
Healthy Code
February - 2015 1

Healthy Code
February - 20152

February 2015

Contents

Healthy Code

Healthy Code
February - 2015 1

Microservices

What are they and

why should you care?

Code Jugalbandi

 Working with

Spring Data
Neo4J (SDN)

GrailsConf

2015

 Interview with
Linda Rising

Effective Java with
Groovy

Let’s go with GO

4

12

16

22

26

34

38

Healthy Code
February - 20152

Hello readers!!!

It’s hard to believe, we are already into the second month of 2015.

We are back with another very interesting set of articles this month. The
February issue is filled with loads of information about programming
languages.

Rocky Jaiswal introduces us to the Go language throwing light on its
capabilities and potential. We have our Naresha continuing to impress us
about writing better Java code using Groovy. The Code Jugalbandi team is
back with another melody and implementing it in a variety of languages.

Linda Rising a renowned speaker and author talks to us about the Agile
Mindset. Linda, being such a fascinating person, the interview is sure to
have an impact on you forever.

Rajesh Muppalla has written a fantastic article on one of the most
happening architectures, the Microservices Architecture. This article talks
about several issues with practical examples that will make you rethink
the strategy of your projects.

Arun is back with Ravikant and his favorite Neo4j. They talk about using
Neo4j with Spring framework.

And yes! Do not forget to try out the quiz on Java 8.

Enjoy reading and coding.

Prabhu

From the Editor

Healthy Code
February - 2015 3

Healthy Code
February - 20154

Microservices

Article|-------------|Rajesh Muppalla

What are they and why should you care?

Healthy Code
February - 2015 5

repository. For the same reason, it was easy for the two new
developers to ramp-up and setup the entire application on
their laptop, build it and run it locally within a couple of
hours. The release was also painless given that there was a
single deployment pipeline that would take the build from
the CI (Continuous Integration) server and deploy it on a
couple of load-balanced production boxes.

Fast forward two years later. After the success of the MVP
and a few minor pivots later, the customer base of the
product has grown. Your client also boosted their sales team
in the last two years to aid the growth. And your team has
grown to 20 developers. However, the product is not able
to scale and evolve with the customer base. You realize that
the application feels like a big ship that’s very hard to steer.
The application has grown to thousands of lines of code.
The ramp up of new developers is taking weeks instead of
days. And you are finding it hard to look for developers
who can work on your “legacy” codebase. As a result of all
these factors, you are not able to deliver as fast as you did
earlier to keep up with the business requirements.

Let’s try to understand what’s wrong with the application
you built that’s challenging. First, give it a name. The
term that is used for an application like the one above is:
“Monolith.”

Below are some of the challenges associated with a large
monolithic application.

•	 Scaling issues - On the one hand, a monolithic application
can be scaled horizontally by running multiple copies
behind a load balancer. But on the other hand, each
component has its own scaling requirements as some
components are heavy on I/O and some on memory
and hence have different resourcing requirements.
With a monolithic application, you have no choice but
to provide the same (higher) resources to the entire
application, potentially increasing infrastructure costs.

You’ve recently joined a brand new client project as a lead
developer/architect. You’re sitting in a meeting room and
after having heard the client’s requirements, you are now
contemplating the right architecture and technology stack
for the project.

Your client wants you to build an e-commerce application
for consumers. They want to support multiple clients
including browsers on the desktop and mobile as well as
native mobile applications. In those cases, your system
receives an HTTP request in either JSON or XML, which
executes business logic, accesses database and sends back
response in JSON or XML. At the same time, the system
should also expose an API to integrate with third party
applications.

This sounds like a typical layered architecture, you say to
yourself. You have built a couple of such systems in the
past, so you decide to use the tried and tested architecture
you are comfortable with. The different layers of your
architecture are divided into Presentation, Business and
Database components. For the technology stack, you have
a choice between Rails, Java, Scala, Nodejs, .NET etc. It really
does not matter what you use as this architecture pattern
is language or platform agnostic. However, your client
wants you to release an MVP (Minimum Viable Product) of
the product in the next six months. In the end, you choose
a technology stack that majority of your team of four
developers are comfortable with.

 Fast forward six months. You are at a team party to celebrate
the success of the MVP which was delivered on time.
The team celebrates the success but also reflects on what
a small team of six (you added two developers mid-way
during the MVP) have accomplished in a short time. The
team is thankful to you for choosing the technology stack
that they were comfortable with. The layered architecture
also provided multiple benefits. It was very easy to make
a change as all the code was in a single-source code

Over the last year, Microservices has emerged as a “new” approach to
building large scale distributed systems. This is an introductory article
that provides background on Microservices, their evolution, the pros and

cons and the state of the art, as it exists today.

Healthy Code
February - 20156

•	 Technology changes and evolution - Certain problems
are best solved in certain technologies. The technology
choices you made when you built the monolith may or
may not be the perfect fit when your application evolves
at a later stage. You might want to move to a different
technology stack or replace individual pieces of the
architecture. It could be for scaling needs or for better
developer productivity. For eg: JVM vs C++, SQL vs
NoSQL. With a monolithic application you are married
to a technology stack for a long time.

•	 Multiple teams - Your teams are organized as UI,
Services and Database layers. Doing any cross cutting
features takes time and also needs approval for the
right prioritization. Ideally, you want to organize
teams around business capabilities to reduce the
communication barriers so that an individual team can
take things end-to-end without a lot of overhead. And
if the teams are across locations or time zones it adds
another level of complexity.

•	 Continuous Delivery - Continuous Delivery is about
reducing the time it takes for a commitment made
by a developer to hit production. It is hard to follow
continuous delivery practices when you have a single
large codebase. The cycle time will be larger because the
entire application has to be built, tested and deployed
for any change. In addition, each of the deployments is
a high risk deployment.

•	 Ramp-up of new members - A large monolithic project
is intimidating for new developers as it can take a long
time to setup, build and run locally.

Is there a solution?

Yes. Microservices. A small autonomous set of services that
work together, that can be scaled and released independently
with different teams potentially using different languages
across different locations.

So, how do we describe a Microservice?

Autonomous - Each service can be built using the
appropriate tool for the job. Multiple teams of developers
can independently deliver functionality in this model. Each
microservice can have its own data storage using polyglot
persistence.

Modeled around the business domain - Microservices
should be vertically aligned to business capabilities to
provide faster delivery of business goals and outcomes.

Small; does one thing and does it well - Where size is

a disadvantage for a monolith, it’s an advantage for a
Microservice. It should also follow the Single Responsibility
Principle (SRP) and should strive towards loose coupling
and high cohesion that are hallmarks of well-designed
components.

Own build and deployment - A Microservice should be
standalone and should be able to run independently from
other systems and services.

Integrates via well-known interfaces - If the Microservices
expose and talk using well-known interfaces using
open protocols and standards, it provides technology
heterogeneity, thereby allowing teams to use the technology
stack that they are comfortable with or the best suited for
the problem at hand.

What’s with the name “Microservices”?

I heard the term “Microservices” the first time when Fred
George spoke about them in his talk YOW 2012 - Brazil.
Ronald Kuhn, the tech lead on Akka, thinks that the term
Microservices is too ambiguous and likes to call them
Uniservices instead, given on what they do.

Netflix used to call its implementation of Microservices as
cloud native architecture and fine grained Service Oriented
Architecture (SOA) but they have started to use the term
Microservices since that has become widely accepted.

How is this different from Service Oriented
Architecture (SOA)?

At the heart of it, both Microservices and SOA try to
combat the challenges associated with large monolithic
applications. SOA’s approach uses protocols like SOAP,
RPC, a complex middleware called ESB that meant different
things to different people.

It had sound principles but there was a lack of consensus
on how to do SOA. Moreover, the implementation itself
was monolithic where dumb services were integrated with
a smart ESB. Proponents of Microservices look at it as a
specific approach to SOA in the same way that XP or Scrum
are different approaches for Agile software development.

Why now?

There was always a desire to build systems this way (even
in the SOA era) but the recent advances and maturity in the
area of Cloud, Devops and Continuous Delivery have made
it easier to build them right with Microservices being the
building blocks.

Healthy Code
February - 2015 7

Moving towards Microservices

There are several design aspects that one has to delve into
and weigh the pros and cons of various approaches while
moving towards Microservices.

Splitting the Monolith - The first consideration is around
splitting the monolith. And the challenge here is to identify
the appropriate service boundaries. In this context, Domain
Driven Design (DDD) is a nice model to help break your
system into Bounded Contexts that allow you to set logical
and physical boundaries between your services. Another
challenge will be around splitting the state. For most
applications, that state will be the database. You should
refactor your existing databases to de-normalize into one
data source for table. You should also think about modeling
foreign key relationships and transactions across two
Microservices.

Inter-services Communication - You will have to decide
the approaches for communication between Microservices.
REST over HTTP is a sensible default choice for both
synchronous and asynchronous communication. For the
payloads, you have a choice of using JSON, XML or Binary
Protocols. Prefer using JSON payloads for both external and
internal service communication because of its readability

and integration across languages. Consider using Binary
protocols like Thrift, Avro or Protobuf if performance is a
consideration for your internal services.

Testing - Start with integration tests to make sure that
implicit contracts between services are codified. However,
these kinds of tests are hard to write and tend to be brittle
when you have more than a handful of services. Use
consumer driven contract tests in those cases to detect
contract breakages. Testing should also be done in post-
production environments by running fake requests and
asserting on the responses. Consider using a tool like
Shadow from Twilio while rolling out a newer version of a
service to compare its responses with the existing service.

Deployment - Each of the services should be independently
deployable for which you should prefer a single repository
for each service. Follow Continuous Delivery principles
ensuring that every change within the service is built and
tested including integration tests as part of a CI pipeline.
Upstream dependencies should trigger the contract tests
pipeline. Once these go green, the changes should be

Healthy Code
February - 20158

deployed in staging environments using a deploy pipeline.
Use Continuous Delivery practices like Feature Flags and
Canary Releasing to reduce the risk of new features and
to roll back problematic code if required. Use Blue Green
Deployments to ensure zero-downtime for your services.
Investigate using container technologies like Docker with
orchestration systems like Marathon to help manage
complex deployment workflows and to auto scale based on
load.

Failure Isolation - Failures are common when you have
more than a handful of services. If Service A calls Service
B which in turn calls Service C, a problem in Service C can
cause service disruption to end users. Use Patterns like
Timeouts, Circuit Breaker, Bulk Heads and Backpressure
to isolate failures. In case of cascading failures, consider
gracefully degrading the service rather than failing
completely. The book Release It has a chapter on Stability
Patterns which is a good introduction to this topic.

Service Discovery - This is the equivalent of the Service
Registry problem in SOA. When you have multiple services,
you need a way to discover other services that you are
dependent on. DNS with a Load Balancer (LB) works for
most cases, but is unable to scale in a dynamic environment
where nodes are overloaded and are timing out and need
to be removed from the LB or in cases where one needs
to auto scale elastically according to load. Zookeeper has
been a great choice in this area for some time as it provides
the primitives to build a service discovery solution. Consul
is emerging as an alternative that gives you all the things
required for service discovery out of the box.

Monitoring - When you have multiple services talking to
each other, you need tools that can aid in understanding
the system behavior and diagnose performance issues.
Aggregation becomes very important to provide a unified
view of various systems and metrics. Consider using a
single tool like Logstash or Splunk to query and aggregate
logs from various Microservices. Distributed request tracing
provides you with the visibility necessary from an end-to-
end perspective when multiple services are involved. Use
correlation IDs across various Microservices to track the
flow of interaction between services and tie them back to
the original request. Consider using Zipkin from Twitter,
an open source solution inspired by Dapper from Google.

Documentation - If one does not know what your service
does, it’s likely that no one will use it. Use Swagger or
Postman Collections to document your RESTful APIs.

API Gateway - If your clients need to orchestrate data from
multiple Microservices, the API Gateway provides a way

to handle cross-cutting concerns like authentication, quota
management, rate limiting, basic analytics etc. You can also
provide a different granularity for end users by composing
one or two Microservices using the API Gateway. Zuul
from Netflix is an open source alternative and 3-scale,
Apigee and Mashery are commercial solutions.

Microservices OSS Stack

Let’s talk about some OSS that’s available to help to migrate
towards Microservices.

● Netflix - Netflix has a fully functional Microservices
stack that they have been using internally for a few years.
They have open sourced several key pieces of their stack
in recent times. Some notable libraries include:

• Hystrix - Fault Tolerant library

• Eureka - Service Registration and Discovery

If you are using Spring, the Spring Cloud Netflix project
integrates these libraries to the Spring ecosystem.

● Twitter - All of Twitter’s traffic till end of 2012 was
served by a single monolithic rails application, internally
called “MonoRail.” Since then they have moved to
using Twitter Server for building their Microservices,
which is built on top of Finagle. Finatra and Finch are
noteworthy frameworks from Twitter. SoundCloud and
Tapas are examples of companies that are successfully
using Twitter Microservices stack in production.

● Typesafe - Typesafe’s reactive platform provides the
building blocks to build a Microservices platform. You
can use Spray (to be super-ceded by Akka-HTTP), Akka-
Camel, Akka-Streams to build your own Microservices
stack on top of the Typesafe platform. Bench.co is a
company that’s using the Typesafe stack to build their
Microservices platform.

● Dropwizard - This is a JVM based microcontainer that
pulls together battle-tested libraries for configuration,
metrics, logging to create RESTful Microservices.

● Roll Your Own - Of course, you could also roll your
own stack by using various pieces from existing stacks
and building on top of them.

The above list is not comprehensive and is focused on JVM
platform as majority of the Microservices at my company,
Indix, run on the JVM. We are currently using Dropwizard
and the Typesafe stack but are also actively evaluating
the Neflix and Twitter stacks. We also have non-JVM

Healthy Code
February - 2015 9

Microservices where we are using Bottle and Flask for
Python, Express for Node.JS and Sinatra for Ruby.

What are the disadvantages?

The rosy picture I painted after the initial gloom might
make you believe that Microservices would solve all your
architectural problems. Sorry to break your heart, but like
everything else in software, Microservices are not a silver
bullet. It’s an architecture style that is still maturing and has
its own share of challenges.

•	 When you are running multiple Microservices, it
becomes extremely important to manage the operational
complexity associated with it. You need to make sure
that you have the right tools in place to visualize and
orchestrate your deployment and also ensure that you
are able to monitor the complex interactions between
these systems. You need to build the right set of tools
as well as the skill set within your teams to handle this
complexity.

•	 If your team is using multiple languages and technology
stacks to build their services, a lack of standardization
might slow you down especially when debugging
failures.

•	 As you work with implicit interfaces across
Microservices, you need to worry about backward
compatibility and versioning. It needs co-ordination
across teams and the solution to this may or may not be
technical.

Should I move to a Microservice architecture?

This is one of those questions that has a YMMV (Your
Mileage May Vary) answer.

At Indix, we started with a monolith (but modular)
application, which was built over the course of the last
three years. As I write this article, we are migrating to
Microservices across all our teams. The reason for us to
move to Microservices is captured in the section describing
the problems with the monolith. In hindsight, starting with
a monolith and breaking it down into Microservices with
the team growing and the system getting complex seems
like the right approach.

To give a different perspective, I should refer to Go-CD – an
open source build and release management tool. I worked
on the team about three years back. Right now, it’s more than
a six-year-old project and the code-base is still a monolith.
I think the reason why it has stayed so is because there
were not more than 10 developers at any point in time. The

team is co-located and would ramp up only two or three
new developers every year. The team uses techniques like
Branch by Abstraction and Strangler Approach to evolve
with changing technological trends. It will be interesting to
see if the community decides to split Go-CD into multiple
Microservices at some point.

If you want to move towards a Microservices architecture,
you should read Martin Fowler’s article on Pre-requisites
for Microservices.

Summary

Microservices is an important tool in the arsenal of an
evolutionary architect. Microservices themselves have
evolved out of the hard-earned lessons of engineers
building large-scale systems. When systems and teams
scale, breaking them into Microservices decouples your
systems and gives more options and choice to evolve them
independently. Like any other tool, it is important to know
when and how to use it. Hopefully, this article has provided
you with enough context to decide on both.

Further Reading

If you are really interested to dive deeper into building
Microservices, I suggest ordering a copy of the excellent
book by Sam Newman on Building Microservices (as of
January 2015, it’s still in Early Access).

Rajesh Mupalla is the co-founder
and Director of Engineering at Indix.
He leads the data platform team
that is responsible for collecting,
organizing and structuring all the
product-related data collected from
the web. Prior to Indix, he was a
technical lead on Go-CD, an agile
and release management product at
ThoughtWorks. In his earlier stint
at Thoughtworks, Rajesh served
as a technical lead on multiple
customer projects in the domains
of e-commerce and social media.
He is passionate about big data,
large-scale distributed systems,
continuous delivery and algorithms.
While excelling at these areas,
Rajesh also gives back by mentoring
and coaching developers in pursuit
of building better software.

Healthy Code
February - 201510

Healthy Code
February - 2015 11

Healthy Code
February - 201512

In 2013, Dhaval Dalal was inspired by Jugalbandi, an Indian classical music
form in which musicians have an improvised musical conversation, each using a
different instrument, while exploring a shared musical theme together akin to Jazz
in some ways. Dhaval thought, “What if we could have a conversation about some
programming concepts in this way? Instead of musical instruments, what if we use
different programming languages?”

Article|-------------|Dhaval and Ryan

Code
Jugalbandi

Healthy Code
February - 2015 13

This led to the first Code Jugalbandi between us. Code
Jugalbandi inspired and fuelled our learning by focussing
on dialogue and exploration. More languages in the room
meant more perspectives too. Exploring a paradigm through
many languages gave us a better map of the territory than
any single language could. Above all, Code Jugalbandi was
a playful way to learn together!

Creator and Listener

We met regularly with over a period of several months,
exploring some key issues related to Functional
Programming (FP). This culminated in a live Code Jugalbandi
at the Functional Conference in Bengaluru, 2014. During
the FP Code Jugalbandi, we explored nine themes, which
became melodies. Similar to the musical Jugalbandi, there
are two roles: creator and listener. We called the creator of
the melody Bramha and the one who listens and responds
with a different instrument, Krishna. + In the last Code
Jugalbandi Article, we looked at the melody, the expression
problem. This time we will look at Sequencing.

The Sequencing Problem

Lets say we have a sentence and we want to capitalise words
that have size less than or equal to 3.

Sequencing - Ruby

Bramha: In Ruby, in an imperative style, with mutation of
variables, it would look like this

words = “all mimsy were the borogoves”
split_words = words.split(“\s”)
caps_words = []
split_words.each do |w|
 ;; enumeration and filtering
 cap-words.push(w.capitalize) if (w.size < 3)
end
words_s = caps_words.join(“\n”)

Bramha: In the above code, enumeration and filtering are
interleaved. Let’s try and separate enumeration and filtering.

words = “all mimsy were the borogoves”
words.split(“\s”).map do |w|
 w.capitalize
end.filter do |w|
 (w.size < 3)
end.join (“\n”)

Bramha: This feels a bit more structured, we’re chaining
operations, one after the other. This style is called sequencing,

where we’re moving data down processing pipelines.

Sequencing - Clojure

Bramha: In Clojure, we could chain functions together
through function nesting.

(def words “all mimsy were the borogoves”)
(def using-nesting
 (join “\n”
 (filter (fn [s] (< 3 (count s)))
 (map capitalize
 (split words #”\s”)))))
(println using-nesting)

Bramha: This is hard to understand. Deep nesting leads to
many parentheses in Clojure that is considered a code smell
in Clojure. Let’s try and lose a few parenthesis through
function composition.

(def using-composition
 (let [f (comp
 (partial join “\n”)
 (partial filter (fn [s] (< 3 (count s))))
 (partial map capitalize)
 (fn [s] (split s #”\s”)))]
 (f words)))
(println using-composition)

Bramha: The awkward thing about these styles of coding
is that the order of functions seem back to front. The arrow
syntax sidesteps composition in lieu of a threading-macro.

(def using-arrow
 (->> (split words #”\s”)
 (map capitalize)
 (filter (fn [s] (< 3 (count s))))
 (join “\n”)))

(println using-arrow)

Krishna: BTW, why is it called a threading-macro in Clojure?
The threading word in there makes me think of process
threads.

Brahma: The word threading is used in the sense of threading
a needle through cloth, not to be confused with process
threads! Since it is implemented as a macro, is is called a
threading-macro.

Sequencing - Scala

Krishna: Lets see that how can we achieve the same in Scala.

Healthy Code
February - 201514

Krishna: Now, I’ll define a few function types.

val split = (s: String) => s.split(“ “)
val capitalize = (ws: Array[String]) => ws.map(_.
 toUpperCase)
val filter = (ws: Array[String]) => ws.filter(_.size
 <= 3)
val join = (ws: Array[String]) => ws mkString “\n”
val seqCapitalized = join compose filter compose
 capitalize compose split
seqCapitalized (words)

Krishna: Just like in Clojure nesting and composition
examples, this is flowing against the grain of thought.
Let me have the cake and eat it too. I can make use of
Scala’s andThen.

val seqAndThened = split andThen capitalize andThen
filter
 andThen join
 seqAndThened (words)

Sequencing - Groovy

Krishna: In Groovy too, one can quickly define closures like
this.

def split = { s -> s.split(‘ ‘) as List }
def capitalize = { ws -> ws.collect
 { it.toUpperCase() } }
def filter = { ws -> ws.findAll
 { it.length() <= 3 } }
def join = { ws -> ws.join(‘\n’) }

def seqComposed = join << filter << capitalize << split
println (seqComposed(sentence))

def seqAndThened = split >> capitalize >> filter >> join
println (seqAndThened(sentence))

Sequencing - Racket

Brahma: In Racket, one can achieve this using Rackjure (a
Clojure inspired ideas in Racket by Greg Hendershott,http://
www.greghendershott.com/rackjure).

(require racket/string)
(define s “All mimsy were the borogoves”)

(define (capitalize s) (map (λ (w) (string-upcase
w)) s))
(define (words<=3 s) (filter (λ (w) (<= (string-length
w) 3)) s)) (define (sentence->words s) (string-split
s))
(define (join-words ws) (string-join ws))

Ryan is a software developer,
coach and advisor, based in Cape
Town. He has been working with
code for more than 15 years. Ryan
assists individuals and teams
to manage the evolution and
complexity of their software
systems. Ryan is a passionate
learner and enjoys facilitating
learning in others.

Dhaval a hands-on developer and
mentor, believes that software
development is first an art and
then a craft. For him writing
software brings his creativity
to the fore. His interests are in
architecting applications ground
up, estabilishing environments,
transitioning and orienting
teams to Agile way of working
by embedding himself within
teams.

You can follow them on Twitter @
CodeJugalbandi

I’ll first show using chaining.

val words = “all mimsy were the borogoves”

println(words
 .split(“ “)
 .map(w => w.toUpperCase)
 .filter(w => w.length <= 3)
 .mkString(“\n”))

Healthy Code
February - 2015 15

(define sentence-with-3-words
 (compose join-words capitalize words<=3 sentence-
>words)) (sentence-with-3-words s)

; using threading from Rackjure
(require rackjure)
(require rackjure/threading)
(~> s sentence->words words<=3 capitalize join-
words)

Reflections

Bramha: In whatever functional programming language
you’re using, if you find yourself deeply nesting functions,
you can be sure there is a better way of “threading” functions
together. Moreover, if you are going against the “grain of
thought”, look for a way in the language to go with the grain!

Krishna: This style is also known as concatenative
programming where function composition is the default way
to build subroutines. Functions written in concatenative style
neither represent argument types nor the names or identifiers
they work with; instead they are just function names laid
out as a pipeline, in such a way that the output type of one
function aligns with the input type of the next function in the
sequence. In this way the order of function application gets
transformed into order of function composition.

Bramha: One of the immediate benefits of this style is that it
makes the code more succinct and readable. We can express
some domain processes very clearly in this way, and we can
easily extract sub-sequences into new functions to further
clarify our statements about the domain.

Krishna: This style is useful whenever we are processing data
through a sequence of transformations, and it is surprising
how much of our domain code is trying to do just this!

References

Learn more from http://codejugalbandi.org

Publisher:
T. Sivasubramanian

Editor:
S. Prabhu

Production:
New Horizon Media Private Limited

Proof Reader:
Shweta Gandhi

Publication Address:
11/6, First Floor,

Fourth Street,
Padmanabha Nagar,

Adyar, Chennai - 600020

Printer: Sakthi Scanners (P) Ltd
7, Dams Road, Chindadripet,

Chennai - 600002.

Contact Phone Number: 044-42337379
Email:

siva@healthycodemagazine.com
Web Site:

http://healthycodemagazine.com

Price: Rs. 150 /-

Healthy Code
February 2015

Vol 1 | Issue 11

Disclaimer:

The articles and contents of the Healthy Code magazine
are sourced directly from the authors with their
permission. Healthy Code doesn’t assume responsibility
for violation of any copyright issues by an author in
their respective article. We have made sure to the best
of our knowledge that the articles and code presented
here are without any errors. However, we can’t be held
liable for any damage or loss that may arise from using
these.

 - Publisher

Healthy Code
February - 201516

Article|-------------|Arun and Ravikant

Working with

Spring Data Neo4J (SDN)

Healthy Code
February - 2015 17

Spring framework provides various modules to build robust
enterprise applications through the basic implementation of
Object Oriented design principles and follows a layered approach
of component oriented architecture. Spring-dao module simplifies
RDBMS operations with a powerful abstraction over JDBC,
JPA and ORM frameworks like Hibernate. On the other hand,
while NoSQL databases gained significance and relevance, a
dedicated umbrella of projects under the name Spring-data were
formed. Spring-data is a uniform, standard approach to work
with different types of data stores. Spring Data JPA, Spring Data
MongoDB, Spring Data Solr, Spring for Hadoop and Spring
Data Neo4j (SDN) are few of the projects under the Spring Data
banner. In this article, we’ll discuss the SDN module.

SDN bootstrap

SDN project provides Object-graph support and repositories
for Neo4j. You may know that in ORM relational entities
(tables and relationships) are mapped to objects. Similarly
in SDN, graph entities (nodes and edges) are mapped
to objects. SDN provides APIs to perform various graph
operations to manage and manipulate the graph stored in
Neo4j repository.

You can setup SDN easily using maven. Build tools like
maven simplifies our tasks to hunt for the specific versions of
required libraries and helps us in automating the complete
build life cycle of a project. Please refer to the SDN site for
more build-tool specific configurations. Let’s add SDN
to an existing Spring-based web application. Add Spring
data Neo4j dependency to maven’s pom.xml file. This will
download the immediate dependency on SDN and all its
dependent libraries transitively.

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-neo4j</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>
<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.0.0.GA</version>
</dependency>

In Spring’s application context XML file, we have to add
the following SDN namespace to be able to use the SDN
tags as part of them. We will also configure the data store
using storeDirectory attribute.

<beans xmlns="http://www.springframework.org/
schema/beans" ... xmlns:neo4j="http://
w w w . s p r i n g f r a m e w o r k . o r g / s c h e m a / d a t a /

neo4j" xsi:schemaLocation="... http://www.
springframework.org/schema/data/neo4j http://
www.springframework.org/schema/data/neo4j/spring-
neo4j.xsd">
...
<!-- Activate Spring Data Neo4j repository
support -->
 <neo4j:repositories
 base-package="com.healthycode.repository" />
 <neo4j:config base-package="com.healthycode"
 s t o r e D i r e c t o r y = " t a r g e t /
healthycode.db" />
 ...
</beans>

Neo4j locks the given store directory when it is running.
You cannot access it simultaneously through the standalone
Neo4j server and the SDN API in embedded mode.

Problem Statement

Let us build a small application to maintain entities in the
Healthy Code journal. The graph shown in Figure 1.0,
illustrates the nodes and edges in the journal graph.

 Figure 1.0. HealthyCode graph

The Healthy Code journal is issued every month. Various
persons play different roles in Healthy Code. While
it has one PUBLISHER and one EDITOR role, it has
many SUBSCRIBERS and monthly ISSUES. Each monthly
issue features several articles and interviews. Each article
has one or more authors. Let’s use the SDN API to perform
CRUD operations and execute different queries on the graph.

Healthy Code
February - 201518

Object Graph Mapping - Modelling Nodes and
Relations

SDN API provides various annotations to map a Java
object with nodes and relations in the graph. All POJO
classes that map to a node in the graph should have @
NodeEntity annotation. Here is the Person node modelled as a
POJO along with SDN mapping.

@NodeEntity
public class Person {
 @GraphId
 private Long id;
 private String name;
 private String email;
 private String address;
 private String mobile;
 private String profileSummary;

 //getters and setters go here
 …
}

Here is the Article node modelled as a POJO along with SDN
mapping. As an article can have one or more authors, we
have associated Article with a set of Person nodes with the
relationship type as AUTHOR. Here, AUTHOR is a simple
relationship wherein it does not have any properties.

@NodeEntity
public class Article {
 @GraphId
 private Long id;
 private String title;
 private String summary;
 private String tags;
 @RelatedTo(type = "AUTHOR",
 direction = Direction.OUTGOING,
 elementClass = Person.class)
 private Set<Person> authors = new HashSet
<Person>();
 //getters and setters go here
}

Here is the monthly Issue node that gets published. One or
more articles and one or more interviews can feature in the
issue. As two different types of nodes are sharing the same
relation with the Issue node, the attribute enforceTargetType =
true ensures that both the relationships are cascaded at the
time of persisting an Issue node.

@NodeEntity
public class Issue {

 @GraphId
 private Long id;
 private String name;
 private String coverPage;
 private Integer volumeNo;
 private Integer issueNo;
 private Date issueDate;
 @RelatedTo(type = "FEATURES_IN",
 direction = Direction.OUTGOING,
 elementClass = Article.class,
 enforceTargetType = true)
 private Set<Article> articles = new HashSet
<Article>(); @RelatedTo(type = "FEATURES_IN",
direction = Direction.OUTGOING, elementClass =
Interview.class, enforceTargetType = true)
 private Set<Interview> interviews = new HashSet
<Interview>();
 //getters and setters go here
}

Let’s create the root Journal node with all the relationships.
You may have to pay specific attention to the annotation@
RelatedToVia that relates a Person with a Journal through a
relationship entity Subscriber. We will discuss about it in the
next section. Just remember that a Node can directly have the
related nodes or it can have the relationship itself.

@NodeEntity
public class Journal {
 @GraphId
 private Long id;
 private String title;
 @RelatedTo(type="PUBLISHER",direction=Direction.
OUTGOING)
 private Person publisher;
 @RelatedTo(type="EDITOR",direction=Direction.
OUTGOING)
 private Person editor;
 @RelatedToVia(direction=Direction.OUTGOING)
 private Set<Subscriber> subscribers = new
HashSet<Subscriber>();
 @RelatedToVia(direction=Direction.OUTGOING)
 private Set<Issues> issues = new
HashSet<Issues>();
 //getters and setters go here
}

Let’s talk more about the annotations that we have used so
far and also some more in SDN API.

•	 @NodeEntity: Maps a Java class to a node in the graph.
All fields in the Java class (primitive or convertible
to Stringusing the built-in conversion service) are by

Healthy Code
February - 2015 19

default mapped to properties in node.

a. In case you want only some of the fields to be mapped
to node properties, use attribute partial=true along with
the annotation. This will map only those fields with @
GraphProperty annotation to the node properties.

b. Spring Data Neo4j includes a custom conversion factory
that comes with converters for Enums and Dates.
Transient fields are not persisted.

•	 @GraphId: Maps a long field to the id of the node or
relation.

•	 @GraphProperty: Explicitly maps a field in Java class
to a property in node or relationship. This is relevant
when the entity annotation has the partial flag set to true.
Default values are specified as String representations
and will be converted to the correct target type using the
existing conversion facilities.

•	 @Fetch: This annotation indicates SDN to eagerly load an
associated node entity or relationship entity.

•	 @Indexed: Annotated field or type will be indexed. Index
can be used at the time of retrieval. This annotation has
additional attributes to specify the type and level of
index. Often an index is used to establish the start node
for a traversal.

•	 @Labels: Neo4j uses labels to identify the type of the
node. While using SDN, it automatically creates a label

with an underscore(_) prefix to the class name as shown
in Figure 2.0. SDN uses this to map a node retrieved from
the graph to appropriate type mapped in Java.

•	 @Query: In case we need to associate a node, say X, with
an iterable list of nodes directly or indirectly related
to this node X, in the graph dynamically, we pass in a
cypher query to this annotation along with required
parameters. SDN will do the rest by executing the query
and exposing the obtained collection of nodes through
the annotated field.

a. The provided query must contain a placeholder
named {self} for the current entity. Additional
parameters are taken from the parameter’s attribute
of the @Query annotation.

@Query(value = "start n=node({self}) match (n)-
[r]->(article) where r.type = {relType} return
article",params = {"relType", "AUTHOR"})

 private Iterable<Article> myArticles;

•	 @RelatedTo: Associates one node entity with another
node entity along with the direction and type of
relationship.

a. For 1:1 relationship, this annotation is optional. When
a value is set in the annotated field, relationship is
created. When the value is null, the relationship is
removed. An example is An editor in the Journal node.

b. Collection based one-to-many relationships return
managed collections that reflect addition and removal
of the underlying relationships. When the collection
has to be modified, field should be of type Set. For
read-only collection field should be of type Iterable.
An example is Set of articles in an issue.

•	 @RelatedToVia: Associates one node entity with another
node entity via a Relationship entity. The annotated field
represents the RelationshipEntity discussed in the next
section. Example is a Journal having a set of subscribers
related via SUBSCRIBER relationship containing details
of subscription.

•	 @GraphTraversal: If you feel the above mappings are
insufficient, you can implement your own graph traversal
logic and link that class as an attribute of this annotation.

Relationship Mapping

A relationship with zero or more properties is a powerful
Figure 2.0. Node labels along with SDN generated labels
with underscore prefix

Healthy Code
February - 201520

feature in Neo4j. It comes handy when we write queries to
filter nodes or traverse from one to another along desired
relationships. A relationship is categorized by a type,
a start node and an end node. Start node and end node imply
the direction of the relationship. Relationships can have an
arbitrary number of properties. Declaring a separate POJO
class to model a relationship is optional. It is more often
required only when using properties as part of relationships.
In our example, a Journal node is related to an Issue node
via ISSUES relationship.ISSUES relationship type is mapped
to Issues relationship entity like this.

@RelationshipEntity(type = "ISSUES")
public class Issues {
 @GraphId private Long id;
 @StartNode private Journal journal;
 @EndNode private Issue issue;
 private String issueDate;
 // getters and setters go here
}

The annotations, @Fetch, @Indexed, @Labels, @Query, that we
discussed in the context of a node entity are still applicable
within a relationship entity for the same purposes.

CRUD with GraphRepository API

SDN comes with various typed repository implementations
that provide instant access to almost all common graph
operations at no extra code. You get features of all the
repositories by extending GraphRepository<T>. You may
have noticed the Neo4j configuration in Spring’s application
context file where the support for Neo4j repository was
added along with the base package.

<neo4j:repositories base-package="com.healthy
code.repository" />

Following code snippet illustrates JournalRepository in our
solution.

public interface JournalRepository extends
GraphRepository<Journal>{ }

We don’t have to provide any implementation of repository.
We just have to wire it with any Spring class with@
Transactional support as follows.

@Service
@Transactional
public class JournalService {
 @Autowired
 private JournalRepository
 jounalRepository;

 public boolean saveJournal(Journal
journal) {
jounalRepository.save(journal);
return true;
 }
}

The concepts like dynamic proxies, CGLIB, code
instrumentation are put into picture to create classes
implementing the repository interface at runtime and inject
an instance of it like other normal beans. GraphRepository has
all the required methods to save, delete and find graph
entities. In addition, it has a method to pass a cypher query
along with parameters to query the graph. For instance, in
the following code snippet we are trying to fetch an Issue for
the given date.

public Issue getIssueForDate(Date issueDate)
{

 Map<String, Object> params = new HashMap<String,
Object>();

 params.put("issueDate", issueDate);

 Result<Issue> issueForDate = issueRepository.
query("MATCH (i:Issue) where i.issueDate =
{issueDate} RETURN i",params); r e t u r n
issueForDate.singleOrNull();

}

In case you have a complicated query result that contains
more than one type of result columns, then consider using
the following @Query annotation through a method in the
repository interface. The following example fetches article
and the issue it has featured, for the given author name.

public interface PersonRepository
 extends GraphRepository<Person> {
 @Query("MATCH (p:Person)-[:AUTHOR]-
(article:Article)-[:FEATURES_IN]-(issue:Issue)
WHERE p.name={0} RETURN article, issue")
 List<ArticleIssue> getArticlesAndIssuesForAu
thor(String authorName);
}

At run time, the place holder {0} will be substituted by the
first parameter passed during the method invocation. The
class ArticleIssue is a user defined value object that maps the
query result to a POJO. Here is the definition of the value
object with the @QueryResult annotation that maps the
columns in the query result to fields in the POJO.

/**

Healthy Code
February - 2015 21

* VO representing a graph query result that
fetches a pair of article and the
* issue in which the article has featured
*
* @author arun
*
*/
@QueryResult public class ArticleIssue { @
ResultColumn("article") private Article
article; @ResultColumn("issue")
private Issue issue; //getters and setters
go here
}

Neo4j Template

If you have worked with Spring-Jdbc or Spring-
Hibernate modules, you would have come
across JdbcTemplate orHibernateTemplate respectively.
These template classes are one-stop solution for almost
all operations with the data store. On similar lines,
SDN provides Neo4jTemplate as a convenient API to
perform any graph operation across the whole graph.
Unlike GraphRepository API where you need to create a
separate repository interface for each entity, Neo4jTemplate
allows you to directly invoke the operations. Neo4jTemplate
instance is automatically injected in any of the Spring
managed beans. SDN uses the base-package attribute
in neo4j:config to scan and inject these standard dependencies.

@Autowired private Neo4jTemplate neo4jTemplate;

Once you have Neo4jTemplate, you can access all their straight-
forward APIs to perform various graph operations. Below
code snippet shows accessing one of the methods exposed
by Neo4jTemplate and how to retrieve entities returned by
the query using Result the class.

public List<Issue> getIssuesWithTemplate() {
 Result<Issue> result = neo4jTemplate.findAll(Issue.
class);
 List<Issue> issues = new
ArrayList<Issue>();
 for (Issue i : result) {
 issues.add(i);
 }
 return issues;
}

Neo4jTemplate exposes a suite of APIs to completely maintain
and manage the Neo4j graph right from creating Node with
attributes to creation of Relationships, Indexes, etc. We will
expect you to go through the API of Neo4jTemplate and try

out individual operations.

Conclusion

In this article we discussed how to map a POJO with entities in
the Neo4j graph viz. NodeEntity and RelationshipEntity. SDN
API manages most of their functionalities via annotations.
We also used both Repository and Neo4jTemplate to perform
basic CRUD operations to execution of query and processing
the result. We hope that this article would have got you
started with Spring Data for Neo4j API.

References

•	 Good Relationships – The Spring Data Neo4j Guide Book,
Michael Hunger

• http://spring.io

• https://github.com/ramselabs/Healthycode-Spring-Data-
Neo4J.git

Ravikant Shukla is a Software
Engineer at Ram Software
Engineering Labs. He spends
most of the time building web
applications on Java Enterprise
stack. As part of one of the product
development he integrated
underlying Neo4j data store with
his web based application.

Arun is a hands-on Solution Architect for the
complete stack in Enterprise applications,
application integration, and android application
development. After a decade of industrial
experience in various Software development in
leadership role, Arun founded Ram Software
Engineering Labs in 2010 offering consulting
on specific phases of software development,
corporate training on diverse technologies
and software engineering. Arun and his team
at Ram Labs have also built a collaboration
platform for educational institutions where
they have heavily used Neo4j.

Healthy Code
February - 201522

Article|-------------|Amit Jain

Grails Conference in India

GrailsConf
2015

Healthy Code
February - 2015 23

The New Year started with a bang for the Grails developers
when GrailsConf 2015 took place at The India Habitat
Centre, New Delhi on Saturday, 10th January. The one-day
conference showcased a lineup of eminent speakers with
over 160 participants attending the event. The gathering
was mostly Java and Groovy developers, though I noticed
many Java developers who were amazed to see the power
and brevity of the Groovy language.

Here’s a very brief rundown on all the sessions and speakers
from the GrailsConf 2015.

Highlights:

The day started with a keynote by Dr. Venkat Subramaniam,
an award-winning author, founder of Agile Developer, Inc.
Titled It Could Be Heaven Or It Could Be Hell, Venkat
motivated developers towards productive and sustainable
development practices. Few key points that he mentioned
which I really liked are:

•	 Languages mould our thoughts – The way we design
the software is greatly influenced by the languages
we know. So learn more languages. Don’t stick to one
or two. When we know multiple languages, it would
change the way we code in our primary language. He
also quoted Be a Polygot Programmer - ByNeal Ford.

•	 How fast we can learn depends on how frequently we
are exercising our mental muscles, i.e. investing on
learning new things on a regular basis.

•	 Unit testing is to software like exercise is to human
body. So write more and more unit test cases preferably
following TDD.

One could clearly sense the excitement in audience after his
keynote and I was one of the excited ones.

The next session was Grails Goodness – The Search Is Over
by Roni C Thomas and Manoj Mohan from IntelliGrape.
They demonstrated how easy and fast it was to develop
with Grails. Their talk focused on the audience who are
fairly new to Groovy ecosystem. Topics that were briefly
discussed included:

•	 GVM: Groovy environment manager tool to move to
different versions of Grails, with a simple gvm command.

•	 Multiple datasources: Just configure multiple database
settings in configuration file, and use that bean anywhere
to talk to another database.

•	 Scaffolding: Generate CRUD dynamically with just a
single statement, which gets regenerated automatically
when the domain changes.

•	 REST API: Creating controllers to render XML/JSON
response with least effort using scaffolded code.

•	 Plugins: Use Spring Security plugin for securing the
application, which is a ready-to-use feature.

KunalDabir, Senior Consultant with ThoughtWorks,
spoke about Demystifying Gradle Build Scripts. His talk
focused on:

•	 Defining custom tasks, i.e. the extra behavior.

•	 Domain Specific Languages (DSL)

•	 Showing how scripts work internally and covered
operations like apply and task.

•	 Hidden handlers that can be used to find methods that
are available.

•	 Task API and its internals.

Healthy Code
February - 201524

We moved onto the next session by ShrikantVashistha,
Director Engineering – GlobalLogic, who spoke on
Specification By Example In Grails With Geb And Spock
and discussed how a specification should be written. He
mentioned that the aim of writing spec is not only testing but
also shared understanding and documentation. Shrikant
introduced the concept of Definition of Ready, which is when
the story should be given to the developer. It should at least
be 80% ready. He also discussed the benefits of GEB and
took us through a few examples. Page object concept has
definitely made it simple to write and reuse the code.

After an hour of networking lunch, DrVenkat Subramaniam
was back with a session on Applying Groovy Closures
For Fun And Productivity. His talk revolved around the
concept of Closures, Curry, Trampoline and Memoize. I could
have never understood those concepts better without his
excellent examples and the use cases he shared. It was
actually real fun learning them.

Manoj Thakur, Director Engineering – Flipkartgave a
presentation on ElasticSearch. In general, he outlined
usages and key concepts allowing the participants to get
meaningful analytics from the machine generated data,
which grows rapidly and in real time. He shared a few
configurations that worked really well for them like the
unicast discovery mode. Then many people from audience
shared their experience of working with ElasticSearch,
making it an interactive talk.

Naresha K, a technologist with Channel Bridge Software
Labs, spoke on Effective Java with Groovy where he
recommended better practices. He mentioned that if once
these are followed then it would make life much simpler
and they included using more annotations, better handling
of null objects, closures and delegate concepts.

Finally, the conference had a panel discussion specifically
on upcoming trends in the JVM Landscape where many
interesting questions were discussed by the panelists,
which gave us a lot of clarity on topics like Java 8, Lambda
Expressions. The panel talked about how to decide which
tool/technology is right and some good practices.

My huge thanks to all the fantastic speakers for taking out
time to share their knowledge and experience with all of
us. Also, many thanks to all participants whose company
I really enjoyed. I feel really excited and I am ready for the
GrailsConf 2016.

Amit Jain is a tech lead
with more than 7 years
of experience in Java and
Grails development. He
is an Agile enthusiast, a
certified Scrum Master
and an author of Remote-
Pagination Grails plugin.
These days he is enjoying
learning Scala.

Healthy Code
February - 2015 25

It's great talking to you Linda. Let's start
with a politically incorrect question. How
old are you?

Hahaha. I am 72. In a lot of talks, I tell the audience
how old I am. I tell them that I am not an exceptional
person. I was never a major genius. I never made
significant contributions to Computer Science. I only
went to ordinary state schools and not MIT or Stanford.
Whatever I do can be done by anybody. I encourage
people especially when you have a dream. They lose
the dream, because they think are old or may be they
are not smart enough. And in agile mindset talks, I
emphasize that there are two ways of looking at the
world. The agile way is to believe that you can do better
tomorrow, if you are determined. If you have a dream
and you are looking at doing it, you should do it. It
doesn't matter how old you are.

I don't care how old you are and don't mind telling
people how old I am.

Could you please formally introduce
yourself to the Indian audience?

Right now I live in Nashville, Tennessee, a little state
in the US close to the East Coast. I have been living
there for the last three and half years since my husband
retired. Prior to that, I lived in Phoenix, Arizona for 22
years. I have been an independent consultant for the
last fifteen years. I started doing that because I was laid
off in the company I was working. After I got laid-off I

moved to Denmark and started working in a Danish
company. Over there, I was surprised to find out that
people in Europe were inviting me. I was invited to
go to UK, Germany, etc., to give talks, help them with
retrospectives, do a little bit training about patterns
and I thought this works out very well. I thought
when I had to go back to US, I would need to get a
proper job. But what was surprising was that I could
continue doing what I did in Europe in US as well and
that was in year 2000. So, I would like to call myself
an independent consultant. I don't know if I would be
doing this next year or not. But I am doing it right now.
I won't know if people would call me for training or
invite me for talks a year from now. So, I take one year
at a time.

I talk about and provide consulting on Patterns,
Retrosepctives, Fearless Change - the book I have written,
introducing new ideas in organizations. My primary
interest is in how the human brain works. I am
primarily concerned about software development and
making it better. I am definitely interested in Agility.
But I generally like to talk about anything that can
make anybody lead a better life.

Fantastic. Just curious! How many times
have you talked about yourself so far?

Haha, I don't know. I have lost count. But the way I
say it, may be make you feel like you are telling it for
the first time. Oh, I would like to say things differently
every time so that it sounds different.

Interview with

Linda Rising

Healthy Code
February - 201526

Healthy Code
February - 2015 27

You have been a professor, speaker and
author. Have you been a programmer?

Oh. Yes. I have worked on defense projects. Worked on
777 airplane. I worked on telecommunications. I have
worked for small, medium and large sized companies.
I have written lot of software. On the airplane project,
I was Ada Guru. So do you know about the Ada
programming language? It is named after a woman.
She was the first woman programmer. It was designed
for safety critical domains like avionics. So it was used
in systems concerned about saving lives, worried
about explosions in defense. The whole 777 airplane
was written using Ada. It was a new programming
language in the early 80s. People were resistant to
using it. People were scared to learn it because it was
complicated and my job was to help people learn Ada.
Ada is not an object-oriented language. It's object
based and it has something like a package that was
new for people used to Fortran, C or Pascal. It is an
intermediate language on the way to object-oriented
languages. It was big paradigm shift for people at that
time. So, I have done lot of programming.

You have a violent past, don't you?

Oh. Yes. I have worked on defense projects. Worked
with weapons. Written code about finding targets.

You have played several roles. Which role
do you enjoy the most -- programmer or
speaker or author?

I have enjoyed all of them. I have learnt from every one
of these. Everything I have done is used in what I am
doing now. I often talk to people who say that they are
wasting their time either on the job that they don't like
or working in something that no one will ever use. They
think they are wasting their time when they should
be raising their children and spending time with the
family and they say that part of their life is worthless.
My message is that everything you do will be used in
everything you do later. Nothing goes waste.

The reason is I started my life as a chemist. I worked
in a research lab and not in computer science or
software engineering because when I graduated in
1963 those jobs were not available. I thought I wanted
to be a research chemist. And, unfortunately, I was
wrong. I was interested in Biochemistry and I learnt
to my dismay that what Biochemists do is kill animals.
That's what I did for six months. I know many ways of

Healthy Code
February - 201528

killing rats. More ways than you can possibly imagine.
Finally, one morning I ran to the fourth floor where
you pick up animals and I just couldn't do it. I couldn't
put my hand into the cage and see that animal coming
towards me without knowing that my job was to kill it.
So I quit my job. But, I think what ever I learnt about
killing animals as a Biochemist is helping me now. I
learnt a lot from that experience. You should never
believe that this part of my life is worthless. You will
always use something from that part. You will always
be better in what ever you decide to do later on. It all
hangs together. John Muir, founder of sierra club in US,
said, ‘If you pick up anything in the Universe you find it
hooked up to everything else’. So we can never isolate an
experience and say, ah, that's worthless and we don't
need to pay any attention to that. All the things are
connected together. Don’t you think that's true? I think
that's very true. So everything you do is precious. And
every experience is precious.

Who introduced you to Agile?

In the early 90s, I was working in a telecom company. Its
main business was working on a switch - Big switches
that are used for long distance phone calls. So those
switches had 8 to 9 million lines of code. Everybody
in the company knew that it wasn't sustainable and
the business was shrinking. People were moving to
newer technologies and they knew that they would
make long distance phone calls using landlines and the
switch business was dying.

So, they started lot of small experimental projects with
the idea that one of them would take over the business.
The switch is a big, heavy-duty process and requires
CMM Level 4. People started on the smaller projects
and they tried to use the same heavy-duty process
and it didn't work. Many of the smaller projects had no
requirements. We didn't know how to begin. We were
trying to create a requirements document with no real
requirements. I was doing the research on Patterns
and teaching how to use them (like the Gang of Four
Patterns) and my boss came to me and said, ‘ Linda,
may be there are some patterns for doing those small
projects, with a small team and no requirements.’ He
asked me to find a way.

I came across Kent Schwabber and there were people
writing about his approach to projects. At that time,
there was no book for that and only a website was
available. It was called http://controlchaos.com and it
is still there. There was a big picture on that website

with Rugby players that meant nothing to me. I started
reading, sent him some emails, and I said, ‘Can you
please tell me about this?’. I asked, ‘Can we do this?
What is Scrum? I am trying to read your website, but
I have lot of questions’. He was very helpful and got
me started. He sent me information and answered my
questions.

I put together a little presentation on what is scrum.
I had the picture of the Rugby players huddling. I
started with my little teams. I told them I don't know
if this will work. But, we could always try it. We can
see if it can help us in some way and we will just learn
from that experience. The teams were very desperate.
And they started doing experiments on Scrum. They
were used to really heavy- duty work and suddenly
it was all about short iterations. It was all about sitting
down, talking to customers, which they had never
done before.

The customer came and said, we don't know what we
want, but we want it by June. So, how do you even
begin? How do you do that? We just know we have
a little piece to begin with. We will just do that piece
and show them and see how they feel about it. Now
we got a little working piece and we came to know
a little more. Let's add that to it. When we got to the
end and we did the retrospective, I remember very
clearly - there was a comment. ‘In the beginning we knew
nothing and we grew it together and there is no other way
we could have done it’. There is no way we could have
started with a big requirements document. There is no
way we could have said that we are going to lay down
milestones. We had no idea what the milestones were.
Even the customer also did not know. The customer
wasn't lying. They knew they needed it by June and
there would be an upheaval and somebody else would
have a solution viable in the market. They were just
telling the truth. And that's the case with everything
out there now. We know the solutions are going to be
there. We just don’t know what they are. So unless we
grow it together we are not going to have it. And this
was in 1994 and I wrote an article in IEEE software
article available in my site http://lindarising.org.

We even had an experiment with the testing team.
There was lot of process in testing those days.
Developers used to write software and throw it to the
other side of the wall to the testers and there was a lot
of blaming. If you find a problem with the software
it is your fault. There used to be wars. So when we
started doing Scrum with testers, we told them, you

Healthy Code
February - 2015 29

have to be involved from the beginning. You can't just
sit over there and wait till the developers are done. It
was revolutionary. The entire organization began to
see that this was the way to work. They realized that
they could think in a more agile fashion and it changed
the whole organization and not just the new projects.
They believed that this was a better way to collaborate,
communicate and deliver. And all began to move in
that direction.

How do you convince the customers to buy
the agile idea?

When we started, the first group I talked to, was one of
those teams that was in trouble. The team liked the idea.
But you know what, the testers in those teams would
never go with us. They were used to having everything
at the end and they did extensive testing. They would
never go along with us for these small increments.
Then I go and talk to the testers. You have to talk to
the testers from the testers point of view. I didn't give
the same presentation, I gave to the developers. I told
the testers how testing will become better because of
Scrum. You have to step in to the shoes of the tester and
feel their problems. You have to understand their pain
and come up with your idea. When I did that the testers
said, Aha, I can see how it can make my life better.

But those people never go along together; the
developers, the testers, the business people and
everyone say that about the next link in the business
chain. They will never go along with us. So you have
to tailor the message to address the pain of the group.
If you are able to do that, it meets their understanding.

The ideas behind agile are very convincing. The
message has to be tailored. It can never be the same
for every group. By the time I had gone around the
circle and talked to the developers, testers, business
people, specifically the sales and marketing people
and the customers they all said, 'Oh great. This could
be great advantage to us. I will be willing to try it.’
Because they knew things were working their way. So
when people are in pain they look for better ways. And
that's what you need to do. If you just get up say, here
is what Scrum is and this is what it does, it wouldn't
work. You have to address the pain, which means you
have to understand them. Stephen Covey wrote a great
book called The Seven Habits of Highly Effective People.
He said if you are going to work with other people,
eventually you have walk in their shoes and you need
to know how they see the world and it is not always

easy. You have to go talk to them, see what they do,
watch, listen and then develop your presentation and
that's very difficult. We just say, I'll tell how it works for
me and it is enough to convince you. We are just not
convinced by logic, but by someone who understands
and translates for me. Sales guys understand that,
Marketing guys understand that, but that may not
really mean anything to me. You have to know me
if you have to sell your product and not talk blah…
blah…blah about your product. I care about what I
want. And those of us who are technical people, we are
not used to thinking that way. So if you give a logical
explanation of the product it will still not be effective.

And that leads us to understanding the
culture. How do you sell Agile to a team
with diversified culture?

One of the things to realize is that diversity is good.
Diversity has its advantage, because it brings in

Healthy Code
February - 201530

different points of view to the table and different ways
of doing the work. Many companies in many countries
hire people because they are just like one of them.
We like people who are like us. What you get from
that is unity and a viewpoint that stand in the way of
innovation. So the first thing you need to do is embrace
innovation and that’s your strength.

You need to understand that we don’t have to agree
upon everything. I know we don’t agree, but we should
share those points and that’s your power and you need
to build on it. So this will also enable you to build a
better product and communicate with a variety of
customers. There is going to be someone in your team
who understands a particular variety of customer. If
everyone in your team is from same culture, you are
going to miss out a customer from different culture,
because you don’t have an idea about them.

How do you learn to embrace different
cultures in a team?

The skill you need to have is listening. We all think
listening is not talking. And, what we do when we
are not talking and the other person is talking is that
we are getting ready. We are preparing our response,
preparing our arguments without understanding what
the other person is talking. People just don’t listen. It
takes a lot of practice.

In India, you might be very good at a metaphor about
listening. Here you are used to thinking certain people
as Gurus. Your idea of going on a pilgrimage to see a
Guru is your idea of listening to a wise person. You
want to learn everything you can from the Guru. We all
need a metaphor and may be this metaphor will work
for you. So, when you are talking to a person from
different culture from your team, you need to think of
that person as your Guru. It’s your job to pull out every
bit of information from him, so that you can make
your mind better. So listening is not about focusing
on replying to the person who is talking. It is about
pulling the wisdom from the person who is talking. So
you need to listen as hard as you can.

I have a friend who is a marriage counselor. When
she has a husband and wife who are in conflict, all
she says is let me watch when you both talk to each
other. She asks them to speak and then stops and asks
the husband to tell what his wife just spoke. But, he
wouldn’t know because he wasn’t listening. He was
just focusing on his reply. And the same thing would

apply to the wife too. Many conversations are like that.
We are always working on our response, because we
want to win. So on a diverse team if you don’t listen, it
becomes a fencing match. So we have to carry the Guru
metaphor all the time with us.

If you want to convince someone to use agile, we know
that they are going to raise objections and we need
to be prepared for that. We always go with the list of
items in our head. When he is talking about something
you are going to be picking up one of these items and
throw it to him thinking that it would be convincing
for him. No. It doesn’t work at all. The pattern in
fearless change says deep listening is more convincing.
You can just keep listening and it will convince the
person, because listening is a much better communication
technique than using words. I have done that and the
first time I thought it wouldn’t work and I almost gave
up. But I thought about the metaphor and said I am
not going to talk to this person at all. I just listened,
listened and listened to the person and didn’t open my
mouth at all. And the person finally said, ‘Alright, may
be I should give it a try’, and all I did was just listen. I
listened to him and made him agree. I didn’t use logic;
I didn’t use arguments; I didn’t use anything. Most
people don’t have a clue how powerful this technique
is. A person who is being listened is very overwhelmed
by this fact and starts opening up to you more and
starts thinking as well.

One of the interesting patterns in your
Fearless Change book is food. Can you
elaborate on that?

It is the Do Food pattern. I think it is the most under
appreciated pattern. People look at it and say this is
silly and ridiculous. We have been eating food together
as long as we have been humans. It is a deep human
connection we have. I don’t know how it works in
India. In France say for example, the word friend
means compagnon in French and it means someone
who shares bread with me. Our ancestors, in stone age,
only ate food with people who they trusted and that is
how it still is. Sharing food is a sign of trust.

So here is an experiment that was done to convince
people. There are many versions of this experiment.
It is about getting a group of people to vote. So there
is this control group that doesn’t get anything and
another group that gets food. There is a presentation
made on the issue that we want their support to vote.
We give the same presentation, same speech, the same

Healthy Code
February - 2015 31

way to both groups. Later in the study, the group that
got food voted in support of the issue and that has been
repeated over and over again on multitude of things
where you want to convince people. Always happens
that the group that gets food is more open and is more
likely to support what ever you are talking about. In
these experiments, the idea may not be great. You may
be asking people to do things that may not be their
best. Sometimes it may be about increasing the taxes,
with students it may be increasing their fees, so it may
not be in their best interest to support it. But the results
are still the same. Even if it not a good idea, feeding
them will lead them to do it. So, it is not the quality of
the idea that is convincing, it is the quality of the food.
If you feed them bad food, they will vote against you,
even if the idea is good. So, it has to be tasty food. Once
I tried to experiment it with healthy food, lot of figs
and whole wheat and they hated it. They didn’t like
the idea either.

Food has always been an enjoyment. I don’t know
whether you know Roger Ebert, a famous movie critic.
He had a serious kind of cancer that destroyed his
lower jaw. They did all kind of radiation treatment on
him and he lost his ability to eat. So he had to be fed
with a tube and he could never enjoy his food again.
He said you might wonder if I miss the taste of food
or drinking my favorite kind of coffee. He said that’s
not what he missed. He said he missed sitting down
with other people and enjoying his food. I realized
how deep that connection is when you share food that
I cannot participate anymore. So it is a powerful thing
that we don’t realize.

Very simple, but extremely powerful. We
don’t realize this in a professional set-up.
Don’t we?

We have people in our organizations who would just
go around the meetings to check if there was food
served. In all my talks people have always served good
food. We have good nice cookies during the breaks,
nice lunch between the talks, and chocolate cakes and
ice creams and whatever that makes the participants
happy.

 We don’t realize how important that is and when
organizations cut down on food due to budget
constraints thinking that it is a luxury and waste of
money, I just tell them they are overlooking its power.
I personally always use food in retrospectives. Because
retrospectives are always unpleasant. Having food

during retrospectives helps us get past our bad times.
There are some types of food, which I call comfort food
that need to be served during these meetings, because
they remind us of happy times. So food removed from
an organization means, we don’t have the comfort
and connect anymore. And for cutting cost you are
talking about such small amounts. It is a tragic thing
for organizations to do that. We need to get that across
to the CEOs who make those budgeting decisions. We
need to tell them that having food at workplace is an
inevitable mark of work culture. So I have experienced
this where I was working with a team that had to
get a report to the manager every week and that was
extremely boring work. Everyone hated getting that
report ready. So what I did was one fine day before
doing that work and I went to the cafeteria and got
some nice little chocolate cookies. And the moment I
put those on the table everybody in the team started
telling their stories and all of a sudden the report was
done. It happened while we were eating and telling
stories about the cakes. All the work was done and we
finished early. We all walked off saying, why don’t we
have this everytime.

Did you have a team to research all those
patterns in your book or was it all done by
you?

Well. A pattern cannot be your idea always. Starting
from the Gang of Four patterns, they have always said,
we four guys have watched such things in so many
places. It was not a single person’s idea. But we all have
agreed upon these and had validations from various
users who have seen the idea. So patterns are a work
of a community or a group of people who have seen

Christopher Alexander
said a pattern can
be implemented in
a million ways, but
the essence remains

constant.

Healthy Code
February - 201532

and used ideas what ever the domain may be. So if
you are going to write a pattern, you have to write to
the patterns conference. You have a Shepherd who
writes down these patterns and gives a feedback. Then
you go to a patterns conference, sit in a small group
and discuss the pattern. Only after that it becomes a
pattern. For example, the Do Food pattern, I found out
in this group that people in Japan don’t share food. But
they all go out after work and share a beer later. How
you implement the Do Food pattern is different in
different countries. Christopher Alexander said a pattern
can be implemented in a million ways, but the essence
remains constant.

One last politically incorrect question.

Oh, I love politically incorrect questions. When George
Bush II was elected as the President of the US, I went
around with a T-Shirt that said, I didn’t vote for your
father either.

Haha... Agile is all about responding to
change and responding to failure. As we
grow old it becomes harder. How do you at
72 cope up with change?

It’s human nature to resist change. Yes. As we grow
old, it is very difficult. But what we do like is the idea
to experiment. We may not like it and we may not
change, but we are usually open to the idea of small
experiments. May be we can try it. It won’t be that
hard. If we like it we can use it. If we don’t, we need
not worry. So these are counter forces. On the one
hand we resist change, because people want to make
big changes, faster changes and that is very hard and
may never happen. And we will resist that as much as
we can. On the other hand, we as humans have been
alive and what kept us going was we are willing to
experiment. If our ancestors had not experimented,
we wouldn’t have come this far. They were all risk
takers, but to a limited extent. They were willing to
move forward talking little steps and travel all over
the globe. So we have to remember that big changes
are very painful, but little experiments are always
fun. Agile is all about little tiny risks and taking small
steps with small learning and small changes. Don’t
try to push too much and bring about an upheaval.
It is true even in the personal level. Agile is not like
New Year resolutions like I want to run a marathon
and then fail miserably. It’s like, may be I want to walk
every Tuesday after the dinner and that will work and
slowly you extend it further.

“Prolific developers don’t

always write a lot of code,

instead they solve a lot of

problems. The two things

are not the same.”

- J. Chambers

“Beauty is more

important in computing

than anywhere else in

technology because

software is so complicated.

Beauty is the ultimate

defence against

complexity.”

- David Gelernter

Pragmatic

Programmer

Quotes

Healthy Code
February - 2015 33

Healthy Code
February - 201534

Article|-------------|Naresha

Effective Java with
Groovy

II

Healthy Code
February - 2015 35

Obey the general contract when overriding
equals (item 8); Always override hashCode
when you override equals (Item 9)

Often developers overlook the importance of getting the
object equality right. Consider the following code sample.

class Book{
 String isbn
 String title
}
def book1 = new Book(isbn: '9788131726594', title:
'Effective Java')
def book2 = new Book(isbn: '9788131726594', title:
'Effective Java')

assert book1 == book2 // fails

The assertion in the above code fails
indicating book1 and book2 are not equal. This happens because
the class Book will inherit the equals implementation from java.
lang.Object, where two objects are equal only when they point
to the same memory location. However while developing
applications, we would want book1 and book2 objects to be
equal. Before we get into solving this problem, let’s discover
another problem.

def book1 = new Book(isbn: '9788131726594', title:
'Effective Java')

def stock = [:]
stock[book1] = 100

def book2 = new Book(isbn: '9788131726594', title:

'Effective Java')
println stock[book2] // null
println stock // [Book@3c255a5a:100]

Here I want to store the stock count for each book in
a map variable, stock. I use the Book instance as key and
the stock count as value. Later when I want to retrieve the
stock, I would get the inputs from the user and construct
a Book object named book2. However the map does not
return a value against book2, even though it has an entry
for the correspondingISBN. The problem is we are again
relying on the default implementation of hashCode() and
a HashMap relies onhashCode() to get to the bucket where
the object is searched using equals(). In Java, you would go
ahead overridingequals() and hashCode(). Let’s hold on for a
moment to study the problems with such implementations.
When you write a class, you would ask your favourite IDE
to override equals() and hashCode() methods for you, than
writing that boring boilerplate code yourself. Later when
you add a property to the class, developers may forget
to modify the overridden methods or modifying only
one of them. Thus the approach fails to provide a single
point of representation of this knowledge, considering
both equals() and hashCode() implementations would rely on
the same set of properties. Groovy solves this problem by
providing @EqualsAndHashCode annotation. The following
code snippet shows how to use this annotation.

import groovy.transform.EqualsAndHashCode @Eq
ualsAndHashCode(includes='isbn')
class Book{
 String isbn
 String title

Effective Java is probably one of the best books ever written for Java
programmers. It presents us effective ways and good practices of using the
language. Groovy language provides solutions for many such good practices
out of the box. In the second part of the series of articles, I will walk you
through code examples that follow these good practices. You will be pleasantly
surprised by the simplicity with which Groovy empowers the developers and
lets you to focus on solving the problems at hand. I am going to select some
recommendations from 'Effective Java (II edition)' in random order and present
you the techniques that Groovy offers. I will present a title along with its
reference number in the book and discuss it in Groovy.

Healthy Code
February - 201536

}
def book1 = new Book(isbn: '9788131726594', title:
'Effective Java')
def book2 = new Book(isbn: '9788131726594', title:
'Effective Java')
assert book1 == book2 // passes

def stock = [:] stock[book1] = 100
println stock[book2] // 100

You can also consider using the following attributes for
customizing the code generation.

•	 cache: For immutable classes, consider setting this to
true, so that hash code need not be computed each time
it is called

•	 callSuper: Set this to true for sub-classes

•	 includeFields: Set this to true to consider fields in
addition to properties

Caution for Grails users

It is highly recommended to apply @
EqualsAndHashCode annotation on all domain classes. You
might be tempted to specify the id in the includes attribute
like @EqualsAndHashCode(includes='id'). But note that a
domain class instance will get an id only after the object
is persisted, if the default strategy of id is auto generated.
Hence have yourequals() and hashCode() implemented based
on the business keys.

import groovy.transform.EqualsAndHashCode @Eq
ualsAndHashCode(includes='isbn')
class Book{
 Long id
 String isbn
 String title
}

Avoid float and double if exact answers are
required (item 48)

Let’s consider the following Java code.

public static void main(String[] args) {

 float price = 0.1f;
 float total = 0.0f;
 for(int i=0; i<10; i++){
 total += price;
 }
 System.out.println(total); // 1.0000001
}

In any business application, the user would expect the
answer to be 1.0 but it turns out to be 1.0000001, which
isn’t precise. At this time you might be intrigued to know
the impact of changing float to double. If you do that, you
should get0.9999999999999999!. As the title suggests you
should avoid float and double if exact answers are required.
If you are a fairly experienced Java developer, you would
know that you should use java.math.BigDecimal instead.

BigDecimal price = new BigDecimal("0.1");
BigDecimal total = BigDecimal.ZERO;
for(int i=0; i<10; i++){
 total = total.add(price);
}
System.out.println(total); // 1.0

Here are some common traps that you might fall into, while
working with BigDecimal.

• While constructing a BigDecimal object, you have to pass
the numeric value as a String object. Since double has
already lost precision, passing a double value will not
help.

• BigDecimal is an immutable class. You might forget to
assign the result of total.add(price) back to a variable.

Let’s find out how Groovy can improve this experience for
a developer.

def price = 0.1;
def total = 0
10.times{
 total += price
}
println total // 1.0
println price.class // class java.math.BigDecimal

In the Groovy version of the code, you need not explicitly
specify the type. However the default types have produced
the expected result 1.0. This is because Groovy will
assume BigDecimal type for any floating point numbers
(unless you specify to use something else). Choosing
appropriate defaults can impact developer productivity
positively and avoid surprising results. Groovy has taken a
right step here, as mostly you would use Groovy for writing
business applications.

Prefer for-each loops to traditional for loops
(Item 46)

Iterating through the elements of a collection is a very
common task that we perform in our code. Traditional for loop
in Java makes developers to write very verbose code by
declaring an index variable (with i being the popular choice!)
,increment it by 1 and specify the terminating condition. Java

Healthy Code
February - 2015 37

5 introduced for-each loop (for(:)), which is a syntactic sugar
over Iterator. Below is the Groovier version of for-each loop.

def numbers = [2, 1, 5, 4]
int sum = 0
for(int number in numbers){
 sum += number
}
println sum // 12

Java 8 also provides some better alternatives, let’s find out
what Groovy has to offer. The above code is still not an
idiomatic Groovy code. While by embracing for-each loop,
we got rid off maintaining the index variable, but we still
keep modifying the variable sum. By using internal iterators
provided by Groovy, one can get away from maintaining
intermediate states. The following example shows how we
can print the elements of a collection one by one using an
internal iterator.

numbers.each { number ->
 print "$number "
}
// 2 1 5 4

To get a better understanding of the value provided by
internal iterators, consider the following piece of code, which
doubles the elements in a list of numbers.

println numbers.collect{ number ->
 number * 2
}
// [4, 2, 10, 8]

The following code block shows how to compute the sum of
a list of numbers.

println numbers.inject(0){sum, number ->
 sum + number
}
// 12

Thus by using internal iterators, we avoid maintaining
redundant state information, which in turn reduces errors
introduced by accidental modification of state. So in the
modern era, the advice provided by Josh can be reframed
asprefer internal iterators to external iterators.

Use function objects to represent strategies
(Item 21)

Say you have a list of numbers and you want to perform the
following operations.

• Find all even numbers

• Find all odd numbers

• Find numbers divisible by 4

• Find numbers greater than 5

Essentially we want to filter numbers based on different
criteria. We can use strategy pattern here to separate ‘how
to filter’ from the actual ‘filtering criteria’. Approaching
this problem with an orthodox OOP style, one would
create an single method interface called Filter and provide
implementations for each criterion, resulting in an explosion
of classes. Often developers name these implementation
like Filter01, Filter02 etc. And this may lead to duplication
of code.

In Groovy you can use closures and pass closures as
arguments to a function.

def numbers = [1, 3, 4, 8, 16, 9]
def odd = { number -> number % 2 != 0 }
def even = { number -> number % 2 == 0 }
def divisibleBy4 = { number -> number % 4 == 0 }
def greaterThan5 = {number -> number > 5 }

assert numbers.findAll(even) == [4, 8, 16]
assert numbers.findAll(odd) == [1, 3, 9]
assert numbers.findAll(divisibleBy4) == [4, 8, 16]
assert numbers.findAll(greaterThan5) == [8, 16, 9]

As you can observe, we have a concise code, which is easy to
read and maintain.

References

• Effective Java, Second Edition

Naresha works as Chief Technologist at
Channel Bridge Software Labs and has
more than eight years of experience.
He is passionate about learning new
technologies and most of his current
works are on Groovy and JavaScript.
Naresha is also an organizer of the
Bangalore Groovy Grails Meetup.

Email:naresha.k@gmail.com
Twitter: @naresha_k

Healthy Code
February - 201538

Article|-------------|Rocky

Let’s
go

with

Go

Healthy Code
February - 2015 39

Where does Go fit?

Some languages are more specialised for certain tasks
such as R for statistics, Erlang for concurrency, C for low
-level system programming and so on. As computers and
humans evolve, we invent ways to solve problems elegantly
while making full use of available system resources. In
today’s world while we may have reached a limit on how
fast a sinlge CPUs can be, modern CPUs achieve scale by
having many cores, server CPUs can easily have as many as
sixteen cores. Also, at the same time memory and storage get
cheaper with each passing day. What is still costly though
is the programmer’s time. Modern programming languages
such as Ruby and Python go a long way in writing complex
programs quickly and elegantly. However, Ruby and Python
lack speed and support for concurrency. Scala solves the last
two problems, however, one can find the learning curve to
be quite steep and reading someone else’s code a bit difficult.

We can sense a void in the programming world. We
are always looking for a programming language that is
fast, simple, has support for concurrency and supports
modern paradigms like first-class functions. Enter Go.
Go programming language or Golang is a programming
language backed by Google. It is designed to be a simple,
statically-typed language, with garbage collection and built
with concurrency in mind. If a young programmer were to
ask me why he/she should learn Go, I would simply say that
it is 'easy to learn', it is 'fast', and the language has in-built
support to be 'highly concurrent' while avoiding common
issues associated with concurrency.

Let’s look at some of the features in detail.

•	 Simple: Go is easy to learn. Period. The main language
features can easily be learned by doing the 'Official Go
Tour' onhttps://tour.golang.org/ in a couple of days. With

some programming experience and a little effort one can
start writing Go programs quickly which is not the case
with other programming languages like Scala or Clojure
that have quite a steep learning curve.

•	 Type safety with type inference: While type safety is
nice, it can be verbose (I am looking at you, Java). Like
Scala, Go provides type safety and infers type intelligently
which not only helps you write large programs safely,
but also does not get in your way while programming.
The language documentation categorically states that
Go is an attempt to combine the ease of programming
of an interpreted and dynamically-typed language with
the efficiency and safety of a statically typed, compiled
language.

•	 Garbage Collection: While garbage collection can be
slightly expensive, it saves a lot of programmer time.
Another important point is that a large part of the
difficulty in concurrent and multi-threaded programming
is memory management. Automatic garbage collection
makes concurrent code far easier to write. Of course,
implementing garbage collection in a concurrent
environment is itself a challenge; but meeting it once
rather than in every program helps everyone. In the
current version of Go, garbage collection uses the simple
'mark-and-sweep' pattern (used in older Ruby versions
as well), while the future versions plan to introduce more
efficient garbage collection algorithms.

•	 Binaries for all major platforms: One of the most
annoying problems is software distribution. If you want
to run a Java application you need the Java Runtime
Environment. Similarly, all Ruby programs need the
Ruby interpreter to be installed before you can do
anything. Not to mention the package and dependency
managers. Also, if you need to install something on the

Here’s another language called Go. Every programming language is a
mechanism used to communicate with the computer. Come to think of it,
computers are the same, so why do we need so many languages? Given
a certain task, it can be written as an instruction to the computer using
any programming language. Why are new programming languages being
developed then and why should we care to learn a new one? And does a
new language like Go try to solve anything that’s not possible using other
languages we already have? Let’s find that out.

Healthy Code
February - 201540

user’s machine (like a script or a desktop app) things get
even murkier. Go has no such problems – it generates a
single binary file for all major platforms. Just transfer it
and run it. That’s it.

•	 Concurrency support: As mentioned earlier, multi-
core CPUs are the norm now. To utilize their processing
power available, the programming language needs to
support some form of concurrency. Dealing with low-
level threads is cumbersome, highly error-prone and
hard to debug. There needs to be some abstraction that
helps deal with concurrency. Scala provides this with
the Actor model and Go does it using Channels. Go’s
philosophy is: "Don’t communicate by sharing memory;
share memory by communicating." Channels allow you
to pass references to data structures between goroutines.
If you consider this as passing around ownership of
the data (the ability to read and write it), they become
a powerful and expressive synchronization mechanism.
What’s more? Channels are a core language feature and
no external library is needed to write highly concurrent
programs.

One of the best things about Go is that the standard library
is super rich and takes care of most common needs. Things
like a 'HTTP server', 'cryptographic utilities', 'compression',
'unicode' are all baked into the standard library. For most
common tasks, you need not import any external library.
Although the library ecosystem is continually growing,
for a language introduced in 2009, you can find all sorts
of libraries and frameworks on Github. There are full-
fledged web frameworks like Revel and Beego and there
are desktop application development libraries like https://
github.com/andlabs/ui. The language also releases all future
development plans to the public, the code now lives on
Github, there are releases every six months and there seems
to be a clear direction as the language is progressing.

Growing adoption by leading technology
companies

New programming languages face challenges when it
comes to adoption. Go, on the other hand, has had no such
problems. Since its introduction around five years ago, Go
is used in production by Google, Dropbox, Soundcloud,
BBC and some more. The next big thing in Linux container
management, Docker is written in Go. This ensures that the
language is here to stay, there are and will be jobs and the
early adopters will, of course, have a slight advantage.

Alright, enough talking. Let us start writing some code.

First Go Program

Here’s our first, 'Hello World' program in Go.

package main //1

 import (//2
 "fmt"
 "os"
)

 func main() { //3
 fmt.Println("Hello " + os.Args[1])
 }

With Go installed, this can be run like this:

go run main.go 'World!'

Let me quickly run through the code by explaining the
comments numbered from 1 to 3.

1. Every program in Go is made up of packages, the main
package is the entry point from where the program is
run.

2. The import statement is used to import external packages.
Both fmt and os packages are part of the standard library.
We don’t need to do anything special to load them.

3. The main function is run, printing Hello with any
command line argument is passed in.

Using the built-in os package

Let us write another program that uses the Operating System
(os) package.

package main //1

import (//2
 "fmt"
 "os"
 "os/exec"
)

func main() {
 query := os.Args[1] //3
 out, err := exec.Command("find",".","-iname",
query).Output() //4
 if err != nil { //5
 panic("Error!")
 }
 fmt.Printf("File: %s\n", out)
}

Healthy Code
February - 2015 41

Sections 1 and 2 are similar to the last program we wrote. In
section 3, we use Type Inference. The variable 'query' has no
declared type, but it is inferred from the return value of 'os.
Args' function. What is also interesting is that all functions
in a package that start with a capital letter are exported
automatically (which I think is quite neat). In section 4, we
use the unix 'find' command and store the output in an 'out'
variable. We exit or 'panic' out in case the 'find' command
returns an error. And we finally print the result.

If we run the program using go build, we will get an
executable. Let’s copy the executable to '$HOME/bin' and
rename it as 'lookup' and voila! We have a lookup command
available to us.

A simple web server in Go

This example is taken from the Go wiki. Let’s create a simple
web server.

package main

 import (
 "fmt"
 "net/http"
)
 func handler(w http.ResponseWriter,
 r *http.Request) {
 fmt.Fprintf(w, "Hi there, I love %s!",
r.URL.Path[1:])
 }
 func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
 }

The 'main' function begins with a call to 'http.HandleFunc',
which tells the 'http' package to handle all requests to the
web root ("/") with handler.

It then calls 'http.ListenAndServe', specifying that it should
listen on port 8080 on any interface (":8080"). (Don’t worry
about its second parameter, 'nil', for now.) This function
will block until the program is terminated. The function
handler is of the type 'http.HandlerFunc'. It takes an 'http.
ResponseWriter' and an 'http.Request' as its arguments. An
'http.ResponseWriter' value assembles the HTTP server’s
response; by writing to it, we send data to the HTTP client.

The 'http.Request' is a data structure that represents the client
HTTP request. 'r.URL.Path[1:]' is the path component of the
request URL. The trailing '[1:]' slices the leading "/" from the
path name. We can also notice that 'http.Request' is passed
in as a pointer. This is because normally in Go arguments

are passed by values and copied to the function. When we
declare a parameter as '(r *http.Request)' we are saying that
the type '*r' is a pointer to a value of 'http.Request' stored
somewhere.

If you run this program and access the URL, http://
localhost:8080/monkeys, the program would present a page
containing:

Hi there, I love monkeys!

That’s it! With a few lines of code, you have an HTTP server
running.

Concurrency

Let us see a simple working example on concurrency. Here
is a simple problem where we want to run multiple tasks
parallely. Each task takes a random amount of time, so we
run all of them in parallel and wait for all to be completed.
The example is simplified but the tasks in real life can be
making a HTTP request or a remote API call. Here’s the code
to do that.

package main

 import (
 "fmt"
 "time"
 "math/rand"
)
 func main() {
 rand.Seed(time.Now().UTC().UnixNano()) //
put in a varying seed
 tasks := []string{"a", "b", "c", "d", "e",
"f"}
 size := len(tasks)
 ch := make(chan string, size)
 for i := 0; i < size; i++ {
 go doTheTask(tasks[i], ch) //spawn a
goroutine
 }
 for i := 0; i < size; i++ {
 result := <- ch
 fmt.Println(result)
 }
 }
 func doTheTask(task string, ch chan string) {
 time.Sleep(time.Duration(rand.Intn(1000))
* time.Millisecond)
 result := "Done with task: " +
task
 ch <- result
 }

Healthy Code
February - 201542

With Go, the solution to this problem is simple and elegant.
Just adding a keyword go before a function call, runs it in
a separate co-routine. We also pass the channel where the
result is published. Since there are six co-routines/tasks, we
listen for six responses on the channel and print them as we
get them. As you can guess, each 'run' of this program will
print a different output. Goroutines and channels allow us to
write clean and quick concurrent code.

Final thoughts

As we have seen so far, Go is extremely useful and easy to
pick up. If I were to think of a few downsides, it would be
that the language has no 'official' package manager right
now. Dependency Management can right now be solved
by GPM and GVP (https://github.com/pote/gpm), but the
community is divided and there is no single way to do it.
Also, since the language is so new, the third party packages
have to be used with caution. Finally, the Go mechanism of
dealing with errors (as seen in example 2 above) can be a bit
cumbersome, there are a lot of debates on this at the moment.

However, if you are looking to build powerful command
line utilities or simple JSON spewing web servers that can
handle thousands of requests per second (while consuming
very little system resources), you cannot go wrong with
Go. Also, with time the language can only improve, it was
first released in November 2009 but has gained tremendous
traction in a few years. So, keep your eyes open and learn
some Go!

Rocky is a software developer
with more than twelve years of
experience in software design
and programming. He enjoys
coding in Ruby, JavaScript, Java
and Go. He loves working on
open source projects and tinkers
with technology in his free time.
He is currently working as a
software developer for Crealytics
GmbH. He has been a speaker at
AgileNCR 2010, Agile Tours 2010,
IndicThreads Conference 2011/12
and Ruby Conf India 2012/13. His
blogs and videos can be found
at http://rockyj.in.

Pragmatic

Programmer

Quotes

“Bad programmers have all the answers.

Good testers have all the questions.”

- Gil Zilberfeld

“Don’t document bad code — rewrite it.”

- Kernighan and Plauger

Healthy Code
February - 2015 43

Healthy Code
February - 201544

WHEN? 23 - 30 March 2015

 WHERE? Chancery Pavilion, Bangalore

Agile India is India’s premier Agile conferences with focus on
Scaling Agile Adoption and Scaling Lifecycle.

GOPHERCON INDIA 2015
FEB 19 – 21, 2015, BANGALORE, INDIA

The first ever Go conference in India

Go is an open source project developed by team at
Google and many contributors from the open source
community. This conference is brought to you by the

Go language community in India.

Venue:

Hotel Royal Orchid
No. 1, Golf Avenue,

Adjoining KGA Golf Course,
HAL Airport Road,

Bengaluru 560 008, India
http:// http://www.gophercon.in

NULLCON 2015
FEB 4-7, 2015, GOA, INDIA

Nullcon was founded in 2010 with the idea of
providing an integrated platform for exchanging
information on the latest attack vectors, zero day
vulnerabilities and unknown threats, Our motto -

"The neXt security thing!" drives the objective of the
conference i.e. to discuss and showcase the future
of information security and the next-generation of

offensive and defensive security technology.

Venue:

The Bogmallo Beach Resort,
Goa, India

Website: http://nullcon.net/website/

Venue:

The Chancery Pavilion Hotel Bangalore
#135, Residency Road, Bangalore - 560 025, India

http://2015.agileindia.org

Healthy Code
February - 2015 45

Healthy Code
February - 201546

Question 1

Does the following interface definition qualify to be a
Functional interface?

public interface Math{
 int add(int a,int b);
 int diff(int a,int b);
}

Question 2

What are Lambda expressions?

Question 3

What is the Lambda equivalent of the following code?

interface Adder{
 int sum(int a,int b);

}
...
Adder adder = new Adder(){
 public int sum(int a,int b){
 return a + b;
 }
}
System.out.println(adder.sum(12,13));

Question 4
interface Util{
 String doSomething(String str);
}

Using the Util interface you want to return the given string,
say "Skill Test" in uppercase, and lowercase. How do you
write that using Method Inference?

Skill Test
Know your Java 8

Hello readers! Enjoy this quiz on Java 8. We’re sure you’ll have fun.
You can check out the answers in the end.

Healthy Code
February - 2015 47

Question 5
interface Util{

 String doSomething(String str);

}

Using the Util interface you want to return the given string,
say "Skill Test" in uppercase, and lowercase. How do you
write that using Lambda Expression?

Question 6

What’s the output of the following code?

Stream.of(1, 2, 3, 4, 5)
 .filter(i -> {
 return i%2 == 0;
 })
 .forEach(System.out::println);

Question 7

What’s the output of the following Stream code?

Stream.of(1, 2, 3, 4, 5)
 .filter(i -> {
 System.out.println("Filter: " + i);

 return true;
 })
 .forEach(s->System.out.println("ForEach: " + i););

Answers

•	 Question 1: No. A Functional interface in Java 8, is an
interface that has only one method that needs to be
implemented.

•	 Question 2: Lambda expressions are shorter ways of
writing method implementations. They are smaller
versions of anonymous inner classes. Lambdas do a
little more than generating anonymous inner classes.

•	 Question 3: The Lambda version of the implementation
of Adder interface is:

 Adder adder = (a,b) -> { return a+b; };

•	 Question 4: The two implementations of

the Util interface using method inference are:

 Util util1 = String::toUpperCase;
 System.out.println (util1.doSomething("Skill Test"));

 Util util2 = String::toLowerCase;
 System.out.println (util2.doSomething("Skill Test"));

•	 Question 5: The two implementations of
the Util interface using lambdas are:

 Util util1 = s->{ return s.toUpperCase(); };
 System.out.println(util1.doSomething("Skill Test"));

 Util util2 = s->{ return s.toLowerCase(); };
 System.out.println(util2.doSomething("Skill Test"));

•	 Question 6: The code using Stream API, filters out all
the even numbers and prints them.

 2
4

•	 Question 7: The code using Stream API, runs vertically
and not horizontally as we think. The output of the

code is:

 Filter: 1

ForEach: 1
Filter: 2
ForEach: 2
Filter: 3
ForEach: 3
Filter: 4
ForEach: 4
Filter: 5

ForEach: 5

References

http://www.oracle.com/technetwork/articles/java/architect-
lambdas-part1-2080972.html

http://winterbe.com/posts/2014/07/31/java8-stream-
tutorial-examples/_

Healthy Code
February - 201548

Coming up in the March 2015 issue

Owned and Published by T. Sivasubramanian. Published from 11/6, First floor, Fourth street, Padmanabha Nagar, Adyar, Chennai -
600020 and printed by K. Elumalai, at Sakthi Scanners (P) Ltd, 7, Dams Road, Chindadripet, Chennai - 600002. Editor: S.Prabhu.

PhantomJs is an attempt to

automate browser tasks. It

is a JavaScript framework

developed over QtWebKit

that makes use of WebKit

content engine. It provides

a JavaScript API that can be

used to control web browser.

However it is “Headless” in the

sense that it doesn’t display

the content on the screen.

Dr. Richard Stallman is a
software freedom activist
and known for launching
the GNU project and
writing several of the GNU
softwares such as GNU
EMACS, GNU Compiler
and GNU General Public
License.

Interview with

Dr. Richard Stallman

The Unsung DOM APIs

- Hemanth

This article will introduce you to the

unsung DOM APIs, most of which you

would not have heard of!

PhantomJS:

A programmable head less browser

– Shani Mahadeva

Healthy Code
February - 2015 51

Healthy Code
February - 201552

