 Submit Updates

Power et al., Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein, *Bioorganic Chemistry*, doi:10.1016/j.bioorg.2021.105574

ZINC03231196 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

ZINC04090608 Submit Updates

Power et al., Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein, *Bioorganic Chemistry*, doi:10.1016/j.bioorg.2021.105574

ZINC069492350 Submit Updates

Brunt et al., Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations, *Scientific Reports*, doi:10.1038/s41598-022-24695-4

ZINC08535852 Submit Updates

Ghufran et al., In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations, *Bioengineering*, doi:10.3390/bioengineering10010100

ZINC097971592 Submit Updates

Brunt et al., Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations, *Scientific Reports*, doi:10.1038/s41598-022-24695-4

ZINC104891686 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC1166211307 Submit Updates

Aziz et al., Identifying non-nucleoside inhibitors of RNA-Dependent RNA-Polymerase of SARS-CoV-2 through Per-Residue Energy Decomposition-Based Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2023.02.009

ZINC12006217 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

ZINC12128321 Submit Updates

Nag et al., An in-silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.106433

ZINC12880820 Submit Updates

Omer et al., Coronavirus Inhibitors Targeting nsp16, Molecules, doi:10.3390/molecules28030988

ZINC1398350200 Submit Updates

Aziz et al., Identifying non-nucleoside inhibitors of RNA-Dependent RNA-Polymerase of SARS-CoV-2 through Per-Residue Energy Decomposition-Based Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2023.02.009

ZINC14684606 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC15657718 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC1602963057 Submit Updates

Aziz et al., Identifying non-nucleoside inhibitors of RNA-Dependent RNA-Polymerase of SARS-CoV-2 through Per-Residue Energy Decomposition-Based Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2023.02.009

ZINC2121012 Submit Updates

Omer et al., Coronavirus Inhibitors Targeting nsp16, Molecules, doi:10.3390/molecules28030988

ZINC2129028 Submit Updates

Omer et al., Coronavirus Inhibitors Targeting nsp16, Molecules, doi:10.3390/molecules28030988

ZINC25763686 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC2815797 Submit Updates

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

ZINC28467879 Submit Updates

Aziz et al., Identifying non-nucleoside inhibitors of RNA-Dependent RNA-Polymerase of SARS-CoV-2 through Per-Residue Energy Decomposition-Based Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation, Journal of Infection and Public Health, doi:10.1016/j.jiph.2023.02.009

ZINC285540154 Submit Updates

Aziz et al., Identifying non-nucleoside inhibitors of RNA-Dependent RNA-Polymerase of SARS-CoV-2 through Per-Residue Energy Decomposition-Based Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2023.02.009

ZINC32960814 Submit Updates

Negru et al., Virtual Screening of Substances Used in the Treatment of SARS-CoV-2 Infection and Analysis of Compounds With Known Action on Structurally Similar Proteins From Other Viruses, *Biomedicine & Pharmacotherapy*, doi:10.1016/j.biopha.2022.113432

ZINC33833455 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC33833712 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC408592119 Submit Updates

Brunt et al., Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations, *Scientific Reports*, doi:10.1038/s41598-022-24695-4

ZINC43465464 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC4349611 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC4416338 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC4416342 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC4416344 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC44928678 Submit Updates

Ghufran et al., In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations, *Bioengineering*, doi:10.3390/bioengineering10010100

ZINC45063 Submit Updates

Strodel et al., High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2, *MDPI AG*, doi:10.20944/preprints202004.0161.v1

ZINC611516532 Submit Updates

Aziz et al., Identifying non-nucleoside inhibitors of RNA-Dependent RNA-Polymerase of SARS-CoV-2 through Per-Residue Energy Decomposition-Based Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2023.02.009

ZINC61948742 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC739681614 Submit Updates

Aziz et al., Identifying non-nucleoside inhibitors of RNA-Dependent RNA-Polymerase of SARS-CoV-2 through Per-Residue Energy Decomposition-Based Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2023.02.009

ZINC89341287 Submit Updates

Nag et al., An in-silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.106433

ZINC9147119 Submit Updates

https://dergipark.org.tr/en/pub/tcandtc/issue/73446/1151841

ZINC98208626 Submit Updates

Aziz et al., Identifying non-nucleoside inhibitors of RNA-Dependent RNA-Polymerase of SARS-CoV-2 through Per-Residue Energy Decomposition-Based Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation, *Journal of Infection and Public Health*, doi:10.1016/j.jiph.2023.02.009

zingeberene Submit Updates

Nag et al., Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study, *Computers in Biology and Medicine*, doi:10.1016/j.compbiomed.2022.105552

Ziziphus spina-cristi Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

Zizyphus sativa Submit Updates

Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, *Interdisciplinary Perspectives on Infectious Diseases*, doi:10.1155/2023/7598307

ZnO/CGA-NPs Submit Updates

Abomughaid et al., ZnO-chlorogenic acid nanostructured complex inhibits Covid-19 pathogenesis and increases hydroxychloroquine efficacy, *Journal of King Saud University - Science*, doi:10.1016/j.jksus.2022.102296

ZnONPs Submit Updates

Sportelli et al., On the Efficacy of ZnO Nanostructures against SARS-CoV-2, *International Journal of Molecular Sciences*, doi:10.3390/ijms23063040

ZnSeC-Humicin Submit Updates

Hajdrik et al., In Vitro Determination of Inhibitory Effects of Humic Substances Complexing Zn and Se on SARS-CoV-2 Virus Replication, *Foods*, doi:10.3390/foods11050694

ß-thymidine Submit Updates

Wu et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, *Acta Pharmaceutica Sinica B*, doi:10.1016/j.apsb.2020.02.008

α-lactalbumin Submit Updates

https://www.biorxiv.org/content/10.1101/2021.10.29.466402v1

α-lipoic acid Submit Updates

Gallardo et al., SARS-CoV-2 Main Protease Targets Host Selenoproteins and Glutathione Biosynthesis for Knockdown via Proteolysis, Potentially Disrupting the Thioredoxin and Glutaredoxin Redox Cycles, *Antioxidants*, doi:10.3390/antiox12030559

α-mangostin Submit Updates

Qi et al., Discovery of TCMs and Derivatives Against the Main Protease of SARS-CoV-2 via High Throughput Screening, ADMET Analysis, and Inhibition Assay in Vitro, *Journal of Molecular Structure*, doi:10.1016/j.molstruc.2022.133709

β-chitosan Submit Updates

Gopal et al., Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope?, *Antibiotics*, doi:10.3390/antibiotics12040665

β-D-galactose Submit Updates

Arunkumar et al., Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2021.1921032

β -glucan Submit Updates

Banitalebi et al., In silico study of potential immunonutrient-based sports supplements against COVID-19 via targeting ACE2 inhibition using molecular docking and molecular dynamics simulations, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2021.2016489

β-sitosterol Submit Updates

https://www.sciencedirect.com/science/article/pii/S0223523421007066

γ-glutamyl cysteine Submit Updates

Gallardo et al., SARS-CoV-2 Main Protease Targets Host Selenoproteins and Glutathione Biosynthesis for Knockdown via Proteolysis, Potentially Disrupting the Thioredoxin and Glutaredoxin Redox Cycles, *Antioxidants*, doi:10.3390/antiox12030559

γ-mangostin Submit Updates

https://digitalcommons.pcom.edu/research_day/research_day_GA_2022/researchGA2022/20/

δ -viniferine Submit Updates

de Matos et al., Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review, Inflammation Research, doi:10.1007/s00011-022-01642-7

K-carrageenan Submit Updates

Arunkumar et al., Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery, *Journal of Biomolecular Structure and Dynamics*, doi:10.1080/07391102.2021.1921032

λ-carrageenan Submit Updates

Padmi et al., Anti-inflammatory potential of λ -carrageenan by inhibition of IL-6 receptor: in silico study, *IOP Conference Series: Earth and Environmental Science*, doi:10.1088/1755-1315/913/1/012106

CsA_M20, 10.3390/pharmaceutics15031023 Submit Updates

RetroMAD1, 10.21203/rs.3.rs-2712307/v1 Submit Updates