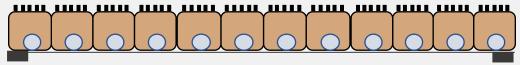


Long-term Follow-up of Subjects in a Phase 1/2a Clinical Trial of an Allogeneic, Bioengineered hESC-Derived RPE Implant for Advanced Dry Age-Related Macular Degeneration

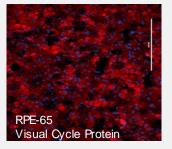

ISSCR Annual Meeting June 2023

Jane S Lebkowski PhD

The CPCB-RPE1 Implant, Is Designed to Improve Vision in Patients with AMD

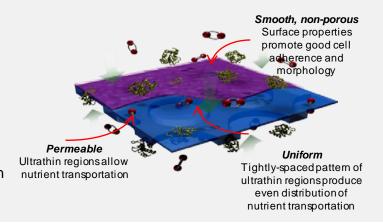
The Implant Design

Polarized Healthy RPE Cells: Replace Dysfunctional RPE Layer in AMD Retina


Ultrathin Diffusible Parylene Membrane: Replace Degenerating Bruch's Membrane

The Critical Components

RPE Cells


- Derived from pluripotent stem cells
- Polarized as in native retina
- Mature RPE cell function including visual cycle processing
- Integrate with photoreceptors to promote metabolic and growth factor support

Villif on Polarized RPE-Cells

Ultrathin Parylene Membrane

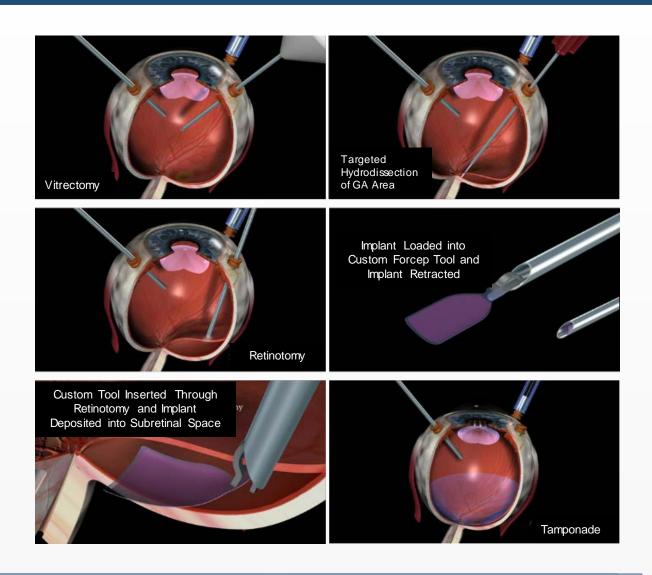
- Substrate for RPE cells to attach and polarize
- Uses USP Class VI biocompatible parylene monomer used >30 years in implantables
- Precise thickness to create diffusion properties similar to Bruch's membrane
- Provides flat surface without pores to limit cell penetration
- Foldable to reduce retinotomy size during implantation

The CPCB-RPE1 Implant

Implant Body

Phase 1/2a Clinical Trial Designed to Establish Safety and Potential Activity of the Implant in Patients with Advanced Disease

Study Design and Population			
Design	Single Arm Open Label Study		
Indication	Advanced, Dry Age-Related Macular Degeneration with Significant Geographic Atrophy Involving the Central Fovea		
Number of Subjects	16 Subjects		
Visual Acuity of Treated Subjects	BCVA ≤20/200; Worst Eye Treated; All Treated Eyes Legally Blind		
Dose	One Implant		
Primary Endpoint	Test the Safety and Tolerability of CPCB-RPE1 at 1 Year Post Implantation		
Secondary Endpoint	Assess Visual Acuity Retinal Function After CPCB-RPE1 Administration		
Immunosuppression	68-Day Immunosuppression Protocol Using Tacrolimus		

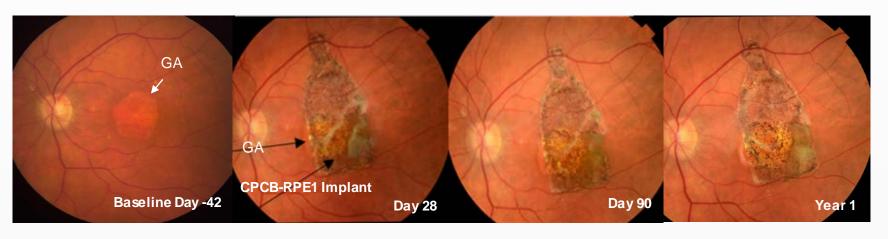


Phase 1/2a clinical trial designed to test:

- The safety and feasibility of administration of the implant
- The safety of the implant
- The immunosuppression regimen
- Possible signals of efficacy

Very late-stage, legally blind, subjects selected for first-inhuman clinical trial due to novelty of product and approach

Implant Surgical Delivery: Uses Well-Established Retinal Surgery Procedures



Custom surgical tool and ability to fold membrane enables delivery through 1.5mm Peripheral Retinopathy

- Uses Well-Established Retinal Surgery Procedures
- Administered as Outpatient Surgery

Imaging Shows Stable Placement of the CPCB-RPE1 Over the Area of GA Over Time

Subject 130

- Surgical Procedure Feasible and Safe
- Minimized Fibrinous Debris During Surgery
- Achieved Better Management of Hemorrhage
- Implant Stably Positioned Over Area of GA in All Subjects
- Stable Position of Implant Over Time

OCT Imaging Shows Good Preservation of Retinal Architecture Even When Implant Placed Over an Area with Intact Host RPE Cells

One Year Post-Implant Three Years Post-Implant Baseline Day -42 In Area of GA In Area of GA Outside Area of GA In Area of GA Outside Area of GA Outside Area of GA

CPCB-RPE1: Ocular Serious Adverse Events Through Last- Follow-up

Treatment Emergent Serious Adverse Events by System Organ Class, Preferred Term and Treatment Group Through the End of the Study				
System Organ Class Preferred Term		Cohort 1 (N=7)	Cohort 2 (N=9)	All Subjects (N=16)
Number (%) of Subjects with Serious TEAEs		7 (100.0%)	5 (55.5%)	12 (75%)
Eye disorders		4 (57.1%)	1 (11.1%)	5 (31.0%)
Detachment of retinal pigment epithelium		1 (14.3%)	0 (0.0%)	1 (6.3%)
Retinal hemorrhage, edema, retinal deposits		3 (42.9%)	0 (0.0%)	3 (18.7%)
Macular edema		1 (14.3%)	0 (0.0%)	1 (6.3%)
Retinal detachment		1 (14.3%)	0 (0.0%)	1 (6.3%)
Vitreous hemorrhage		0 (0.0%)	1 (11.1%)	1 (6.3%)

Two SAE's Possibly Related to Immunosuppression: Pneumonia and Weight Loss Both of Which Resolved

No Class I or Class II HLA Matching Performed Between Donor RPE Cells and Recipient Subject

- Genotyping Performed On 16 HLA Class I and Class II Alleles to Determine Extent of Mismatches
- All Subjects Have More than 50% of Alleles Mismatched
- Best Match is 7 of 16 HLA Alleles

Subject	# Mismatched HLA Alleles	Subject	# Mismatched HLA Alleles
204	9 of 12	401	≥9 of 16
125	14 of 16	216	12 of 16
128	9 of 16	403	12 of 16
303	11 of 16	404	13 of 16
304	10 of 16	606	13 of 16
305	12 of 16	502	13 of 16
130	11 of 16	607	12 of 16
501	13 of 16		

^{*}Genotyping performed at UCLA Immunogenetics Lab

No Robust Antibody Responses to Donor Cells as Measured in Peripheral Blood

- Antibodies to Single MHC Class I & II Molecules Assessed by Bead Flow Cytometry at UCLA Immunogenetics Lab.
- Assay Detects Antibodies to 97 MHC Class I & 99 Class II Antigens
- Antibody Responses to Individual MHC Class I and II Antigens Monitored at Baseline, 90,180, & 365-Days Post-Implantation.
- Baseline and Day 365 Day Data Available on 13/15 Subjects
- Only 1/13 Subject Had Weak Antibodies to a Single Donor HLA Antigen at Baseline day 180 and 365
- 12/13 Subjects Never Developed Antibodies to a Donor Antigen During the Year of Follow-up

Kashani et al. Stem Cell Reports 2022 17, 448-58

Change in Best Corrected Visual Acuity Over Time

— One Year Post-Implantation — — As of Last Follow-up

(mean 35.5 mos, range 12 to 54 mos, median 36 mos)

% Subjects With	Treated Eye % (n/15 Implanted Subjects)	Untreated Eye % (n/15 Implanted Subjects)	Treated Eye % (n/15 Implanted Subjects)	Untreated Eye % (n/15 Implanted Subjects)
% Subjects with Improved BCVA (>5 Letter Gain)	27% (4/15)	7% (1/15)	27% (4/15)	7% (1/15)
% Subjects with Improved (>5 Letter Gain) or Stable BCVA (+/- 5 Letters from Baseline)	67% (10/15)	47% (7/15)	53% (8/15)	20% (3/15)
% Subjects with Worse BCVA (>5 Letter Loss)	33% (5/15)	53% (8/15)	47% (7/15)	80% (12/15)

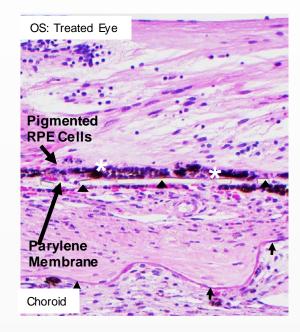
Change in Best Corrected Visual Acuity Over Time

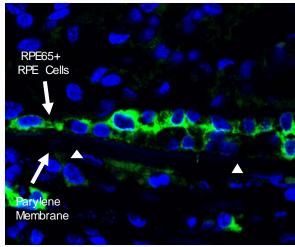
— One Year Post-Implantation — — As of Last Follow-up

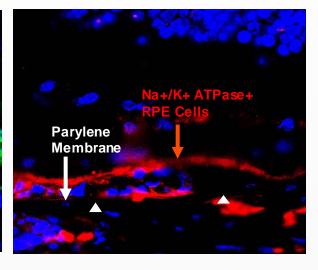
(mean 35.5 mos, range 12 to 54 mos, median 36 mos)

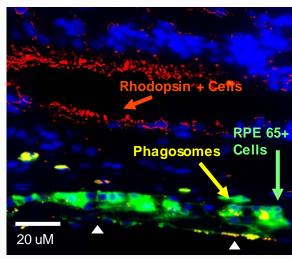
% Subjects With	Treated Eye % (n/15 Implanted Subjects)	Untreated Eye % (n/15 Implanted Subjects)	Treated Eye % (n/15 Implanted Subjects)	Untreated Eye % (n/15 Implanted Subjects)	
% Subjects with Improved BCVA (>5 Letter Gain)	27% (4/15)	7% (1/15)	27% (4/15)	7% (1/15)	
% Subjects with Improved (>5 Letter Gain) or Stable BCVA (+/- 5 Letters from Baseline)	67% (10/15)	47% (7/15)	53% (8/15)	20% (3/15)	
% Subjects with Worse BCVA (>5 Letter Loss)	33% (5/15)	53% (8/15)	47% (7/15)	80% (12/15)	

Change in Best Corrected Visual Acuity Over Time

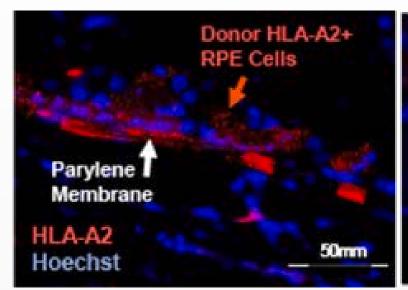

— One Year Post-Implantation — — As of Last Follow-up

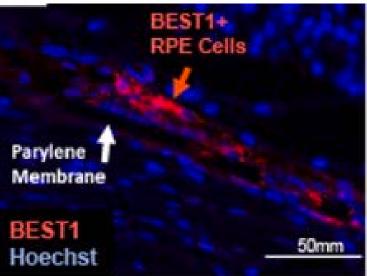

(mean 35.5 mos, range 12 to 54 mos, median 36 mos)

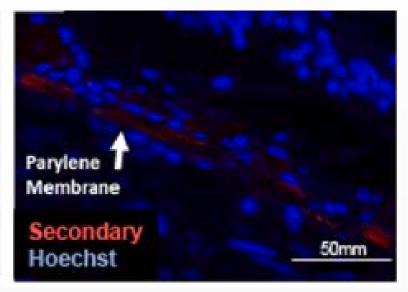

% Subjects With	Treated Eye % (n/15 Implanted Subjects)	Untreated Eye % (n/15 Implanted Subjects)	Treated Eye % (n/15 Implanted Subjects)	Untreated Eye % (n/15 Implanted Subjects)
% Subjects with Improved BCVA (>5 Letter Gain)	27% (4/15)	7% (1/15)	27% (4/15)	7% (1/15)
% Subjects with Improved (>5 Letter Gain) or Stable BCVA (+/- 5 Letters from Baseline)	67% (10/15)	47% (7/15)	53% (8/15)	20% (3/15)
% Subjects with Worse BCVA (>5 Letter Loss)	33% (5/15)	53% (8/15)	47% (7/15)	80% (12/15)


The Fully Allogeneic RPE Cells Survive at Least 2 Years with Only a Short Course of Immunosuppression

The RPE Cells are Polarized, Express Visual Function Proteins with Evidence of Phagocytic Activity




- Pigmented RPE Cells Survive on the Parylene Membrane at Least 2 Years
- Implanted RPE Cells Express RPE65, a Visual Function Protein
- Implanted RPE Cells Have Apical Expression of Na+/K+ATPase, Suggesting Polarized Mature Function.
- Spared Rhodopsin + Rosettes Over Implant
- Presence of Phagosomes Suggests
 Functional Integration of Implant RPE Cells


OS: Implanted eye; White Stars: Implanted HESC-RPE; White or Black Triangles: Parylene Membrane; Black Arrows Bruch's Membrane.

The Fully Allogeneic RPE Cells Survive at Least 2 Years with Only a Short Course of Immunosuppression

Summary

- 27% of subjects in Phase 1/2a clinical trial had a >5 letter improvement in best corrected visual acuity as of last follow-up (mean 35.5 mos)
- Improvements ranged from 7-15 letters
- 53% of subjects were stable or improved as of last follow-up
- Such improvements exceedingly rare in natural course of the disease in such late-stage patients
- 80% of untreated eyes lost 8-21 letters over the same time period compared to only 47% in the treated eyes,
- Viable, functional, allogeneic implant cells survive >2 years after implantation
- Preparing for Phase 2b clinical trial.

Acknowledgements

Patients and Caregivers

CPCB-RPE1 Team

Mark Humayun, USC David Hinton, USC Dennis Clegg, UCSB Biju Thomas, USC DanHong Zhu, USC Debbie Mitra, USC

Clinical Investigators

Amir Kashani Firas Rahhal Robert Avery Sanford Chen Clement Chan Neal Palejwala

RPT Team

Jane Lebkowski
Britney Pennington
Linc Johnson
Cassidy Arnold
Mohamed Faynus
Vignesh Nadar
April Ingram
Jeff Bailey

Leap Biomedical

Juan Gonzales Del White

DMC Medical Monitor Sigi Caron

City of Hope

Joseph Gold David Hsu Yasmine Shad Stephen Lin Wei Dang Larry Couture

