
©2013 The Software Practitioner

1
NOVEMBER 2013

NOVEMBER – DECEMBER 2013 The newsletter by and for software professionals. VOLUME 23, NO. 6

Also in This Issue

LETTERS:
Pragmaticus on Whistleblowers 3
Letter from Larry Peters; Gates is Number
One; Greatest Ever Comeback; Chaordic
Organizations by Linda Rising 4

REVIEWS:
Peopleware Third Edition by DeMarco and
Lister; Software Requirements Third Edition
by Wiegers and Beatty; Professional
Wordpress Plugin Development by
Williams, Richard, and Tadlock, review
by Johann Rost;The Laws of Software
Process by Armour ..6
Book FOR SALE; Mars Software 8
Engineers and Management
by Gary Stringham ...9

There’s controversy brewing in the world of
computing education.

The United Kingdom is instituting a new
computing curriculum. And the controversy
is about what subjects that should include.

As often happens in our field, the (British)
computer science folks have grabbed the reins
of this project, and the result is a curriculum
biased in favour of CS-type things – coding and
hardware design, for example. Other computing
educators have complained, noting that there’s
lots more to the computing field than CS:

UK Computing: Too Much CS?
• digital literacy (the basic skills of the

computing field)
• information technology (how to use tech-

nology to solve problems)
• computer science (how computers work,

including coding)
Apparently, the current curriculum was highly

influenced by the British Computer Society (BCS),
which is of course a CS-type organization. Other
educators have said things like “The BCS does not
represent the IT industry. It represents computer
science. Coding and programming is only one

very small part of the IT industry.”
It will be interesting to see how this con-

troversy plays out. And, of course, this same
controversy manifests itself in places like
university curricula and organizations, where
often CS dominates and in fact on occasion
replaces Information Systems and Information
Technology coursework.

Information source –
“New Computing Curriculum Still Does Not

Meet Industry Needs,” ComputerWorld UK,
Sept. 20, 2013; Ann Nguyen

A frequently debated issue in the software
engineering field is the relationship between
project size and project productivity. In general,
most people think that larger projects are more
complicated than smaller ones, and therefore
productivity on such projects will be lower.
However, until now there has been little data
available to support any such conclusion.

The good news is that there is now a report
summarizing data from three organizations
well-known for software project data collection.
The bad news is that the data, and therefore the
conclusions reached, differ!

The three organizations in question are
• the International Software Benchmarking

Standards Group, ISBSG
• the Capers Jones consultancy (identified

on the report as Namcook Analytics)
• Reifer Consultants LLC
In summary, both the Capers Jones and

Does it or doesn’t it?
Size vs. Productivity: are large software projects less productive?

Reifer Consultants data imply the conclusion
that larger projects exhibit smaller productivity.
But the ISBSG data tends to imply the opposite.

There are several reasons behind the dis-
crepancy. Although the intent of the study was
to examine large projects, the ISBSG data was
from smaller projects than the other two. In
addition, two of the companies measured size
in “function points,” whereas the third (Reifer)
measures size in “source lines of code” (which
are then converted by an (arguable) factor into
function points). (Function points are a measure
best known as a way of gathering data from
information systems type projects, whereas the
Reifer data is most often gathered from military
software projects, for which function points are
not necessarily designed). And finally, some of
the data was gathered for software development
only type activities, whereas others of the data
were gathered for software development support

activities. Given all of that, it is disappointing
but perhaps not surprising that no definitive
conclusions could be drawn from the data.

In addition, the use of reusable components
was treated differently by the companies in-
volved. The Reifer data showed, for example,
that for those projects where reuse was heavily
involved, productivity improved, although per-
haps still not up to the level of that for smaller
projects.

In conclusion, it is possible to say here that
(a) progress is beginning to be made in gathering
data across data collection companies, but (b)
comparing such data remains fraught with peril
at this point in time.

Here are some conclusions reached in a pa-
per reporting on a “family of empirical studies
...” on software estimation [Jorgensen 2013]:

Make estimation comparisons to similar
projects, and use work hours. The paper noted
the stubborn tendency of software estimators to
avoid comparisons with dissimilar projects, and
noted at the end that “there was good reason for
this reluctance.” It also described the problems of
using percentages as opposed to raw work hours
in doing comparisons.

Attend to unique properties of the refer-
ence project (avoid the tendency to overlook
dissimilarities).

Research Study Leads to Software
Estimation Rules of Thumb

Attend to estimation sequences (progress
through estimating similar-sized tasks).

Avoid using small user stories as references
(that tends to lead to whole-project under-es-
timation).

Attend to request formats (some formats
tend to bias estimation responses).

Use combinations of independent esti-
mates.

Reference:
Jorgensen 2013 – “Relative Estimation of

Software Development Effort,” IEEE Software,
March 2013; Magne Jorgensen

©2013 The Software Practitioner NOVEMBER 2013

2

Please…
 Enter my subscription
 Individual, $39/yr.
 Institutional, $99/yr.

 Send me information for
 advertisers
 Consider the enclosed article for

publication in SP
 Consider me as a reviewer on

(topics)

Name _____________________

Address ___________________

E-mail _____________________

CALL BOARD RESPONSE FORM
ISSN = 1083 - 6861
Distribution by Ebsco Publishing has been authorized

Shareware Subscriptions!!!
If you are an SP subscriber, get a friend to

subscribe and receive a $5 rebate. Just have
them put your name below, and send in their
check with this form.

PUBLISHER:
 Computing Trends,
 18 View Street,
 Paddington QLD 4064, Australia
 61-7-33-11-12-13
 email: rlglass@acm.org

EDITOR:
 Robert L. Glass

ASSOCIATE EDITOR:
 David N. Glass
 Bill Medland

ART EDITOR:
 P. Edward Presson

GRAPHICS
 Graphics II, Port Matilda, PA

EDITORIAL ADVISORY BOARD:
 David D. Lang
 Consultant (simulation)
 Steven C. McConnell
 Construx Software Builders
 (micros)
 Donald J. Reifer
 President, Reifer Consultants, Inc.
 (management/large projects)
Unless otherwise stated, articles in The
Software Practitioner are written by Robert
L. Glass, cartoons are created by John
Leatherman.

The Software Practitioner, a newsletter
by and for software professionals, needs
your help. This call board is our way of
telling you what help we need:

Call for Papers: We especially like les-
sons learned, approaches tried, experiments
conducted, surveys analyzed, unusual
applications, controversy, humor. If it’s
something you’d like to read, we’d proba-
bly like to publish it. We pay for accepted
articles in either subscription time (two
years per published article) or advertising
space (1/2 page per article), your choice.

Call for Subscribers: We need you.
We hope you need us! Subscribe now,
and make sure you get every issue of the
Software Practitioner. The cost is REALLY
low - $39/year, $29 for renewals, and $99
for institutions.

Call for Advertisers: Our readers are
the people who make recommendations
to the decision makers. People who want
reality, not hype. If you’d like to reach
that audience, we’d love to talk to you.
Our rates? $99/page, $54/half-page, $29
quarter-page.

WANTED:
One or more articles for SP

about the recent access failures of
the Affordable Care Act system.

Contact rlglass@acm.org.

©2013 The Software Practitioner

3
NOVEMBER 2013

LETTERS LETTERS LETTERS LETTERS LETTERS LETTERS LETTERS

I kind of like the generic idea of whis-
tleblowers. To someone like me, an iconoclast
of long standing, I like the idea of someone
ratting on all those stuffed shirts who make
rules that they expect the rest of us to obey, or
who cheat and lie to get away with things that
the rest of us wouldn’t dream of doing. It’s the
good guys (the whistleblowers) vs. the bad guys
(the stuffed shirts/liars/cheaters) all over again.

So then why is it, whistleblowers of the
world, that when I’m confronted with actual,
specific, living and breathing whistleblowers,
I find I don’t like them? Or, since this is an
open letter to whistleblowers, I don’t like YOU?

What’s a whistleblower, you readers may be
asking? Actually, readers, that’s a very good
question, because hiding behind the definition
of the word is one reason I find myself liking
the generic concept of whistleblowing, and
disliking its perpetrators. Well, to quote one
source of definitions of the word, in the book
[Rost and Glass 2011], they offer this definition:

Whistleblowing is the act of exposing a
wrongdoing in the hope of bringing it to a halt.

Now, who could possibly find fault with
that? It’s a noble effort, this whistleblowing
thing, and I applaud all of you whistleblowers
out there.

Oh, except for two of you guys: Julian As-
sange and Edward Snowden

Now, you readers may be wondering what
it is that I dislike about these guys. Well you
might ask. Many people, all over the world,
find them just as admirable as I find whis-
tleblowers in general. But here’s the thing.
The wrongdoing that these whistleblowers are
choosing to identify I find myself doubting is
really wrongdoing.

Now what they’re doing, or in fact have done
(they’re out of action, both of them, for awhile)
is expose certain pieces of secret information
from American files to which they or some of
their informers had access. Lots, in fact, of
such secret information. Much of that secret
information that they have chosen to release is
embarrassing or worse to the American govern-
ment. They show strategies that the Americans
have engaged in, and the who/what/where of
activities of the US, and all of what they have
exposed has been classified as secret by a gov-
ernment that really didn’t want that information
broadcast to the wider world.

It’s interesting who is choosing up sides on
these matters. Those who are not fond of the
US, and there are many of them across the world,
are delighted by these exposures. Those who
like the US but not certain of its actions are also
delighted by them. Those who just like seeing
the greatest country in the world (is that a fair
statement? It is certainly arguable, but I think
it’s true) humbled, are delighted.

And then there are those who, like me, really
don’t like you Assanges and Snowdens of the
world and what you are doing. I personally,
earlier in my career, held a Secret clearance, and
that was sort of like a sacred trust to me, one I
would never have thought of violating. There’s
something almost immoral about violating such
a trust, perhaps even treasonable. Those are
strong words, of course but it is my viewpoint,
and there are others who agree with me.

And then there’s the information you are
disclosing. Some of it is relatively innocent.
There’s a lot of international gossip in those
secret files you’ve been releasing, and putting
it out for the world to see is embarrassing, but
not much more. There’s some stuff about
strategy and tactics also, in those secret files,
and if you’ve ever played poker you know that
you don’t want certain information about your
own holdings disclosed to the other players
at the table (we all have secrets at times, and
we don’t want someone blabbing them about).
And there’s also some secret information whose
release puts lives at risk, like the identification
of agents and spies, and it is here that releasing
those kinds of secret information verges on
treason. And then there’s something lurking
behind all of this – what makes a whistleblower
so certain that the information being released is,
to quote our definition above, about a “wrong-
doing”? It takes a certain kind of ego for a
whistleblower to decide that his judgement is
superior to those who originally classified the
material.

But, truth to tell, this only tap-dances around
the fringes of why I don’t like you, Assange
and Snowden. There’s something strongly
odiferous about the personal behaviour of each
of you that makes me want to detach you from
the category “whistleblower,” which I generi-
cally like, and put you in my own personal “bad
guy” category.

First of all, there’s the matter of ethics. You

An Open Letter to Whistleblowers
(and especially to Julian Assange and Edward Snowden)

say, Julian Assange, that you believe in open-
ness and honesty. And yet your own personal
behaviour, as documented in lots of different
places, is one of holding your own cards close
to your vest, exposing as little about yourself
as you can get away with. You’re a hypocrite,
Julian Assange, and perhaps the worst example
of your kind in the world today.

Oh, and then there’s the little matter of
that rape charge back in Sweden. It’s ironic
that many of the people who support you are
in the political camp of those who strongly
oppose rape. Now I realize that you see this as
a trumped up charge, one designed by the evil
US to force you back into their clutches. But
the charge seems pretty convincing to me (and
to much of the rest of the world), and of course
the only way you can escape its ramifications is
to subject yourself to the trial that the Swedish
government and your alleged rape victims want
you held to task for. I certainly don’t feel sorry
for you, hiding out in that tiny Ecuadorian em-
bassy in London, avoiding taking responsibility
for your actions.

There’s one more thing. You ran for political
office here in Australia in the last election, a
couple of months back. You of course couldn’t
campaign here, seeing as how you have locked
yourself away in London, and it is important to
note that your Australian second-in-command
disavowed you and your beliefs and resigned
from your campaign (on the very important
and relevant grounds that you were being too
secretive about your actions!) as the election
approached. I think most Australians saw your
campaign as a curiosity at best; in any case,
you were not elected. Whatever groundswell
of support you may have assumed was there, it
didn’t materialize.

 Now Edward Snowden is another matter, of
course. Whereas Assange released secrets pro-
vided to him by someone else (who eventually
and curiously came out as wishing to be sexually
changed into a woman, and who now goes by
a female name), Snowden was the one with the
secret clearance and the one who did the releas-
ing of the data to which he had access. Again,
it’s easy to choose up sides regarding Snowden.
But what I find at least faintly suspicious is that,
once he got caught like a deer in the headlights,
he ran for the country that is most at odds with
the US, the one most likely to love harboring a
“whistleblower” from America, Russia. And,
of course, that brings us to the final irony. It is
likely true that Russia has more secrets, and is
more protective of them, than any other country
on earth. It is easy to imagine that the Russian
government, while welcoming Snowden to their
shores for the embarrassment it gives to the US,
is pretty nervous about letting him anywhere
close to its own secrets. It will, I suspect, be
an uneasy (at best) relationship). Just as I can
envision Assange eventually bailing out of
the Ecuadorian embassy, I can easily envision
either Snowden bailing out of Russia, or that
country evicting him, depending on how well
he can keep his “whistleblowing” habits in
check over there.

There you have it, Julian Assange and Ed-
ward Snowden I don’t think much of you and

©2013 The Software Practitioner NOVEMBER 2013

4

} This is not a metaphor.
Organizations really

are alive.~

your kind of whistleblowing. But I realize that
many of my readers will not agree with me,
some more vehemently than others. So let me
make this offer. If any of you readers want to
respond to this, please feel free, and I’ll publish
the best of the responses in some future issue of
the Software Practitioner.

 Reference:
Rost and Glass 2011 – The Dark Side of

Software Engineering, IEEE Computer Society
Press / Wiley, 2011; Johann Rost and Robert
L. Glass

(The editor of this publication, who is
also a co-author of this book, made me add
the following:

There are copies of this book for sale, at
$29+$20 postage outside Australia, from Rob-
ert L. Glass, 18 View St., Paddington QLD
4064, Australia; rlglass@acm.org)

To the Editor:
Apple’s corporate value is $450 BILLION,

not million.

– Larry Peters

From the Editor:
(This letter is in response to an SP article

in the Sept. , 2013 issue that said “Apple is
the world’s most valuable company, with a
market value of $450 million). I never was
very good on numbers any larger than my
waist size...)

Gates Is Number
One (Again, Again,
and Again!)
Speaking of Very Large Numbers, the

Software Practitioner would like to pass on
this data from Time Magazine (international
edition), Sept. 30. “20 is the “number of years
that Bill Gates has topped Forbes Magazine’s
list of the richest Americans; this year, his net
worth climbed to $72 billion.” How’s that for
a reason for sticking with the software field as
a career choice?!

The Sporting
World’s Greatest
Ever Comeback
Computing hardware and software con-

tinue to punch well above their presumed
weight in the wider world. Not only have
they produced the world’s most valuable
company (see above)and the nation’s richest
man (also see above), but now Oracle’s come
from behind win in the America’s Cup com-
petition has been called “the greatest come
from behind victory in sporting history” (at
one point they trailed 8-1, then came back
to win 9-8).

“Geesh, Linda, not another
buzzword! We’re drowning in them
already. We know you love to read
about all the latest and greatest,
but come on! What the heck is this
chaordic stuff?”

Sorry, guys, I’ve been thinking about this for
some time and I’ve decided to share what little
insight I have because I think this is an important
topic. I say, “share what little insight” because
I’ve been looking for answers, for a nice set of
rules or guidelines and I’ve finally realized that
there aren’t any. So, I might as well go ahead and
maybe we can work this out together.

Here’s the problem. All those agile methods
are really taking the software development
world by storm. The question in my mind was:
I can see how agile approaches work for small
teams. It’s a no-brainer. But what about large
projects? What about the Boeing 777? What
about some of the large military projects I’ve
seen? There is no way those could have been
done with a team of less than ten—even a team
of incredibly great people. Is the answer a col-
lection of small teams? For Scrum users, would
you have a Scrum of Scrums? Is there a limit to
the number of teams you would have on a really
big project—like the “no more than 10” limit
on team size? What lessons can we apply from
studying the agile approaches? I can’t make
it work. I keep coming back to a hierarchical,
structured, top-down approach and somehow,
deep down, I know that’s not right. Then I started
reading about complexity theory, the edge of
chaos, and then, chaordic organizations. I think
this is it—I just don’t know what “it” is!

This article is just to share information. This
is not the answer for all your problems. I don’t
know any software projects that are run this way.
My examples are all from other domains—but
when I read the other accounts, I can see how
they could apply to software.

The structure of the organizational world
in which we develop software is pretty old. In
fact, the organizational structure of everything—
church, university, corporation, nation-state—
has been pretty much the same for more than 300
years. This exists in a time of rapid change. The
Web has made more information available than
we can handle and it is available instantaneously.
As futurist, James Burke, pointed out, it took
centuries for the knowledge of the smelting of
ore to cross a single continent and bring about
the Iron Age. When man stepped onto the moon,
it was known and seen in every corner of the
world 1.4 seconds later. It seems we’re ready
for something a little more flexible! All our
institutions concentrate decision-making in the
hands of relatively few people. The explosion
of information chokes these decision-making
systems, making them slow to respond and
certainly not agile. [Hock98]

The world-shaking (in the 17th century, at
least) ideas of Newton and Descartes led to a
machine metaphor that is still used today. We
see the entire universe and everything in it as a

giant mechanism where each and every compo-
nent acts on the other components in a precise
way with clearly understood cause and effect.
We don’t realize how powerful this metaphor
is and how it affects our thinking about people,
who, we know are not components and do not
behave in a mechanistic fashion. Our organi-
zations are built to treat the people who work
in them as cogs in a machine. We hire, reward,
and fire them in the same way we have been for
hundreds of years—even though the world has
changed—drastically. [Hock98]

Moving away from a hierarchy means more
control is given to the teams and to the individu-
als on the teams. This is more complicated than
simply saying, “OK, you guys are in charge. Go
for it!” The answer seems to come from some
high-powered folks in the research community
who are looking at complexity theory. The basic
idea is that organizations should be like biologi-
cal organisms. The researchers say, “This is not a
metaphor. Organizations really are alive.” Let’s
try to understand this model to take advantage of
the best way to harness the power in this living
organism. [Senge+99]

Managers unconsciously follow the second
law of thermodynamics, the belief that every-
thing in the universe tends toward disorder,
unless it is managed. Modern managers might
be better off dropping the title of manager, fol-
lowing the dynamics of complexity, and discov-
ering that natural systems tend to move toward
and find their most vital form at the boundary
between chaos and order. One step too much to
one side or another, and like most companies in
a fast-developing market, they will not survive
their particular generation. Evidence from the
science of complexity says that given certain
clear parameters, communities or teams will
become self-organizing. [Whyte94]

“Hmmm…complexity science.
OK, now you’ve lost me. I need
something to hang on to, Linda.
How about some real-life stories?”

Chaordic Organizations
Linda Rising

linda@lindarising.org • www.lindarising.org

} ...natural systems tend
to move toward and find

their most vital form at the
boundary between
chaos and order.~

mailto:linda@lindarising.org

©2013 The Software Practitioner

5
NOVEMBER 2013

OK, you’re right, this complexity and
chaos stuff can get out of hand in a hurry! I’ll
tell you the Visa story, not only because it’s
compelling, but it’s also what got me started
down this road. The Visa credit card is famil-
iar to all of us but we might not know Dee
Hock. I’ve never met him but I’ve heard he’s
a dynamic speaker, but that’s not why people
want to hear what he has to say. They listen
because he has a success story to share—a
powerful success story. Over 25 years ago, he
had a chance to put ideas about restructuring
organizations, moving beyond hierarchy and
command-and-control to an organization that
followed biological principles. He named
this structure, “chaordic.” [Waldrop96] After
searching in vain for a more suitable word,
it seemed simpler to Hock to make one up.
Since such systems, perhaps even life itself,
are believed to arise and thrive on the edge
of chaos with just enough order to give them
pattern, he borrowed the first syllable of each,
combined them and produced—chaord (cha
from “chaos” + ord from “order”). [Hock00]

The business that Dee Hock inspired—
Visa—has prospered. Since 1970 it has grown
by something like 10,000%. It continues
to expand at roughly 20% per year. It now
operates in some 200 countries worldwide
and serves roughly half-a-billion clients.
[Waldrop96]

The organization is highly decentralized
and highly collaborative. Authority, initia-
tive, decision-making, wealth—everything
possible is pushed out to the periphery, to
the members. This resulted from the need to
reconcile a fundamental tension. On the one
hand, the member financial institutions are
fierce competitors: they—not Visa—issue
credit cards, which means they are constantly
going after each other’s customers. Members
must also cooperate with each other. Partic-
ipating merchants must be able to take any
Visa card issued by any bank, anywhere.
Banks follow standards on issues such as
card layout. They participate in a common
clearinghouse operation that reconciles all
accounts and makes sure merchants get paid
for each purchase, the transactions are cleared
between banks, and customers get billed.
This blend of cooperation and competition
allows the system to expand worldwide in
the face of different currencies, languages,
legal codes, customs, cultures, and political
philosophies. No one way of doing business,
dictated from headquarters, could possibly
have worked. The organization had to be
based on biological concepts to evolve, to
invent, and to organize itself. [Waldrop96]

“Nice story, Linda. But Visa is a
banking study and maybe one of a
kind! Got anything else in the trea-
sure chest?”

Sure! Lots more. But realize that the
Visa story is more powerful than you might
imagine. Our first response to almost any case
study or pilot project is to say, “BUT!” This
response is just human nature. We hang on
to what we know. It’s actually, the sane thing
to do. Otherwise, we’d be blown around by
every new idea that comes along. I respect
your skepticism!

Here are some more stories. But remember,
my goal is not to convince. My goal is to learn
along with you. I’m looking for answers, not
presenting the final solution to all our prob-
lems. The following story is especially inter-
esting to me as an amateur musician. I see a
lot of similarities between software developers
and orchestral musicians. See what similarities
and differences you can find!

Orpheus Chamber Orchestra is an orchestra
with a difference: it has no conductor. The
group was founded in 1972 by cellist Julian
Fifer and a small group of musicians to bring
democracy, personal involvement, and mutual

respect into an orchestral setting. Orpheus,
considered to be one of the world’s great or-
chestras, comprises 27 permanent members—
employees who cannot be fired—and a number
of substitute players who fill in where neces-
sary, a board of trustees, and administrative
management. In most orchestras, the conduc-
tor not only decides what music will be played
but how it will be played, with little room for
opinions or suggestions from the musicians.
Musicians follow the conductor’s direction.
Anything less invites humiliation before one’s
colleagues and may be grounds for immediate
dismissal. As a result, orchestral musicians
are notoriously unhappy employees. When a
Harvard Business School professor studied job
attitudes, orchestral musicians ranked below
prison guards in job satisfaction. [Seifter01]

Orpheus applies collaborative leader-
ship—any member can lead a rehearsal and
performance as concertmaster, or lead one
of the orchestra’s formal or informal teams.
This system is extremely flexible—musicians
freely move in and out of positions of lead-
ership—and it can quickly adapt to changing
conditions in the marketplace or within the
group itself. The free flow of leadership
positions within the group encourages all
the members to give their best. Cellist Eric
Bartlett says, “When there’s an important
concert, everybody feels it, and everybody
does their absolute best work, giving it their
utmost concentration, playing off of each
other, and making sparks fly. In a conducted

orchestra, you have a more passive role. You
have to play extremely well, but you’re not
playing off your colleagues—you’re playing
off the person with the baton. People in regular
orchestras are not emotionally involved in the
same way.” [Seifter01]

Members of Orpheus are energized and
responsive to the needs of the organization and
to the desires of its leaders. Turnover is ex-
tremely low and employee loyalty is extremely
high. The result is a better product, increased
customer satisfaction, and a healthier bottom
line. According to double-bass player Don
Palma, a founding member, “I took a year off
from Orpheus and went to the Los Angeles
Philharmonic. I hated it. I didn’t like being told
what to do, being treated like I wasn’t really
worth anything other than to just sit there and
be a good soldier. I felt powerless to affect
things, particularly when they were not going
well. I felt frustrated, and there was nothing I
could do to make things better. Orpheus keeps
me involved. I participate in the direction the
music is going to take.” [Seifter01]

How about that story? Inspiring? Next time
you hear an orchestra, I’ll bet you’ll think
about the experience in a new light.

OK, one more and this one is impressive
because it’s the military! Who would have
thought that they would be a prime example
of an agile organization!In the late 1980s, the
U.S. Army’s senior leaders studied complexity
theory and began to apply them as an alterna-
tive to their command-and-control paradigm.
According to General Gordon R. Sullivan,
retired Chief of Staff of the Army, “The par-
adox of war in the Information Age is one of
managing massive amounts of information and
resisting the temptation to over-control it. The
competitive advantage is nullified when you
try to run decisions up and down the chain of
command. All platoons and tank crews have
real-time information on what is going on
around them, the location of the enemy, and
the nature and targeting of the enemy’s weap-
ons system. Once the commander’s intent is
understood, decisions must be devolved to the
lowest possible level to allow these frontline
soldiers to exploit the opportunities that de-
velop.” [Pascale+00]

The Army has improved the quality of the
recruits and their training and the electronic
communications among the members of a
fighting unit. Typically, military services lan-
guish during peacetime and then misapply the
most recent war’s doctrine to the challenges of
the next. Since the Vietnam War, the Army has
made technological obsolescence “the enemy.”
The introduction of distributed information al-
lows the foot soldier or tank commander in the

} once the commander’s
intent is understood,

decisions must be devolved
to the lowest possible

level to allow those frontline
soldiers to exploit opportuni-

ties that develop...~

} The organization is
highly decentralized.
Authority, initiative,

decision-making, wealth -
everything possible is pushed

out to the periphery...~

} ...orchestral musicians
ranked below prison guards

in job satisfaction...~

©2013 The Software Practitioner NOVEMBER 2013

6

field to know roughly as much about what’s
going on as the generals in the command
center. This doesn’t mean that tank crews fly
helicopters or that soldiers spontaneously de-
cide to support Kurdish rebels. The Army uses
the “Commander’s Intent,” which defines the
scope of an engagement. This concept traces
its origins to General Patton who said, “Never
tell people how to do things. Tell them what
to do and they will surprise you with their
ingenuity.” Combat units are encouraged to
improvise and initiate within the structure
of the Commander’s Intent. When that intent
is clearly communicated, fighting units can
exploit opportunities or regroup when things
don’t go as planned. [Pascale+00]

Finally, for those of you who really love
stories, here’s a link to another great one—
how GE builds jet engines. Enjoy! http://
www.fastcompany.com/online/28/ge.html

Let’s summarize some lessons learned
from the stories. Although creating a chaordic
organization does not mean following a set
of guidelines or procedures these seem to be
characteristic of the projects I’ve studied.

Distribute power and functionality to
the lowest level possible. As Dee Hock says,
“No function should be performed by any part
of the whole that could reasonably be done by
any more peripheral part, and no power should
be vested in any part that might reasonably be
exercised by any lesser part.” [Waldrop96]

Instead of a chain of command, create
a framework for dialogue, deliberation,
and coordination among equals. Authority

By Tom DeMarco and Timothy Lister
Published by Addison-Wesley and Dorset
House, 2013 (previous editions published
in 1987 and 1999)
Review by Robert L. Glass
Usually, I don’t review subsequent editions

of computing/software books. All too often,
the first edition contains the essence of the
material to be presented, and subsequent issues
are more like warmed-over meals, worthwhile
but not presenting enough that is new.

But how could I resist reviewing the newest
edition of Peopleware? That’s the book that I
consider one of the two most important books
in our field (the other is Fred Brooks’ The
Mythical Man-Month) (*). If the authors of
this important book think they have something
new and worthwhile to say, I actually wait with
baited breath to see what that is!

Now, for those who don’t know about even
the first edition of the book (how can that
be, I mumble to myself!), what the book’s
fundamental premise is “Our main problems
[in software development] are more likely to
be sociological than technological.” And in
this edition, the authors expand their material
by visiting a collection of sociological issues
that have evolved since the earlier editions
came out:

In the new chapter “Let’s Talk about Lead-

Peopleware: Productive Projects and Teams, Third Edition
ership,” they point out that “Leaders make it
possible for the magic to happen,” note that
leaders are “a catalyst, not a director,” and
point out that “Leadership as a service always
operates without official permission,” and goes
on to note that this is how innovation most
often comes about.

In “Childhood’s End,” which addresses
the generational change in software folk,
the authors speak of the tendency of today’s
young to engage in “continuous partial atten-
tion “ – timesharing themselves over various
tasks – and note that this gets in the way of
“flow,” which is about concentrating on the
task at hand.

In “Human Capital,” they note that “Com-
panies with knowledge workers have to realize
that it is their investment in human capital that
matters most,” and go on to explain how so
often that investment is frittered away.

In “Teamicide Revisited,” they note ways
that team productivity can be inadvertently
diminished, saying “Extended overtime is a
productivity-reduction technique...”

In “Competition,” they say that “Com-
petition [within a group] is certain to inhibit
team jell.”

In “Dancing with Risk,” they note that
management says things like “This work is so
important that we need to have it finished by
Jan. 1” when what they really mean is ”This

comes from the bottom up, not the top down.
The U. S. federal system is designed so au-
thority rises from the people to local, state,
and federal governments. While the system
appears to be hierarchical, it is not a chain
of command. Instead, each level serves as a
forum for members to raise common issues,
debate them, and reach some kind of consen-
sus and resolution. [Waldrop96]

Take a minimalist approach to rules.
Historically, organizations have relied on
rules and standard operating procedures to
maintain efficiency and productivity. But
as Dee Hock and others have pointed out,
specifying many detailed rules intended to
cover all situations can lead to behaviors
that appear ridiculous to customers and
other outside observers, because employees
stop thinking and apply the rules arbitrarily.
[Just a comment here: remember the horrible
story in 1999 where 8,000 passengers were
imprisoned on 30 Northwest Airlines planes
for as long as 8 hours without food, water,
or working toilets? This is a classic example
of employees’ following rules mindlessly.]
In rapidly changing or globally dispersed
operation environments, the benefits of ef-
ficiency (doing things one way) should give
way to effectiveness (doing the right thing
using many different ways, tailored to the
situation). [Senge+99]

There’s currently a lot of research about
complexity theory and how its tenets can be
applied in organizations, I hope this introduc-
tion has inspired you to learn more.

References
[Hock98] Hock, D., 1998 ODN Annual

Conference Keynote: An Epidemic of
Institutional Failure, “Organizational De-
velopment and the new Millennium” Or-
ganization Development Network Annual
Conference, New Orleans, Louisiana,
November 16, 1998. http://www.odnet-
work.org/odn98/followup/deehock.html

[Hock00] Hock, D., “The Art of Chaordic
Leadership,” Leader to Leader, Winter
2000. http://www.pfdf.org/leaderbooks/
l2l/winter2000/hock.html

[Norman99] Norman, D.A., The Invisible
Computer, The MIT Press, 1999.

[Pascale+00] Pascale, R. T. Pascale, M. Mil-
lemann, and L. Gioja, Surfing the Edge of
Chaos, Crown Business, 2000.

[Seifter01] Seifter, H., “The Conduc-
tor-lesszOrchestra,” Leader to Leader,
Summer 2001. http://www.pfdf.org/
leaderbooks/l2l/summer2001/seifter.html

[Senge+99] Senge, P., A. Kleiner, C. Rob-
erts, R. Ross, G. Roth, B. Smith, The
Dance of Change: The Challenges to
Sustaining Momentum in Learning Or-
ganizations, Doubleday, 1999.

[Waldrop96] Waldrop, M.M., “The Tril-
lion-Dollar Vision of Dee Hock,” Fast
Company, November 1996, 76-86.
http://www.fastcompany.com/online/05/
deehock.html

[Whyte94] Whyte, D., The Heart Aroused:
Poetry and the Preservation of the Soul
in Corporate America, Currency Dou-
bleday, 1994.

REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS

work is so unimportant that we don’t want to
extend if beyond Jan. 1.”

In “Meetings, Monologues, and Conversa-
tions,” they note that meetings are all too often
about “competitive windbagging,” and go on to
say that ”A meeting that is ended by the clock
[is not a working meeting], it’s a ceremony.”

And finally, in E(vil) Mail, they decry the
tendency to cc everyone on an email, saying
that some sort of “need to know” test should be
applied before adding a cc to the mailing list.

Rereading this book was a wonderful and
nostalgic experience, like meeting an old friend
after 26 years! If you don’t know Peopleware,
correct that flaw immediately. If you do, I can
still recommend adding this third edition to
your library.

* And for a guy who has written more than a
couple of dozen software-related books, that’s
a confession that’s painful to make!

} Our main problems
[in software development]

are more likely to be
sociological than
technological ~

http://www.odnetwork.org/odn98/followup/deehock.html
http://www.odnetwork.org/odn98/followup/deehock.html
http://www.pfdf.org/leaderbooks/l2l/winter2000/hock.html
http://www.pfdf.org/leaderbooks/l2l/winter2000/hock.html
http://www.pfdf.org/leaderbooks/l2l/summer2001/seifter.html
http://www.pfdf.org/leaderbooks/l2l/summer2001/seifter.html
http://www.fastcompany.com/online/05/deehock.html
http://www.fastcompany.com/online/05/deehock.html

©2013 The Software Practitioner

7
NOVEMBER 2013

REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS

By Karl Wiegers and Joy Beatty
Published by Microsoft Press, 2013
Review by Robert L. Glass
Subsequent editions of computing books

trouble me. I’m never quite sure whether I ought
to be reviewing what’s new about the book, or
the whole book, original parts and new parts
together. And, to make that issue more compli-
cated, I’m never quite sure what it is that’s new
about the book, so I’m normally condemned to
reviewing the whole thing. And, to be honest,
I suppose I’m a little bit jealous. None of MY
books has ever made it to a third edition!

But that dilemma is eased somewhat with
this book. It starts right out by explaining
what’s new in its subject field since the pre-
vious edition. That’s slightly different from
what’s new about this edition, but I think one
can assume that there’s a correlation between
what the authors see as new about their field,
and what they’ve done to the previous edition
to bring it up to date.

OK, so what’s new about the requirements
field that prompted the authors to produce a
third edition?

• The field has become a professional
discipline, with certification and support
organizations

• Requirements support tools are maturing
• Increasingly, agile approaches impact

everything about the computing field,
requirements especially included

• There is increasing use of visual models
I don’t know how many pages were in

the previous editions, but this one is HUGE!
Getting up toward 700 pages, enough that just
holding the book up to read and review it be-
comes a chore! Still, that’s a good thing, right?
You’d rather such a book contains too much
information than too little.

And what’s my bottom line here? Two things

Software Requirements (Third Edition)
– I have to admit that I personally know and
like the lead author of this book, and I would be
embarrassed if I had to say nasty things about
it (although I have been frequently known to do
just that!) But fortunately, I don’t have anything
nasty to say – I in fact like the way the book is
organized, and I like what it contains.

Some particularly likeable things:
 Each new topic begins with a realistic and

often contentious conversation between two
or more principals on a relevant project. It’s
a comfortable way to be introduced to a topic.

The book focuses not just on relevant con-
versations, but relevant projects / case studies.
It has a feeling of realism.

It feels astonishingly thorough. Here are just
some of the topics it covers – use cases, business
rules, requirements specifications (note – that
is not your standard Computer Science formal
specs discussion), representation techniques,
quality requirements, prototyping, prioritizing,
validation, requirements reuse (that’s a fasci-
nating concept all by itself!), and requirements
management.

 It presents a bill of rights, and a bill of
responsibilities, for the customers that require-
ments analysts deal with.

Rights:
Business Analysts (BAs) should learn the

customer’s language
BAs should learn about the business itself

and its objectives
BAs should record the requirements ap-

propriately
BAs should explain their practice and the

expected deliverables
You the customer have a right to change your

requirements
There must be mutual respect
BAs must be prepared to listen to what’s

wrong with the current solution

BAs must be prepared to provide increased
ease of use vs. the current approach

BAs should be prepared to suggest reusable
approaches

BAs must provide a new system that meets
needs and expectations

Responsibilities:
Customers must educate BAs as needed
Must provide sufficient time to provide/

clarify requirements
Must be specific and precise
Make timely decisions
Respect developers’ assessments
Set realistic priorities
Review work products
Establish acceptance criteria
Promptly communicate changes
Respect the requirements development

process
It provides/describes a list of 50 require-

ments engineering good practices, and imbeds
them in a process framework within which they
can be applied.

It discusses approaches that can be used for
six different kinds of projects – agile, enhance-
ment, packaged, outsourced, business process
automation, business analytics, and embedded
real-time (that’s quite a comprehensive spec-
trum of possible projects!)

There are lots of appropriate warnings about
the result of not following good requirements
practices – resulting rework can consume 30-
50% of project cost, and errors in requirements
drive 70-85% of rework cost.

This book says it is focused on “principles
that work in practice,” and I am happy to say that
I believe it has accomplished precisely that. For
example, wouldn’t you love it if every project
on which you worked applied those rights and
responsibilities provided above?!

By Brad Williams, Ozh Richard, and
Justin Tadlock
Published by Wrox,
an Imprint of Wiley, 2011
Review by Johann Rost
I read a number of enthusiastic reviews of

this book before I bought it. And many things
that the other reviewers said are true. It is a good
book. And it helped me more than the money I
paid for it. However, the book made me angry
because it is done carelessly.

 For example, the connection to Twitter in
Chapter 9: This code does not work any more.
Version 1.0 of Twitter’s API is deactivated. The
book was printed quite a while ago and the
Twitter API changed after the book was already
printed. But I downloaded the sample code from
the Website - and it was not updated. Well, I can
check out what is new in Twitter API 1.1. But I
can as well download something for free which
works immediately. If I pay money I expect to

get something that is not worse than something
that I can get for free.

The Twitter Plugin has more problems: I
did not understand how this plugin should be
used in a Wordpress blog. Finally, I found my
own solution. To do this, I had to modify the
authors’ code. And I still don’t know how they
thought it should be done.

Another example is the CRON plugin of
chapter 13. The plugin works. However, it
took me a while to find out that I have to click
on the CRON menu item in the admin menu.
This menu item does not show anything on the
screen, but this is what makes the plugin finally
work. Perhaps I was expected to know this - but
I did not. Note that debugging CRON is a bit
tricky: If it does not work immediately there
is little advice regarding what is going wrong.

 Last but not least: Usage of $() vs jQuery():
In many other sources, I read that we should
use jQuery() instead of $() in the context of
Wordpress plugins. The authors use $() - for

Professional Wordpress Plugin Development
example on page 335. Is this a typo or do the
authors disagree with the mainstream? If it is
a typo they should fix it; if they disagree with
the mainstream they should say why.

 Still it is a good book and I would buy it
again. I give it a bad review because I feel that
authors and publishers of a bestselling book
get enough money that they should apply due
care to provide something that is clearly better
than what we can download for free. After all:
Most of the information in this book is freely
available on wordpress.com or stackoverflow
- completely up to date and free of any typos.

Perhaps I should not be angry. The experi-
ence might highlight a more general phenome-
non: Twenty years ago we would have said “It
is a great book”. No “however”, no “despite...”
- nothing, but great. Now we compare it to the
free content which is great as well and which
we can readily download. This raises the ques-
tion if we should buy books on programming
technology any more?

http://wordpress.com/

©2013 The Software Practitioner NOVEMBER 2013

8

REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS REVIEWS

By Phillip G. Armour (*)
Published by Auerbach Publications, 2004

Review by Robert L. Glass

This book may be quite profound. But
note the “may be” – what that should tell
you is that I don’t understand this book very
well. Note also the publication year. If the
book truly were profound, you’d think, 10
years later, that someone would have found
that out, and its fame would have grown
enormously!

OK, so what’s the book about? “We can,
and should, rigorously define process for
those aspects of our work that we can define
rigorously. However, we cannot rigorously
define process for those aspects of work that
are discovery-based.” And, perhaps to clarify
the murkiness of that statement, the author
adds his “Usefulness Dilemma” – “software
process is only really useful for things that
we don’t want to do anyway.” And, if that
doesn’t leave you confused enough, here’s
the capper – software is not a product, the
author says, it is a medium; and the product
is the knowledge contained in the software.
And then, since the book is about process
(and perhaps a reaction against the Software
Engineering Institute’s CMM Process Initia-
tive, which was at the time of this publication
becoming a force to be reckoned with in the
software field), he concludes “all attempts to

The Laws of Software Process: A New Model for the
Production and Management of Software

define software process are wrong, because
the basic premise is wrong.”

Given the title of the book, the author
presents his own Laws of Software Process:

1. Process only allows us to do things we
already know how to do.

2. We can define software process at two
levels – too vague, and too confining.

3. The very last type of knowledge
to be considered as a candidate for
implementation into an executable
software system is the knowledge of
how to implement knowledge into an
executable software system.

(I think it was somewhere around this
third law that I began thinking this book was
either profound, or something else entirely!)

The book also toys around with what it
calls the “Five Orders of Ignorance:”

0. I know something.
1. I don’t know something, but I know that

I don’t know it.
2. I don’t know that I don’t know some-

thing.
3. I don’t have an efficient way of finding

out that I don’t know that I don’t know
something.

4. I don’t know about these five orders of
ignorance. (The author tells me that
he added this order of ignorance to the
list “because I thought it was cute, and
it highlights the intensely recursive
matter of knowledge.”)

I do indeed find these profound. But I’m
not at all sure how they work their way into
the Laws of Software Process, even though
the author seems to think he has done so.

The book does have some clear, and quite
amusing, pithy moments:

“What all developers really want is a
rigorous, iron-clad, hide-bound, universal,
absolute, total, definitive, and complete set
of process rules that they can break.”

“Adults learn primarily from failure.”
Given all his thoughts on ignorance, pro-

cess, and everything else in the software field,
he offers – toward the end of the book – his
thoughts on the future of the field. He sees

• the demise of software engineering, to

be replaced by the fields of Knowledge
Engineering and Domain Engineering
(because his data shows that the role of,
especially, domain knowledge is grow-
ing much more rapidly than the role of
software construction knowledge)

• the demise of code and coding lan-
guages, in favour of domain specific
languages and packages.

• these roles in the software field – orga-
nizational resource coordinator, process
engineer, ontologist, model linguist,
methodologist, domain engineer, user/
customer representative, repository en-
gineer, anthropologist, tester, system test
representative, learning systems expert.

The book concludes with a collection of
typical mornings for the participants in a
fictional future software project.

I suppose, when I finished the book, I
felt disturbed by its unusual thoughts. But I
couldn’t see what I wanted to do about it, and
I suspect that same is true of everyone else
who has read the book since its publication
nearly a decade ago. Here’s a thought – read
the book yourself and let me know what you
think!

(I submitted this review to the author
before publishing it here in the Software
Practitioner, and he added some thoughts,
including this one on a further elaboration
of the orders of ignorance:

“Later in the book, I tackled the issue of
intent: what if I don’t know, and I don’t care
to find out? Or what if I don’t know and I
actively resist finding out? [Too many peo-
ple] don’t know the things they don’t know,
and are manfully resisting any impulse to (a)
recognize that and (b) do something about
it. It is ignorance, but it is far from blissful.)

* - A most unusual thing about this look
is that the publisher (Auerbach) misspelled
the author’s name, using only one letter l in
Phillip. Because the author told me about
the problem, I have intentionally spelled it
here consistently with how the author wants it
spelled. Throughout the book itself, his name
is spelled (erroneously) Philip.

– FOR SALE –
A copy of a historically-significant book

called Computing Manual, written by
Prof. Fred Grueberger, published by the
University of Wisconsin Press in 1952, and
used as a textbook by Gruenberger himself
way back then! This is a heavily-used and
much loved textbook (condition = “tired”!)
published over 60 years ago, probably the
only copy of the book remaining 61 years
after its publication back in the very ear-
liest days of the computing field. Much of
the book is about wiring electronic boards
for early IBM data processing equipment;
only a little is about programming, which
for the most part didn’t exist back in those
days (board wiring was the closest anyone
came to being able to revise the function
of electronic equipment to do something
specialized)!

Order from Robert L. Glass,
18 View St., Paddington QLD 4064,Australia.

Price - $100 + $20 postage
if mailed outside Australia.

How big is BIG?
In the paper [Holzmann 2013], the author

describes the software system for the most re-
cent Mars spacecraft, and notes two apparently
contradictory things:

“The software was written by a relatively
small team of about 35 developers...”

Each new [Mars] mission “uses more control
software than all missions before it combined.”

Mars Software: Some Curious Statements
Things to consider: is a team of 35 developers

considered “small” these days? If this software
is larger than all previous missions combined,
how could it be developed using a “small team”?

Reference:
Holzmann 2013 – “Landing a Spacecraft on

Mars,” IEEE Spoftw3are, March 2013; Gerard
Holzmann

©2013 The Software Practitioner

9
NOVEMBER 2013

Gary Stringham,
Gary Stringham & Associates, LLC

In the July, 2013, issue of IEEE’s Com-
puter magazine, David Alan Grier discussed
in his article, “Short –Term Loan” (pg 112)
how engineers moved into management after
five years. I have seen cases where engineers
feel pressure to move into management but
am concerned of the side effects. I was an
engineer with Hewlett-Packard for 21 years,
which gave me lots of exposure to engineers
and managers, in particular, engineers who
move into management.

We joke how the stereotypical engineer
does not like meetings for the sake of meetings.
Years ago before one such monthly meeting,
my manager, Spence, commented how he
didn’t like these monthly meetings, how they
were a waste of time for engineers.

They were section meetings lead by Greg,
the section manager, who was Spence’s man-
ager. All the teams in that section (including
engineers like me) were expected to be there.
All team managers had to show a slide (this
is before the PowerPoint days) showing the
status and activities for their respective teams.
I observed something interesting during the
meeting. Greg had a smile and a contented
look on his face. He was “managing”! All
of his managers were giving their respective
reports in some pre-determined order covering
some pre-defined list of topics. You could tell
he thought he was doing an excellent job of
“managing.”

While I didn’t think the meeting was of
much benefit for me, Greg, however, was very
successful as a manager. In the subsequent
years, he moved up the HP management
chain in various locations, left them after 30
years and was a COO at a small firm with an
international presence. Greg was definitely
management material.

I don’t know what Spence did in the follow-
ing years but while he was my manager, he was
very influential in helping me in my job, though
I did not realize that until years later. His team
was manufacturing engineering tasked with
supporting the manufacturing line including
getting set up for new printed circuit board
assemblies as designed by the lab. I had one
of those boards. I had to get the artwork to the
blank board manufacturer, to the solder mask
maker, and to the bed-of-nails test developer. I
had to get the list of parts to the materials team
and to finance. I had to organize meetings,
find a room, send out nag-o-grams, and write
up meeting minutes. I was doing managerial
tasks. My ranking went down; I was not cut
out to be a manager. Spence could see that
and tried to encourage and help me. I found
another position I wanted that was a better fit
and he put in a good word for me, in spite of
my lower ranking.

Several years later I was toying with the
idea of moving into management. At a sec-
tion meeting, the section manager, Tracy,
announced that one of the managers had been
promoted to section manager and there was

Engineers and Management
now an opening for a manager, creating an
opportunity for any interested engineer to
move into management. On the way back to
our desks, I asked my manager, Phil, what it
was like being a manager. He said, “The first
thing they do is take away your compiler.” He
hit me right to the core. He knew me so well
that he knew I would not be happy if I wasn’t
writing code. I never looked at management
again.

I had reflected on my many years at HP.
When I was designing and coding, I was hap-
py and successful. My ranking improved. But
when I had managerial assignments, I was not
as happy and my ranking went down. Why
should I move into management and compete
against the likes of Greg and Tracy who were
good at it, who enjoyed it, who had the natural
abilities to manage? Their rankings went up
easily; I would have had to work very hard
at something I didn’t like just to maintain
a low ranking. Though managers’ salaries
were higher than engineers’, a low-ranking
manager would not be making more money

than a high-ranking engineer. And it would
not be fun for me. So I never looked at man-
agement again.

I stayed in engineering and was successful.
I had a part in producing some very important
products. I designed tools, techniques, and
concepts that are still being used today. I have
12 US patents to my name. And I am known
among my peers as a good engineer and my
ranking was high.

I succeeded because I stayed in engineering.
That worked because I was within HP and in
the United States. I have, however, observed
that the culture in other countries, such as
Mexico and India, is such that one is a failure
if one is not moving up the management chain.
I think that is a mistake. Why force a good en-
gineer to become a bad manager? What benefit
is there (besides social status and acceptance?)

This creates a bad situation for trying to
make a quality product. Instead of having
teams with experienced (and novice) engineers
led by good managers, you now have teams
with novice engineers led by bad managers.
In presentations that I have given in the US
and India, I have stated that in order to put
out a quality product, you have to have a
fairly stable team of engineers that have been
through several product cycles. The pressure
and culture found outside the US to move
into management is hampering their ability
to produce quality products.

I suspect that the better products, the new
inventions, and the major advancements in
technology come primarily from engineers
who stayed as engineers past their first five
years. It is my hope that companies will re-
sist the culture pressure and encourage and
reward engineers with the interest and skill
to stay in engineering and not be forced into
management.

Note from the editor: This article was
created in response to an email request from
me. Gary had sent a letter to IEEE Computer
in which he talked about the decision he had
made to avoid moving into management during
his professional career in industry.

I was intrigued by his letter, because I had
made essentially the same decision in my
career. The expectation, as it is in most of
industry, I think, was that after a certain period
of time I would move into management. But I
loved the technology of software; I loved the
feeling that I could produce products with my
mind (I was no good at doing that with my
hands!); I loved the feeling of getting a piece
of software to work and to solve the problem
it was designed to address; I loved the feeling
of finding and eliminating that “last bug” in
a product! Did I want to give up all of that
pleasure in exchange for – I wasn’t sure what,
because I suspected, because of who I was,
that I would really not be good management
material. So I stayed in the technical end of
the field until my retirement years.

Was that a good decision? Mostly, I
think so, and in fact I wouldn’t have wanted
to pursue my career in any other way. Did
I pay a price? Definitely, yes. Even in the
enlightened aerospace industry world where I
was working at the time, the salary ladder for
technologists was far lower than for managers.
I made a decent living, I am pleased to say,
but my income would have undoubtedly been
higher if I had gone into management. And
there was another problem, more subtle but
in the end more real and more troubling. As
a highly-paid technologist, expectations for
my performance were higher. On one project
where I was acceptable but not stellar in my
contributions, I was the first to be removed
from the project when cost-cutting became
necessary (I had never been “low man on the
totem pole” on any previous project, and it
hurt). When I went to change jobs to another
company, those companies were reluctant to
hire someone whose salary history was as
high as mine. You would think, of course,
that at that point I could have happily chosen
to accept a reduced salary from a new compa-
ny, and in fact I would have. But companies
are reluctant to hire anyone while reducing
their salary; their fear is that as soon as some-
thing paying more like what you are accus-
tomed to comes along, you would jump ship,
and therefore you are an unacceptable risk
if they are looking for someone long-term.

I thank Gary Stringham for allowing me to
revisit this particularly important issue; and I
hope all of this will be useful to anyone else
who is encountering the same dilemma!

} Why force a good engineer
to become a bad manager?

What benefit is there
(besides social status and

acceptance?) ~

©2013 The Software Practitioner NOVEMBER 2013

10

What does Computing Trends produce?

BOOKS AND NEWSLETTERS

COMPUTING SHAKEOUT, real
“what happened and why” stories about
some well‑known microcomputer com‑
panies that failed. What happened to the
pioneers, like MITS and IMSAI? Why
did Texas Instruments get out of the busi‑
ness? These questions and many more are
answered here.

 $9/copy

SOFTWARE FOLKLORE, stories
about some of the very special people in
computing ‑ “the intentionally strange
boss,” the “software thief,” “the computer
that never computes,” and “every program‑
mer’s dream.” Read about real computing
people who’ve done some pretty weird and
wonderful real things.

$9/copy

SOFTWARE 2020 is a contrarian
view of the future of software develop‑
ment as seen with 20/20 hindsight from
the year 2020. This is not your average
“gee how great it’s going to be” view, in
which today’s research becomes tomor‑
row’s state of the practice. Rather, it’s a
pragmatist’s view of realistic possibilities.

 $9/copy

THE UNIVERSAL ELIXIR, AND
OTHER COMPUTING PROJECTS
WHICH FAILED, fictionalized tales
about real failed projects. Software Practice
and Experience called it “Compulsive and
essential reading…the perfect Programmer’s
Bedside Book.” ACM Computing Reviews
said “Read it! Remember it the next time
some wild new project is organized.”

 $9/copy

ORDER FORM

Send to:
Name

Address

 Email address

City State Zip

COMPUTING CATASTROPHES,
more real stories, about the failures of
some mainframe companies. The com‑
puting demise of RCA, GE, Xerox, and
others was astonishing. Why was there
so much failure in the midst of so much
success?

 $9/copy

Checks may be in U.S. or Australian dollars, payable to
Robert L. Glass,
18 View Street, Paddington QLD 4064, Australia

The Software Practitioner (SP) is a
newsletter written by and for people
who build software for a living. It is
not written by journalists who know
too little about software – or theorists
who know too little about practice.
We publish material straight from the
real world:
• “best of practice” methods
• lessons learned using new technol‑

ogies
• (often contrarian) views of the scal‑

ability of theoretical approaches like
formal methods, object‑orientation,
and radical practical approaches like
Agile and Open Source

You’ll find SP a refreshing dose of honesty and reality in an all‑too
hype‑filled software world.

$39/year individual subscription,
$99/year institutional (such as a library). Bimonthly.

THE SOFTWARE PRACTITIONER

TOTAL ORDER $_________
Add $5.00 shipping/handling (books only) $_________
Amount enclosed $_________

5.00

 Books: (all by Robert L. Glass)
 only a few copies left of each title
 Software 2020 $ 9.00
 Computing Shakeout $ 9.00
 Computing Catastrophes $ 9.00
 Software Folklore$ 9.00
 The Universal Elixir$ 9.00
 Facts and Fallacies of Software
 Engineering $ 29.00
 An ISO 9000 Approach to
 Building Quality Software $ 19.00
 Subscription to The Software Practitioner
 Individual $ 39/year
 Institutional $ 99/year

©2009 The Software Practitioner

1
JANUARY 2009

JANUARY – FEBRUARY 2009 The newsletter by and for software professionals. VOLUME 19, NO. 1

Also in This Issue

What are the top computing disasters of all
time? Different folks would no doubt nominate
different projects, but this is the set that Comput-
erWorld came up with, in [Widman 2008]:

1. IBM’s Stretch program. This was the
world’s fastest supercomputer of the time
(1956-1964), but was slower than intended
(30-40 times faster than the machine it
replaced, when it was supposed to be 100
times faster), and eventually it was a finan-
cial failure (IBM sold them at $13.5M each,
below its cost). Only nine were ever built

2. Knight-Ridder’s Viewtron service. This
was to be, back in 1983, what eventually the
Internet has become – a home computing
system offering banking, shopping, news
and ads. But its eventual price of $600
(down from $900) was too high, and the
$50M system was canceled by 1986.

3. California’s and Washington’s Department
of Motor Vehicles (DMV) projects. Both
states embarked on an integrated comput-
erization of their DMV systems, and both
failed. California’s was first, started in
1987, and was to cost $27M. But the new
system turned out to be slower than the one
it was replacing, declared “unworkable,”
and was shut down. The eventual lost was
$49M. Washington’s results were astonish-
ingly similar – begun in 1990, the system
eventually cost $40M, was too slow, and
would cost six times as much to maintain
as the system it was to replace.

4. FoxMeyer’s ERP program. FoxMeyer
gambled on its $35M SAP installation,
betting the company on its aggressive
schedule and overpromised capability. The
gamble lost (warehouse workers who were
to be terminated due to the new system
sabotaged it, and that didn’t help), and the
entire company went bankrupt, $5B worth!
(It also didn’t help that the new system
processed 10,000 orders per night, while
the old system had processed 420,000!)

5. Apple’s Copland operating system. This
proposed operating system, begun in 1994
to compete with Microsoft’s new Windows
system, fell victim to feature creep (which,
of course, has killed many a computing
project). The system emerged in 1996,
but was wildly unstable and cancelled in
favor of purchasing the NeXT operating
system.

6. Sainsbury’s warehouse automation. This
British supermarket automated fulfillment
system was installed in 2003, but its horren-
dous barcode reading errors and other big-
time problems caused it to be scrapped by
2007, at a cost of 150M British pounds.

7. Canada’s gun registration system. Canada

initiated a national firearms registration
system in 1997, figuring a net cost of
$2M, which included $117M in expected
gun licensing income. But the gun lob-
bies feature creeped it to death, such that
there were 1000 change orders in the first
two years. The cost ballooned to $688M,
with annual maintenance costs of $75M,
and it came to be called the “billion-dol-
lar boondoggle.” It is, however, still in
operation!

The article went on to suggest three in-process
projects as candidates for future disasters – the
FBI’s virtual case file, Homeland Security’s
virtual (Mexican border) fence, and the Census
Bureau’s handheld computing devise. The first
appears to also be the victim of feature creep,
and the FBI eventually cancelled it in favor of a
follow-on project. Homeland security’s system
was to be a pilot project, but had so many system
failures that it may or may not be expanded into
a complete (non-pilot) project. And the Census

Ig Nobel?
Boondoggles in Computing-Land

Bureau had high hopes for field workers to use
computers to gather their data, but “the final
cost is unpredictable” and Census may have to
give up on it.

This list was generated by ComputerWorld
in response to the publication of the annual Ig
Nobel awards by the Improbable Research or-
ganization. (The Ig Nobel awards are presented
to researchers whose work might be considered
farcical). ComputerWorld, noting that comput-
ing projects had never made it onto the Ig Nobel
list, nominated these projects for consideration!
(But note, of course, that the Ig Nobel is about
research, and the ComputerWorld disasters are
about practice).

Reference:
Widman 2008 - “The Tech Disaster Awards:

What You Can Learn From IT’s Biggest Project
Failures,” published on CIO Online and based
on a ComputerWorld story by Jake Widman,
Oct. 9, 2008

LETTERS:
An Open Letter to Economists; letter from
Davide Falessi on publication process
failures ... 3

ICT Status in Australia; Mars Lander Dies 4

Bus Connection ... 4
REVIEWS:
The Gift of Time for Weinberg; Perfect
Software by Weinberg; The Top 100 Books
for Managers ... 5
After the Software Wars by Curtis 6
Alignment: A Mile Wide and An Inch Deep;
Most Popular Programming Languages,
Software as a Service 6

Software Design by Jose Brito 7
HUMOR:
The Last Bug, A Tasty Team Building Exercise,
by Appelo; Tales of the Journeyman, On
Methodologies, by Shafer 10

Oh, how the mighty have fallen!
Satyam, one of India’s top three IT out-

sourcing firms, is in deep trouble. Its shares
have fallen 78% in recent days, and its future
looks bleak.

What’s the problem? Its founder and chair-
man, Ramalinga Raju, has confessed (to the
Mumbai stock exchange) to irregular account-
ing procedures that included falsified results,
overstated assets, and a fictitious cash balance
of more than a billion dollars.

Lawyers speculate that his penalty could be
up to 10 years in jail.

There’s an irony to the story. Raju was just
coming off some major international accolades,
including the Golden Peacock, awarded for
excellence in corporate governance!

The problem was apparently discovered
when Satyam switched its auditing company
from Price Waterhouse, which had audited
Satyam’s books for seven years, to Merrill
Lynch. Merrill Lynch found the cooked books
almost immediately, and “quietly” severed its
ties with Satyam, only days before the scandal
became public. It remains to be seen what Price
Waterhouse’s role in the scandal is.

There were a few warning bells. “Shortly
before Christmas, the World Bank banned Sa-
tyam for eight years from bidding for contracts,
accusing it of installing spy software on the
bank’s computers and bribing its officials,” ac-
cording to [Hodge 2009], the news story from
which this article was drawn.

“Satyam has a work force of 53,000 in 66

countries,” according to the article.
“Satyam” is the Sanskrit word for “truth.”

Information source:
Hodge 2009 – “Golden Peacock Plummets

From Grace,” The Weekend Australian newspa-
per, Jan. 10, 2009; Amanda Hodge

Outsourcer Satyam In Major Financial Trouble

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack

