
System Test Pattern Language

David DeLano and Linda Rising

Introduction

Testing of systems is presently more of an art than a science, even considering current
procedures and methodologies that support a more rigorous approach to testing. This becomes
even more apparent during the testing of large, embedded systems that have evolved over time.
To deliver the best possible product, the role of a System Tester has become vital in the lifecycle
of product development. This pattern language has been derived from the experience of veteran
System Testers to help System Testers evaluate the readiness of a product for shipping to the
customer. Though these patterns have been derived from experience during the system test phase
of the product lifecycle, many of the patterns are orthogonal to all testing phases. In addition to
System Testers, these patterns may be useful to Designers and Project Managers.

These patterns have been grouped according to their usefulness in the system testing process:
The Test Organization, Testing Efficiency, Testing Strategy, and Problem Resolution. This is not
a complete pattern language.

The image below can be used to immediately move to a group of patterns or an individual
pattern by clicking on the name of the pattern in which you are interested. It is recommended,
however, that the paper be read from top to bottom, instead of moving between the image and
each pattern individually.

Context

As a pattern language, these patterns share a common context. Each of the patterns may add to
this context or slightly modify it, but it is this common context that helps focus these patterns
into a pattern language. The context for an individual pattern will only be given when it modifies
the common context.

A system is under development into which new features are being introduced. The system may
be new development work, or may be an existing, working system. There are a limited number
of customers for the system and the features are being developed at the request of these
customers. The customers then sell the features to the end users. New features integrate well into
the system, but introducing new features runs the risk of breaking old features. These features are
implemented in the system by Designers in a design group. The Designers are responsible for
everything from analysis, design, and implementation, through unit testing and integration
testing.

The features of the system are designed in parallel. As code becomes available, incremental
loads of the system are released for testing. Each of these loads may include a combination of
complete or partial features. This process compresses the development schedule, but it also
results in the introduction of problem resolution and features in parallel. Problems resolved in
one load need to be resolved in any feature development that is in progress.

The system, in this case, is a large embedded system. It consists of multiple processor units and
each processor is controlled by a multi-processing operating system. Events in the system are
thus non-deterministic. Any feature of the system can have an interaction with any other feature
in the system. Most of these patterns apply to the testing of any multi-processing, non-
deterministic system. The set of all tests needed to completely verify such a system is infinitely
large. The set of regression tests to reasonably test the system grows with every release, so that
executing all of the tests would require more than the development schedule allows for a new
feature release.

The features are being tested in parallel with the design effort by an independent group known as
System Test whose members are known as System Testers. The testing done by this group is
largely "black box" in nature. There is a reliable process in place for testing the system, from unit
testing to system testing. The System Test group is responsible for regression testing the system,
the conformance of new features to the specification, the equivalence of the system to prior
releases, and the evaluation of the release of the system according to criteria set by the customer.
These criteria are consistent with every release. System testing concentrates on the functionality
of the system and ensures that the system continues to operate in a consistent manner. To
accomplish this, the testing often takes the form of stressing or breaking the system.

These patterns do not represent the process of system testing any more than the GOF book
[Gamma+95] represents object-oriented design. The System Testers understand the system
testing process. Instead, they are a means of sharing some of the secrets of experienced System
Testers. Following these patterns will help minimize stress and maximize enjoyment of doing
system testing.

Forces

Just as these patterns share a common context, they also share common forces. The individual
patterns may place more emphasis on specific forces, ignore some forces or add forces that are
not important to the pattern language as a whole. Forces for an individual pattern will only be
given in the case where they are modified or emphasized.

Most of the forces for these patterns are elements of risk management. The patterns evaluate
these risks to find an acceptable, intelligent balance among cost, time, content and quality. The
common forces are:

 The scheduled interval for testing is short.
 Compressing the development schedule risks introducing problems.
 Compressing the test interval risks not finding all critical problems.
 Not all problems can be found.
 A release with some non-critical problems is acceptable.
 Specifications are often unclear or ambiguous.
 Problems should be found and corrected as early as possible.
 Reporting problems is often negatively viewed.
 Testing resources, such as prototype systems or manhours, are at a premium.
 Software load stability is critical to progress.

 The content of a given software load is uncertain.
 Designers are often considered the critical resource.
 System Testers traditionally have a low status within the organization.
 Designers are preoccupied with new development.
 System Testers must have a global view of the system.
 Designers are primarily concerned with their own area of development.
 System Testers represent the customer and end user point of view.
 End users don't always use features as specified by the customer.

The Test Organization

The following patterns focus on the relationship of the System Testers to the rest of the
organization. They are less technical in nature and are closely related to the patterns of James
Coplien [Coplien95], Neil Harrison [Harrison96], Alistar Cockburn [Cockburn96], and Don
Olson [Olson95].

Pattern: The Tester's More Important Than The Test Cases

Problem How should work be assigned to Testers to achieve maximum testing efficiency?

Forces Testers do not all have the same capabilities.
 Everybody needs to develop new capabilities.
 Creative testers are effective testers.
 Familiarity breeds contempt.

Solution Assign tasks to System Testers based on their experience and talent. No matter
how effective the test cases are, the testing results are highly dependent on the
Tester. Davis states that "People are the key to success" in Principle 131 of
[Davis95].

Resulting
Context

Testers will be more effective if their skills are used appropriately. The resulting
test activity will be more efficient and the Testers will be more productive.

Repeated applications of this pattern can result in burnout of the Tester or the
development of irreplaceable expertise. Testers who become too familiar with an
area often overlook problems by making invalid assumptions. Career
development often gets overlooked when existing skills are always used. No new
skills are acquired. It is sometimes better to give assignments a half step beyond
capabilities.

Rationale The Tester is just as important to the success of the project as the Designer. The
Tester is the most important element in the testing equation. The same test case
will not necessarily produce the same result in the hands of different Testers.
Testers look at a list of errors differently. Some Testers know how to break the
system vs. getting a correct result. Some Testers are good at finding problems.

Some Testers are good at working with Designers. Matching the skills of the
Testers with the appropriate tasks will produce more effective testing.

DeMarco and Lister [DeMarco+87] documented that there is a wide variance in
performance between the worst and best performers for a given task. To be
successful, the best performers should be assigned to the most critical tasks and
everyone should be given an assignment that best fits their skills.

Pattern: Designers Are Our Friends

Problem How can System Test work effectively with the Designers?

Forces Testers do not all have the same capabilities.

Solution Good System Testers build rapport with Designers.
Approach Designers with the attitude that the system has a
problem that both of you need to work on together to
resolve. This gives the Designer and the System Tester a
common goal. Always Document the Problem.

Resulting
Context

The System Tester/Designer relationship becomes one of
cooperation in an attempt to resolve a problem. Designers
are less likely to become defensive and "run and hide" when
a System Tester approaches.

Rationale We are all employees of the same company and should work
with each other to solve problems. Designers and System
Testers are partners. Building good relationships with
Designers gets things done faster. Personalizing problems
makes Designers defensive. We can learn from each other
and benefit both.

Related
Patterns

Document the Problem to provide the Designer with the
information to resolve the problem.

The members of a relationship should remain open to the
contributions of other members. Don't Flip the Bozo Bit
[McCarthy95, Rising96] and close off the relationship,
regardless of past history.

Pattern: Get Involved Early

Problem How can System Test maximize the support from the
Designers?

Forces During early development phases, System Testers
have test plans to write.

 Impacts of social relationships aren't measured by
the project.

Solution Establish a good working relationship with the Designers
early in the project. Don't wait until you need to interact
with a Designer to develop a working relationship. By that
time it is too late. Trust must be built over time.

One way to accomplish this is to learn the system and the
features at the same time the Designer is learning them.
Attend reviews of the requirements and design
documentation. Invite the Designer to test plan reviews.

Resulting
Context

When a good working relationship is built over time, it is
easier to resolve problems when they are discovered.

Be sure that the relationship with the Designer does not
affect your judgment as an effective System Tester. There
can be a tendency to avoid areas of conflict when friends are
involved, to look the other way when problems are found in
a certain area where the Designer is a close friend. It is also
dangerous to have too much information about an area. This
can lead to certain kinds of testing that depends on this
knowledge instead of an objective black box view.

Rationale We are all more willing to work with people we know well.
Waiting until the heat of battle to get to know the people
who can help you resolve problems leads to delays in
solutions. If a trusting relationship has already been
established, the problem solving process is smoother.

Related
Patterns

Early involvement is important in establishing that
Designers Are Our Friends.

Pattern: Time to Test

Alias Test When There's Something to Test

Problem When is it appropriate to start testing?

Context The system can be broken into areas, such as features or
functional areas, which are minimally dependent on each
other. Ideally, once an area is released for system testing, it
would not be impacted in future software loads.

Forces Designers don't want testing to start until everything
is "perfect."

 Testers want to start testing early.
 Testing an incomplete system may require retesting

on later software loads.

Solution Ideally, system testing should not start until all the software
is finished. However, waiting until everything is complete
leaves no time for doing all of the system testing. Start
testing when an area of functionality is available for testing,
but not before. An agreement should be reached with the
Designers that the area is ready for testing (see Designers
Are Our Friends). Track areas that aren't ready for testing so
you don't waste time in those areas.

Resulting
Context

More interval is available for testing if testing begins on
early increments of the software loads. This also exposes the
load to more testing, which will uncover more problems.
More critical problems will be discovered earlier, when
there is time to correct them.

By starting early, there is a risk that regression testing of the
area will be required. An End User Viewpoint should be
taken for this testing. Additionally, if testing is started too
early, untested fixes start finding their way into the load.

Rationale System Test is often pushed to start testing as early as
possible. However, starting to test the system too early is a
waste of time. It is possible, however, to test parts of the
system that are ready earlier than others.

Related
Patterns

You must Take Time in determining whether an area is
ready for testing.

Pattern: Take Time

Problem How much time should Designers be given to finish work
that is behind schedule?

Forces Designers always want more time.
 More effort up front usually produces a better

product in the end.

Solution Give Designers the time they request, within reason. It is
Time to Test other areas in the mean time.

Resulting
Context

System testing will take less time if the design quality is
better.

Rationale Higher quality systems take less time to test than poorer
quality systems. By giving Designers time they truly need,
there will be a significant pay-back in the end in avoiding
the effort to test and fix all the problems in a poor quality
system.

Increasing planned development time 15% cuts the number
of defects in half [Remer96].

All the forces of Take Time and Time to Test must be
carefully weighed before deciding which pattern to follow.

Testing Efficiency

As stated in the context, it is not possible to completely test a system. The
following patterns steer the Tester toward areas that are more likely to contain
errors. Test plan development and testing can concentrate on these areas to find
more problems earlier in the project.

Pattern: "Unchanged" Interfaces

Problem How should scheduling of third party interface functionality
developed outside the company be scheduled?

Context Interfaces developed outside the company are used in the
system, in whole or in part, without changes to that
interface. The interface could be a GUI, a library, a
hardware component or any other third-party product. The
initial assumption is that if third party interface functionality
is to be supported in the new system and if the same
interface has been used in other systems and has not
changed, then no testing or very limited testing is required.

Forces Time can be saved by no or limited testing of
unchanged third party interface functionality.

 There is limited knowledge or training on third party
software.

 The project feels that unchanged code will function
as expected in the new product .

Solution The System Tester must not fall into the trap of assuming
that unchanged interfaces will function correctly in the new
system. The System Tester must pay particular attention to
any interface ported from outside the company that is not
assigned for inclusion in the feature list of the new system.
Since no one else is directly impacted by this change, the
System Tester needs to be pro-active in scheduling this
testing.

Testing the correct operation of the interface on the new
system should begin as soon as that interface is chosen for
the new system. This will verify the functionality of that
interface. Once the ported interface is operational in the new
system, testing should begin immediately to ensure that the
functionality is the same and that it does not affect the rest
of the system. This can be done while the Designers are
working on the new features for the system.

Resulting
Context

System Test will find problems with ported interfaces early
in the project's life cycle and limit the impact of any
problems on the system release. This will allow focused
effort on fixing the problems while there is still time to
change how the system functions, what is included in the
system, or when a system is ready to be released. Less
overall effort and stress will be expended during system
development, time will be saved and the system will be
released as planned.

Rationale No matter how established a product is or how well written
a chunk of code is, if it is not an in-house product there will
always be problems with porting that functionality into a
new system. If testing of the functionality is not
immediately begun, problems will invariably be found at the
worst possible time–right before release of the system.

Any product brought in from outside the company will not
meet the quality, functionality, or customer expectations of
the company. Thus, changes will be made.

Pattern: Ambiguous Documentation

Problem How can possible problem areas of the system be pinpointed
so that the most problems can be found in the least amount
of time?

Context Feature design documentation and/or user documentation is
available. This can be the requirements from which the
feature is developed, documentation developed by the
Designer, or documentation developed for the customer.

Forces Some areas of a system are more likely to have
problems than others.

Solution Study the documentation available on the system. Look for
areas that seem ambiguous or ill-defined. Write test plans
that cover these areas more thoroughly and concentrate
testing in these areas (see End User Viewpoint). If Designers
can tell you all about a feature, it probably works. It's what
they can't tell you that needs your attention during testing.

It is also advantageous to raise these areas to the attention of
the Designers and Systems Engineers so that problems in
these areas can be resolved prior to system testing. These
areas should still be tested more thoroughly than areas that
are well documented and well understood.

Resulting
Context

Problems are likely to be found and corrected earlier.
Reviewing documentation reinforces that Designers Are
Our Friends.

Rationale If there's more than one interpretation of the documentation,
Designers will write more than one code interpretation. This
must be uncovered during system test if it is not detected
earlier. If you Get Involved Early, there is a better chance of
getting documentation fixed early, and thus the
implementation correct. If problems still exist, finding them
early makes it more likely that they will be fixed. Good
specs help everyone!

Pattern: Use Old Problem Reports

Problem What areas of the system should be tested first so that the
most problems can be found in the least amount of time?

Context Testing of existing features is being considered. Problem
reports from previous releases are available.

Solution Examine problem reports from previous releases to help
select regression tests. Since it would be inefficient to retest
for all old problems, look at problems reported after the last
valid "snapshot" of the system. Categorize problem reports

to see if a pattern is determined that could be used for
additional testing.

Resulting
Context

Problems that still exist will be found and corrected.

Rationale Since a problem report represents something that escaped in
a previous release, this could be a good indicator of a
problem in the current load. Problem reports tend to point to
areas where problems always occur. Problem reports often
represent a symptom that is difficult to connect with an
underlying problem.

Additionally, fixes of a previous release are often done in
parallel with new development on the current releases.
These fixes don't always find their way into the current load.

Pattern: Problem Area

Problem What areas of the system should receive concentrated
testing, regardless of the features being implemented?

Context Historical data is available for the system under test.

Solution Keep a list of persistent problem areas and test cases to
verify them, not just for resolution of the current problems,
but also for use in subsequent testing. Retest regularly using
these test cases, even one last time before the release goes
out the door.

Identify areas of the system that historically have problems.
Test these areas thoroughly, even if there are no new
features going into them.

These areas can be identified by considering: the experience
of the System Testers; Use Old Problem Reports;
Ambiguous Documentation; observing areas that Designers
tend to avoid working in from one release to the next.

Resulting
Context

By testing problem areas early in the schedule, more time is
available to correct any problems found.

Rationale Areas of the system that historically have problems don't
magically become error-free overnight. Some problems
occur in every incremental release of the system. Some
areas have problems in every release. These problems and

problem areas should be tracked so that they can be
systematically retested on every release of the system.

Testing Strategy

Once a testing strategy has been set into place and testing has commenced, the
following patterns help find problems that might not be found until it is too late
to correct them. They also ensure that the delivered product will be acceptable to
the customer.

Pattern: Busy System

Problem Under what conditions should system tests be executed to
find the most problems?

Context Simulators exist that provide a reasonable amount of activity
on the system.

Solution Test in an environment which simulates a busy system. The
level of activity need not stress the system, but should
approach a level that the system regularly experiences.

Resulting
Context

Tests that work fine under normal conditions often fail in an
unacceptable manner when the system is busy.

Rationale It is redundant to run a feature test case that has already
passed during the system testing phase. However, these
cases will often fail under a busy system. A telephony
system can be busied using a Traffic Load Simulator which
simulates phone calls into the system. By running feature
tests with a moderate amount of traffic running on the
system, problems are found that don't appear when the
system is idle.

Related
Patterns

Don't Trust Simulations.

Pattern: Don't Trust Simulations

Problem How should the test environment be configured when using
test simulations?

Context Simulations of system use are available, including
simulators of real uses of the system.

Forces Simulators are often a more accessible testing
environment.

 Some testing cannot be accomplished without using
simulations.

 It's impossible to have a real-world environment for
all testing.

Solution Try to test in an environment as close to the real world as
possible. However, system behavior may be correct when
using a simulation, but not work at all in the real world.
Apply simulations appropriately but don't use them as a
substitute for real world testing.

Resulting
Context

Systems that handle simulations, which tend to give
predictable input to the system, often fail in the real world of
unpredictable behaviors. By supplementing the simulation
with real world testing, such situations are minimized.

Rationale There is a proper use for simulations, but they are not
substitutes for real-world testing. While a large portion of
the testing can be done using simulations, testing of the
system is not complete without providing real world
scenarios in the testing process. A simulator can run a test
case successfully one hundred times, but the test case may
fail when run by a human because of unpredictable
behaviors that are introduced.

Related
Patterns

Follow End User Viewpoint to accomplish real world
testing.

Pattern: End User Viewpoint

Problem How do you test the new features in a system without
repeating testing that has already been completed?

Forces Duplicate testing takes more time in the schedule.
 There is a perception that code not changed since

feature testing doesn't need system testing.
 Because of feature interactions, changes to one

feature can break another.

Solution Test outside the normal scope of the features. Take the end
user's point of view. Don't system test with the same tests
used for feature testing. Use the customer documentation.
Test feature interactions.

Resulting
Context

By testing from an end user viewpoint, flaws in the system,
as the end user will use it, can be discovered and corrected
before the system is shipped. These tests expand the scope
of previous testing and are not redundant.

Rationale End users don't use systems as they are designed. Designers
develop features, but the system is sold to provide services
to the end user. It is these services that the end user sees, not
the features that are developed by the Designers.

Pattern: Unusual Timing

Problem What additional testing should be done that may not be
covered by the test plans for an area?

Solution Test unusual timing. Run tests more quickly or slowly than
expected. Abort tests in the middle of execution. Real end
users will use the system from an End User Viewpoint.

Resulting
Context

Errors caused by unusual timings are detected and corrected.

Rationale Things that work properly under normal timing conditions
may break under unusual timing conditions.

Testing for unusual timing scenarios is often difficult to set
up and run. Test cases that are difficult to run are the ones
that probably need to be run the most.

Pattern: Multiple Processors

Problem What strategy should be followed when System Testing a
system comprised of multiple processors?

Solution Test across multiple processors.

Resulting
Context

Problems that occur in one processor will probably occur in
other processors. Tests that pass on one processor may fail
on another.

Rationale When a problem is found in one processor, that feature will
usually have problems running on other processors. A dirty
feature is a dirty feature.

Features that run on multiple processors aren't always
designed to run on all processors.

Pattern: Scratch 'n Sniff

Alias Problem Cluster

Problem Once testing is started, what is a good strategy for
determining what to test next?

Context A problem has already been found in an area.

Solution Increase the testing in areas where problems have already
been found.

Resulting
Context

Problematic areas will be targeted sooner and problems
resolved earlier.

Rationale Problems tend to be found in clusters. A problem found in
an area is a good indicator of other problems in the same
area. Scratch 'n Sniff – if it smells bad, it probably is.

Bugs are like roaches: find one and you'll find a lot of them.
They also evolve quickly.

Testing can be organized so that a "first pass" is taken that
tests the breadth of the system. Half of the problems found
will be in 15% of the modules [Davis95]. Deeper testing of
the areas with problems will likely find more problems. Use
Old Problem Reports to look at areas that may need more
testing.

Pattern: Strange Behavior

Problem What should be done when a feature is working, but not as
expected?

Context The System Tester has participated in the system testing of
previous releases of the product and is familiar with feature
behavior.

Solution Take any unusual behavior as an indication of a possible
problem and follow up. This should be done even if the
problem is not related to the test being executed. Look for
features that behave differently. Be wary when familiar tests
produce results that, while acceptable, are not what was
expected.

Resulting
Context

A problem won't be missed because it doesn't produce
feature behavior that is not significantly different from the
expected outcome.

Rationale Changes to the way a feature works, even though it may still
work correctly, often indicate that the feature may have
broken. If the change is deliberate, all System Testers
should be notified.

Pattern: Killer Test

Problem How can the quality of a system under development be
determined?

Context Development is drawing to a close. The system is stable.
The features are stable and all parties involved, especially
management, are interested in how close the system is to
being ready for release.

Solution Develop a favorite killer test (usually a set of test cases) that
can be run at any time, a test that always seems to find
problems. This test should provide good system coverage
and should be expected to fail, in some manner, most of the
time. It is permissible to borrow a killer test, but it is
preferred that the test be based on the tester's own
experience, as the effectiveness of the test depends on the
individual's skill and knowledge of the system.

Killer Test is only used toward the end of a release, and is
above and beyond a common regression test. It tends to be
free-wheeling in nature and typically hard to document. The
success of this type of testing is directly related to the
individual running the test, because The Tester's More
Important Than The Test Cases.

While killer tests don't always find the same problem every
time they are run, they usually find some problem. Don't
wait until the very end of the release or there won't be time
to correct the problems found.

Resulting
Context

The results of the tests are a good gauge of the stability of
the system. By finding and fixing the uncovered problems,
the system becomes incrementally more stable.

Rationale A test that usually fails and can be run in a reasonably short
time gives a good measure for how the system is stabilizing.

Additionally, since problems are likely to be found, this
type of testing is highly efficient.

Problem Resolution

The following patterns aid in communication and resolution of problems.

Pattern: Document The Problem

Problem How should problems found in testing be communicated?

Context A problem tracking system is available for problem
documentation.

Forces Testers want to be sure that problems are fixed.
 Designers have good intentions but don't always get

problems resolved.
 Problem tracking systems are often cumbersome.
 Problem tracking systems make problem areas very

visible.
 People inherently avoid documentation.
 Problem reports are often used as indicators of

developer's competence.
 Problem reports are often used as an indicator of

project status.

Solution Write a problem report. Don't argue with a Designer. Don't
accept a well-intentioned promise that may or may not get
results. Don't informally document the problem. The project
should not keep a private list of problems.

Testers should not be penalized for documenting problems.
Designers should not be punished when problems are
documented against them.

Do your homework before reporting problems to Designers.
Be sure you can explain what happened. Designers always
want to see a system debug output.

Resulting
Context

Problems documented in a problem tracking system are
more likely to get resolved in a timely manner.

Rationale Use all the tools that are available, even if they are
cumbersome. By thoroughly and officially documenting a

problem, information does not get lost and a timely
resolution is much more likely to occur.

Documenting problems is always an area that a project
wants to cut back. Cutting back causes many more problems
than it seems to solve. In the end, it always takes longer to
determine what the problems are than to resolve them.

Related
Patterns

Remember, Designers Are Our Friends and System Testers
should Get Involved Early.

Pattern: Adopt-A-Problem

Problem How can nagging problems be resolved efficiently so that
productive testing can continue?

Context A problem has been uncovered in the system that has no clear cut
solution. Resolving the problem will most likely take a great deal
of effort, or worse, it might not get resolved. This pattern should
be followed in the context of Designers Are Our Friends.

Forces Some problems are difficult to reproduce.
 Ambiguous problems result in ambiguous fixes.
 Designers don't have time to track down problems they

may not be able to resolve.

Solution Adopt a problem. Treat it as if it were your child. If you uncover a
difficult problem, stick with it until it is resolved. Document the
Problem. Retest the problem periodically to gather more data on it.
Become the responsible designer for the problem. Once the
problem is resolved, retest for it periodically to ensure that it stays
fixed. If the problem reappears consistently, it may be a Problem
Area.

Resulting
Context

Following the progress of the solution for a problem shows the
Designer that you are concerned about getting the problem
resolved. Taking an active role in resolving the problem can
prevent the problem from bouncing among Designers. Periodically
retesting the problem leads to a better understanding of the
problem and more symptomatic data. As a result, the probability
that the Designer can solve the problem and provide a solution in a
timely manner is increased.

Rationale Designers have a multitude of things to do, including new
development and resolving problems found during testing.
Designers tend to work first on things that are known, concrete,

and easy. Because of this, trying to resolve a difficult problem
often gets pushed to a lower priority. By adopting the problem,
there are in effect two people working on the problem. As the
System Tester, you can continue to test and debug the problem to
gain more information on it, be it information that the Designer
requests, or information that appears to be different from
previously collected data. The attention you give to the problem
also communicates to the Designer that you think it is important to
get the problem resolved and are willing to help in facilitating the
problem resolution. This second point is important, because you
should not come across as a nagging irritant that won't go away,
but as a willing participant in the resolution process. Be sure the
problem doesn't become a Pet Peeve.

Pattern: Pet Peeve

Problem The validity of a problem has been debated to the point of
holding up progress. What should be done to resolve the
debate?

Context This problem should be applied in the context of Adopt-A-
Problem and Document the Problem.

Solution When a problem is adopted, be sure that the problem doesn't
become an annoying thorn in the Designer's side. Don't
carry concern for an unresolved problem to extremes,
especially when you have no supporting documentation.
Keep discussions at a professional level.

When the status of the problem becomes a detriment to
progress, the System Tester should bring in a third party,
such as a Systems Engineer or requirements group, to help
resolve the impasse. At this point the System Tester should
stop following the status of the problem and start testing
other areas. Don't involve the third party too early in the
process.

Resulting
Context

Problems are resolved and not forgotten but no one goes
overboard in focusing on one problem to the detriment of
the rest of the system.

Rationale When deciding to Adopt-A-Problem, a System Tester can
become so focused on a particular problem that it becomes a
Pet Peeve. Carried to an extreme, this can destroy a good
working relationship between the System Tester and the

Designer. Problems in the system should not be taken
personally by the System Tester [Davis95].

Known Uses

The individuals involved in the mining of these patterns have many years of
experience in System Testing on the GTD-5® and other projects at AG
Communication Systems. The GTD-5® is a central office telephone switch that
has gone through many major releases over the past 16 years. The other projects
have benefited from this experience and validate the existence of these patterns.
Some releases of the GTD-5® and other projects have suffered the consequences
of not applying one or more of these patterns. In addition, these patterns have
been observed and used by some of the individuals at other companies involved
in the development of real-time embedded systems. More information on AG
Communication Systems and its product line can be found at
http://www.agcs.com.

Acknowledgments

These system test patterns were mined in a patterns mining workshop held on
May 10, 1996. The patterns were captured by David DeLano and Linda Rising
with Greg Stymfal serving as facilitator for the group. The workshop was
attended by the following AGCS System Testers: Dave Bassett, Arvind
Bhuskute, Bob Bianca, Ray Fu, Hubert Fulkerson, Eric Johnstone, Rich
Lamarco, Krishna Naidu, Ed Nuerenberg, and Lori Ryan. Many of these System
Testers, as well as the following, have participated in reviews of the patterns:
John Balzar, Terry Bartlett, Ernie Englehart, Carl Gilmore, Neil Khemlani, Jim
Kurth, Bob Nations, John Ng, Jim Peterson, Mike Sapcoe, Bill Stapleton, Frank
Villars, and Weldon Wong. Thanks to Dave Strand for suggesting the name
Scratch 'n Sniff.

"Unchanged" Interfaces has been adapted from a pattern written by Mike Sapcoe
during an earlier Patterns Writing course held by David and Linda.

We are grateful for the time and effort given by Ralph Johnson, Neil Harrison
and Brian Marick in shepherding these patterns. We would also like to thank the
participants of the writers workshop at PLoP '96 for their many valuable
comments.

References

[Cockburn96]

A. Cockburn. "A Medical Catalog of Project Management Patterns."
Submitted for PLoP96 (URL:
http://members.aol.com/acockburn/papers/plop96.htm), 1996.

[Coplien95]
J. O. Coplien. "A Generative Development—Process Pattern Language."
In J. O. Coplien and D. C. Schmidt (eds.), Pattern Languages of Program
Design. Reading, MA: Addison-Wesley, 1995, pp. 183-237.

[Davis95]
A. M. Davis. 201 Principles of Software Development. New York, NY:
McGraw-Hill, 1995.

[DeMarco+87]
T. DeMarco and T. Lister. Peopleware: Productive Projects and Teams.
New York, NY: Dorset House, 1987, pp. 45-47.

[Gamma+95]
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[Harrison96]
N. B. Harrison. "Organizational Patterns for Teams." In J. M. Vlissides, J.
O. Coplien and N. L. Kerth (eds.), Pattern Languages of Program Design
2. Reading, MA: Addison-Wesley, 1996, pp. 345-352.

[McCarthy96]
J. McCarthy. "#4: Don't flip the bozo bit." In McCarthy, Dynamics of
Software Development. Redmond, WA: Microsoft Press, 1995, pp.23, 30,
32.

[Olson95]
D. Olson. "Don Olson's Patterns on the Wiki Wiki Web." Portland, OR:
Portland Patterns Repository (URL:
http://c2.com/cgi/wiki?search=DonOlson), 1995.

[Remer96]
D. Remer. "Cost and Schedule Estimation for Software Development
Projects." UCLA, 1996, pp. SW 11-8, Guideline #35.

[Rising96]
L. Rising. "Don't Flip the Bozo Bit." Phoenix, AZ: AG Communication
Systems Patterns web page
http://wwwdev/supportv2/techpapers/patterns/bozobit.htm, 1996.

