
©2006 The Software Practitioner

1
NOVEMBER 2006

NOVEMBER – DECEMBER 2006 The newsletter by and for software professionals. VOLUME 16, NO. 6

Also in This Issue

It’s the end of an era!
IBM was passed as “the world’s biggest

computer company” in late 2006! It had held
that position for over 40 years, since the advent
of the Series 360 mainframe computer.

Who replaced them? Hewlett-Packard.
Why? Because

• IBM sold its PC business (to China’s
Lenovo)

• IBM quit the printer and storage busi-
ness.

What’s IBM’s reaction to this? IBM CEO
Sam Palmisano says “We don’t measure our-
selves by trying to be the biggest. We’d like to

Will They Try Harder?
IBM Is Now Number 2

be the best earnings and cash generation entity
in our industry.”

Yea, right!

Information Source –
“HP Set to Take the Big From Big Blue,” The

Australian, July 18, 2006; John Sterlicchi

The future of IT looks quite bright, accord-
ing to the results of a survey of IT CIOs [Alter
2006] published in CIO Insight.

Regarding employment:
• 47% of respondees saw the number of

full-time IT employees increasing over
the past year, and only 20% saw it de-
creasing

• 45% expect an increase in the number
of IT employees over the next year, and
12% see a decrease

• 73% see new employees needed because
of “new applications and infrastructure,”
and 69% see them needed because of
general corporate growth

• 36% will be hiring project managers,
33% programmers/system developers,
and 30% help desk support

• 55% will be looking for people who
have superior business (as opposed to
technical) skills and knowledge, and

79% see those people as more likely to
be promoted

• 82% of IT employees are in-house staff,
9% are contractors, 6% are domestic
outsourced, and only 3% are foreign
outsourced

Regarding the IT organization:
• 57% see IT as going through more change

than they have ever seen before
• 52% believe it is viewed as strategic, and

48% believe it is seen as a staff func-
tion

• at 49% of companies, the CIO reports to
the CEO (at 22%, it’s the CFO; at 21%,
it’s the COO)

• 72% believe “most of our IT profession-
als understand my company’s business
strategy”

• 65% say that most ideas for using new
technology come from the business users,
not the IT staff

The Future of IT
Employment Increasing, Huge Change, High Morale

IT Job Growth Solid
There’s good news in the IT jobs depart-

ment, at least if you are hoping to show that
an IT education leads to plenty of lucrative
jobs…
• Growth rates for IT jobs are “solidly

exceeding the outsourcing rate”
• IT employment is now 17% higher

than it was in the dot-com boom year of
1999
The source for this and other related data

is a study/literature search by Gettysburg
College Department of Computer Science.

The “C” in “CIO” stands for Cash. At least,
that’s one conclusion of the annual 2006 Salary
and Careers Survey conducted by CIO Deci-
sions magazine (and published in their June,
2006 issue).

The reason for that conclusion is the salary
data that shows that CIOs earn far more than
their VP/Director-titled colleagues – 66% of
CIOs earn more than $150,000 a year in salary
and bonuses, compared with 56% of VPs and
only16% of Directors.

Regarding raises and bonuses, the same
picture holds – nearly a third of CIOs received a
raise of 6% or more in 2006, compared with only
a fifth of IT Directors. And regarding bonuses,
nearly half of the CIOs who received a bonus
got more than $30,000, as opposed to only a
third of VPs and 10% of Directors.

These positions are adding to their longevity,
according to the survey. Whereas in 2000 the

Terminology Matters
CIO a Better Job Title Than VP/IS or Director/IS

average CIO had a tenure of only 18 months,
last year Forester estimated that average tenure
was 3.6 years, and Gartner estimated it as being
longer than 4 years. And more and more often
CIOs report directly to the corporate CEO – al-
most half, says the survey, as opposed to only
26% of VPs and only 16% of IT Directors.

However, the news from the CIO front is not
all good. As many as 58% of all IT executives
had been laid off or fired from their position at
one point in their careers (the figures were 58%
for those aged 60-69, 40% for those 50-59, 28%
for those 40-49, and 23% for those 30-39).

Regarding job switching, most (42%) CIOs
found their current job via networking (whereas
only 21% were promoted into it, and 18% were
recruited).

There were 457 subscriber respondents to the
survey, with an average respondent age of 46 and
an experience level of over 20 years in IT.

• 79% disagree with the statement “our
IT department’s morale is so low that it
impedes our company”

Reference:
Alter 2006 – “IT’s Future is Brighter Than

You Think,” CIO Insight, Aug., 2006;
Allen Alter

LETTERS:
Pragmaticus on post-mortems;
Roberto Mannai ... 3
Postmortems and Checkups,
Linda Rising ... 3
Standish CHAOS creator interview 4
Feedback from a Poll On Workspaces,
Bruce Gaarder ... 5
More Data on Software Failure: 67%
Successful ... 6
“A Tortured History of Bad Software” 6
CONFERENCE:
Dagstuhl Revisited; the 30th NASA/IEEE
SEW; “IT Responsiveness” (AMCIS keynote);
“Out With the Old...” 7-9
REVIEW:
Blink, Malcolm Gladwell; The Insider’s Guide
to Outsourcing..., Johann Rost 10
The Seasprite Puzzle 10

©2006 The Software Practitioner NOVEMBER 2006

2

Please…
 Enter my subscription
 Individual, $39/yr.
 Institutional, $99/yr.

 Send me information for
 advertisers

 Consider the enclosed article for
publication in SP

 Consider me as a reviewer on
(topics)

Name _____________________

Address ___________________

E-mail _____________________

CALL BOARD RESPONSE FORM

PUBLISHER:
 Computing Trends,
 18 View Street,
 Paddington QLD 4064, Australia
 61-7-33-11-12-13
 email: rlglass@acm.org
EDITOR:
 Robert L. Glass
ASSOCIATE EDITOR:
 David N. Glass
ART EDITOR:
 P. Edward Presson
EDITORIAL ADVISORY BOARD:
 Elliot Chikofsky
 Principal,
 Engineering Management and
 Integration
 David D. Lang
 Consultant (simulation)
 Larry Welke
 President,
 Info-Partners International, Inc.
 (data processing)
 Steven C. McConnell
 Construx Software Builders
 (micros)
 Donald J. Reifer
 President, Reifer Consultants, Inc.
 (management/large projects)
Unless otherwise stated, articles in The
Software Practitioner are written by Robert
L. Glass, cartoons are created by John
Leatherman.

ISSN = 1083 - 6861

Shareware Subscriptions!!!
If you are an SP subscriber, get a friend to

subscribe and receive a $5 rebate. Just have
them put your name below, and send in their
check with this form.

The Software Practitioner, a newsletter
by and for software professionals, needs
your help. This call board is our way of
telling you what help we need:

Call for Papers: We especially like les-
sons earned, approaches tried, experiments
conducted, surveys analyzed, unusual ap-
plications, controversy, humor. If it’s some-
thing you’d like to read, we’d probably like
to publish it. We pay for accepted articles
in either subscription time (two years per
published article) or advertising space (1/2
page per article), your choice.

Call for Subscribers: We need you.
We hope you need us! Subscribe now,
and make sure you get every issue of the
Software Practitioner. The cost is REALLY
low - $39/year, $29 for renewals, and $99
for institutions.

Call for Advertisers: Our readers are
the people who make recommendations
to the decision makers. People who want
reality, not hype. If you’d like to reach
that audience, we’d love to talk to you.
Our rates? $99/page, $54/half-page, $29
quarter-page.

Call for Reviewers: This is a reviewed
publication. If you’d like to review for
us, tell us the topic area for which you’re
qualified.

“I’m sorry, we can’t hire you. Your references check
out, and your background check was stellar… but
nothing came up when I GOOGLED you!”

“Young man, I won’t have you out at all hours
doing Google-knows-what!”

©2006 The Software Practitioner

3
NOVEMBER 2006

LETTERS LETTERS LETTERS LETTERS LETTERS LETTERS LETTERS

By Pragmaticus

Hey, guys. There’s something we do re-
ally badly in our field. Like, we really almost
never do it at all.

And that’s postmortem reviews. Or even
premortem reviews. We hardly ever take a
look at how our software project is going,
give it a thorough critique, and figure out what
lessons we can learn from that.

The result of that is we don’t learn from
our mistakes (perhaps worse yet, we also
don’t learn much from our successes!) Les-
sons learned from practice are barely visible
in our field. “Best of practice” studies usu-
ally end up telling us to do what the textbooks
say or what theory says, and that’s no good,
because all too many textbook/theory ideas
have never been evaluated in the cauldron
of practice.

And then our friends the consultants and
academics criticize us for not improving how
we go about our business. Well, duh – they’re
right! It’s hard to improve when you don’t
study what you did or what you’re doing.

Now, of course, you’re going to say that
in our software project “death march” world,
there’s never time to work in a good post/pre
mortem. And you’re right, of course. But I
don’t think any of us want that death march
world to prevail. There are times when we
simply have to shout “stop the death march, I
want to get off, there’s something more impor-
tant to do.” Try it … all together, now!

 An Open Letter to the Whole Software Engineering World

I could go on and belabor this point for
several more paragraphs. But I’m not going to
do that. Instead, I’m going to suggest that you
read the article “Postmortems and Checkups”
by Linda Rising elsewhere in this issue of SP.
And that you take what it says to heart.

To the Editor:

Regarding the “OO Inheritance - Most Cited,
Least Used” article in the July SP, I agree with
your conclusion: “there is a huge discrepancy
between what writers on the subject of OO see
as important, and what is actually used in prac-
tice”. Indeed, it seems that practitioners prefer
composition, not inheritance. See http://www.
artima.com/lejava/articles/design-principles4.
html, “ Design Principles from Design Patterns
- A Conversation with Erich Gamma .”

In my opinion, design patterns are a layer
more important than academic OO principles.
For example, a VB programmer (who con-
verted to OO, using C#) I was going to replace
astonished me when I saw a declaration of a
connection string (the same value) in every
class he wrote! To my question, he answered
something like “but every class must have
its own responsibilities, not depend on other
classes”! Perhaps he wanted to avoid static
variables, but he would have used a Singleton /
Factory pattern to get a connection to the data-
base, therefore improving maintenance issues.

Roberto Mannai, Italy

Linda Rising
www.lindarising.org
risingl@acm.org

If you had known at the beginning what
you knew at the end, how much would you
have saved?

Many software development organizations
use postmortems at the end of a project as a way
of improving their processes. This can be effec-
tive but it doesn’t really help the project that has
just ended. Teams should not only pause at the
end of a project to capture lessons learned but
there should also be checkups before the project
ends. In much the same way that preventive care

Postmortems and Checkups
helps us live longer, healthier lives, projects
can pause for a quick reading and take correc-
tive action while there is still time to apply the
lessons learned.

Checkups are especially appropriate if your
team is following an iterative development
process. At the end of each iteration, take time
to reflect. The benefits are easier to identify be-
cause you’re more likely to remember things that
happened a few weeks ago and a checkup takes a
lot less time than a full-blown postmortem.

But, wait, let’s back up. I made one of those
blanket assumptions at the beginning of the first
paragraph. Just in case your organization needs
a reminder about the benefits of postmortems,

let’s have a little review.
First of all—the word “postmortem.” It calls

up a vision of a group of concerned analysts
gathered around a cold, dead body. Most of
the projects I’ve been on produced something
worthwhile. The team should celebrate success
as well as mourn mistakes. A good postmortem,
or as I would prefer to call it, and will from now
on in this article, a good retrospective provides
an opportunity to see what went well as well as
those oh-so-easy-to-identify-things-that-didn’t-
go-well that we don’t want to repeat.

Conducting retrospectives is one of my pro-
fessional interests. As an independent consul-
tant, I help teams by facilitating retrospectives
and supporting the follow-on activity of building
on the knowledge captured in the process to
make future projects better. There are others
who are in the retrospective business. We met
recently in the first ever retrospectives facilita-
tors’ conference in a little town on the Oregon
coast. We met to create an identity and to begin
to share information about how we conduct our
businesses and how we can improve.

Let me tell you a story about a retrospective,
one of the most valuable I’ve ever facilitated.
You can judge for yourself whether this kind
of experience would help your organization.
Names have been changed to protect the com-
pany and the team.

The team lead called me in early January.
His voice was full of despair, “Linda, our project
has just been cancelled. These guys are really
upset. Some have already given their notice. I
can’t blame them. They worked over Christmas
to get last minute fixes done and now manage-
ment says it’s over. I want to make sure that this
kind of thing never happens again. I don’t know
whether there are patterns here but we need to
learn from this.” Of course I took on this messy
assignment. Failed projects happen. But when
they do, team members take that failure person-
ally. They carry that guilt and anger with them
to the next project—even if the next project
is in another company. If these issues are not
addressed and continue to build in subsequent
projects—burnout is inevitable.

Fred, my good friend and colleague, agreed
to help me with what promised to be an espe-
cially challenging retrospective. This was a large
team that had been together for over a year. I
would need someone with me to facilitate this
session.

Quote of the month:

“Excellent people with average
processes will normally outperform
average people with excellent pro-
cesses.”

- Ed Yourdon, in “Focus on Ed Yourdon
… a CAI State of the Practice Interview,”
Computer Aid, Inc., Sept. 2006

©2006 The Software Practitioner NOVEMBER 2006

4

Robert L. Glass

You must have noticed that we at SP have
a fascination with studies of software project
failure rates. We’ve published so many stories
on failure data (just the most recent ones are
cited below) that you may be getting fed up with
the whole thing.

You probably have also noticed that we’ve
been all over Standish for its well-known
“CHAOS” studies that show software projects
having huge failure rates. We don’t believe their
data and their conclusions, and have been so
brash as to say so on numerous occasions, even
challenging them in print to justify their findings
(these are also listed below).

So perhaps we should give Standish a bit of
equal time. They have, after all, believed for

Standish CHAOS
Reporting On An Interview with the Study’s Creator

over a decade that they are providing a service
to the software community by reporting software
project success/failure data. What do they say to
negate our doubts and refute our challenges?

At this point, ideally we would print a re-
sponse from Standish answering to all those
public challenges we’ve made over the last
few years. Sad to say, however, there is still
no such response. So what follows is the next
best thing.

Deborah Hartmann has written an on-
line story reporting on an interview with
Jim Johnson, who is the “creator” of those
Standish CHAOS studies and stories, and has
been nice enough to share that story with us
at SP (as well as obtaining permission for
us to publish excerpts here with appropriate
credit). That story was published on the

My mentor, Norm Kerth, has written an ex-
cellent book [Kerth01] on this important part of
the development cycle. He advises taking teams
off-site for three days for an end-of-project
retrospective. I usually don’t have the luxury
of either the off-site location or the extensive
amount of time. Most managers are lucky to find
a couple of hours and the budget to buy lunch.
In our story, I had two hours to help 50 people
through a retrospective.

Since the group was so large, we decided to
use “quiet storming,” a technique that allows
each person on the team to write his feelings
about any part of the project on a large index
card and then post the card on the wall. We had
categories across the top of the wall: Require-
ments, Design, Coding, Testing, Customer
Interaction, and so on. Sometimes a card won’t
fit the existing categories and a new category is
added. As cards are written, they are brought to
the wall and posted. Writers peruse the posted
cards and as they do, ideas for more cards are
generated. Anyone can write anything and all
cards are anonymous.

As the wall began to fill up, people were
spending more and more time, reading the cards.
At one point, nearly everyone was standing at
the wall. It was eerie. It reminded me of the
Vietnam War Memorial. People were re-living
the history of the project, dredging up bits and
pieces, flashes of insight, painful moments,
happy moments. They stood in small clusters,
whispering, pointing at cards, touching the
cards. I let them have time for this.

When it was clear that no more cards were
being added, I asked them to look at the cards in
each category and see if they could detect any
trends. I asked them to look at the bigger pic-
ture, look beyond the details on the cards and
see if we could capture: (1) What went well.
We need to document those good things—and
there are always good things—that we’re
always forgetting. (2) What should be done
differently? Let’s not make the same mistakes
again. (3) What do we still not understand?
What puzzles us?

As we became more analytical, people began
to think ahead and move beyond the painful rec-
ollections of this project. They found that they
could easily identify good things. They could see

that there had been successes—things they could
be proud of. They were able to talk about things
that hadn’t worked well and what they would
like to correct before the next project.

We were able to identify some potential pat-
terns—from the good things and determine some
action items—from the things that should be
corrected on the next project. Follow-on meet-
ings were planned and responsibilities assigned
for the patterns and the action items.

Toward the end of this exercise, someone
in the back of the room said, “What good is all
this anyway? We know nothing will come of
it. We’re just going to go out there and do this
all over again. We’ve already started to make
some of the same mistakes on the next project
and we’ve only been on it a few days!” To my
very great surprise, the team lead jumped up
and said, “I promise all of you that what we
have captured today will be presented to every
other manager in this company. This will not
just go into some web page where no one will
ever read it. I’ll take it all the way to the ex-
ecutive council.” I was impressed—I think the
other team members were, too, because no one
said anything for nearly a minute. They were
all taking this in. Maybe this company really
could learn from its mistakes. Maybe things
really would get better on the next project.
Maybe there really was hope.

I guess that’s the point of the whole story.
Without the retrospective, the team would have
never found any hope. Each team member would
have carried his burden onto the next project and
the next, maybe never completely recovering.
Good companies understand that what people
produce reflects the things people bring to it.

One of my favorite stories about this
phenomenon is from a book by Ruth Sawyer
[Sawyer76].

He was Bavarian, little, very old. He had
come to measure our davenport for re-covering.
With painstaking care he got out of his coat and
into his apron of blue-and-white-striped ticking,
adjusted his pincushion, his shears, hung his
tape measure about his neck. He got only as far
as measuring the front; and there he sat, on his
heels, while he told me about his experience as
an under-master in the palace of King Ludwig.
He talked about a special event held every year

when everyone who worked for the king took
part in an opera. Those who could sing were in
the chorus. Those who played instruments made
up the orchestra. A conductor from Dresden was
brought to direct. The soloists came from the
big cities. The great Wagner came. For a week
the celebration was held; then everyone went
back to work.

What the Bavarian upholsterer said at
the last I have always remembered: “All the
goodness, the lift of the heart that we got from
playing those operas, we would put back into
our work—in the draperies and tapestries we
hung, in the cabinets we made. Nothing was
lost. That is how it should be when you have
experienced something great and beautiful. And
so, my lady, something of those operas will go
into your sofa.”

There it is. Software developers or creators of
any product put into their work the joy they find
in their lives. When the joy has been taken away
by hopeless schedules, 60-hour-weeks, missed
ball games or piano recitals, it becomes harder
and harder to retain that optimism and heart we
software junkies are so proud of. One of the best
ways of getting that back is a retrospective. Let
the team have a moment to reflect on the past
project. Let the team learn. And, even better,
do this often, while there is still time to make a
difference in the current project.

Our story has a happy ending. The team lead
really did spread the word about lessons learned
from the project. A report really was presented
to the executive council. Several good patterns
were also written and I began to talk about them
in other retrospectives.

For more information on retrospectives,
please buy and read Norm’s book and look for
a new book out in the summer of 2006 by Esther
Derby and Diana Larsen [Derby06]

References
[Derby06] Derby, E. and D. Larsen, Agile

Retrospectives: Making Good Teams
Great, Pragmatic Bookshelf, 2006.

[Kerth01] Kerth, N., Project Retrospectives:
A Handbook for Team Reviews, Dorset
House, 2001.

[Sawyer76] Sawyer, R., The Way of the Sto-
ryteller, Penguin Books, 1976.

online site InfoQ (www.infoq.com). Here
is some of the most interesting content of
that interview:

• Johnson believes the CHAOS report
results are “representative of application
development in general”

• he sees them as unbiased (“I don’t think
there’s any bias in there”)

• prior to the Glass/Pragmaticus challenges,
the Standish findings have “not really”
ever been challenged before

• Johnson is called a “seeker of the truth”
by a colleague

• “we pay people to fill out the survey” …
“we pay them for their time” (presumably
this further removes any hint of bias in the
responses)

• the survey respondees are broadly-based,

©2006 The Software Practitioner

5
NOVEMBER 2006

that the data has been scrubbed of client
identification.

• the InfoQ interview is largely objective.
But at the outset they say that Standish is
a “globally respected” source of indepen-
dent primary research and analysis, and
also that they are “a pioneer of modern re-
search techniques;” such complementary
statements are not the mark of objective
research.

Perhaps the most interesting content of the
InfoQ interview is this chart of project failure
and overrun rates, gathered long-term over all
of the CHAOS studies:

It is particularly interesting to note that by
far the worst year in the CHAOS studies was the
first year, 1994 (the one most researchers cite),
and the best year was 2002 (most researchers
seem unaware of the CHAOS studies since 1994,
and therefore rarely cite the data improvement
over time. But note also that, since 2002, things
have gotten somewhat worse).

The software field owes a debt to InfoQ for
obtaining these direct responses from Standish
on their CHAOS studies.

References:
 Software Practitioner stories on failure

data:
• July 2006: “How Large are Software Cost

Overruns? A Review of the 1994 CHAOS

Project result 1994 1996 1998 2000 2002 2004

% Succeeded 16 27 26 28 34 29
% Failed 31 40 28 23 15 18
% Challenged 53 33 46 49 51 53

Average cost overrun % 180 142 69 45 43 56
Average time overrun % 164 131 79 63 82 84

but there are “no vendors, suppliers, or
consultants. So Microsoft isn’t in our
sample.”

• “we’re not asking for ‘failure’ projects.”
• “it doesn’t take a genius to know our

methodology, it’s always been public”
(their original study, he says, resulted
from a broad-based mailing, but more
recent studies have invited people who
meet certain criteria (none having to do
with failure, he says) to participate on their
website).

The above interview content is largely sup-
portive of the CHAOS studies. But there are
some odd questions raised by the interview,
as well:

• Johnson makes the point that the Standish
studies are about success as well as failure,
and that out of the CHAOS studies they
glean success factors they can report
to their clients. But he also notes that
Standish also seeks “instructive failures”
as case studies, and says that he has per-
sonally written a book called My Life Is
Failure.

• Johnson says that the original study result-
ed from an IBM class Standish conducted
in Belgium, where one subject discussed
was tracking sales of middleware, wherein
the data “just didn’t track right,” leading
to the Standish interest in project failure.
My problem with this story is that I don’t
recall middleware being a hot topic in the
early 1990s.

• perhaps their “methodology has always
been public,” as stated above, but noted
researchers have repeatedly failed in their
quest to get access to the data Standish
collects. Standish says that is because they
want to protect client privacy, and because
the data is proprietary, but they also say

Report,” by Magne Jorgensen and Kjetil
Molokken-Ostvold

• July, 2006: “More Data on Software Proj-
ect Failure”

• May, 2006: “Failure Happens, But In-
creasingly Infrequently”

• May, 2006: “Software Projects: 40% a
Total Success, Only 55% Failures”

• Nov., 2005: “Cutter Consortium: Some
New Data in the Project Failure Statistics
Wars”

• Mar., 2005: “Standish ‘CHAOS:’ Failure
Up, Success Down, in 2004”

Stories/columns that challenge Standish’

findings:
• Aug, 2006 Communications of the ACM

Practical Programmer column by Robert
L. Glass, “The Standish Report: Can We
Really Believe it Describes a Software
Crisis?”

• Nov., 2005 SP: “An Open Letter to
Standish (Version 2.0)” by Pragmaticus

• May, 2005 SP: “An Open Letter to
Standish About Its ‘CHAOS’ Reports” by
Pragmaticus

• May, 2005 IEEE Software Loyal Op-
position column by Robert L. Glass, “IT
Failure Rates – 70% or 10-15%?”

Nov., 2003 IEEE Software, Guest Editor’s
Introduction (by Robert L. Glass) to a special
issue on the state of software’s practice

Feedback from a Poll of SP Readers On Workspace Preferences
by Bruce Gaarder

Recently I posed a question to the editor of
the Software Practitioner about workspace pref-
erences, and he decided to try something new,
asking you readers to respond with your own
reactions. What follows is a short version of my
original question, and a summary and sampling
of some of the most interesting responses (there
were 13 responses in all).

The question:

I am looking for opinions and experiences
regarding workspaces for software workers.
The company for which I work is beginning to
move to a “pod” or cubicle of 4 or 8 workstations
with a pair of workers sharing a table-top island
across an aisle from another pair. I would be
interested in any literature or opinions bearing
on this issue of workspace arrangement.

A summary of the responses:

Too much noise, loss of privacy (5 re-
sponses)

The reason for such a change is always cost,
in spite of management saying other things (3)

Provide small enclosed “cockpits” (work
carrels) for deep thinking tasks (2)

Several other items with one response
apiece

Web sites cited:

http://www.research.ibm.com/journal/sj/171/
ibmsj1701C.pdf
“IBM’s Santa Teresa Laboratory -- Architec-
tural Design for Program Development”
http://www.joelonsoftware.com/articles/Field-
GuidetoDevelopers.html
“A Field Guide to Developers”
http://www.joelonsoftware.com/articles/
fog0000000050.html
“Whaddya Mean, You Can’t Find Program-
mers?”
http://www.joelonsoftware.com/articles/Bio-
nicOffice.html
“Bionic Office”
http://www.azstarnet.com/sn/printDS/117661
“Distractions are Costly”
http://www.kmworld.com/Articles/PrintArticle.
aspx?ArticleID=14543
“The High Cost of Interruptions”
http:/ /www.ecommercetimes.com/sto-
ry/45606.html
“Teleworking - Is It Right For Your Enter-
prise?”

http://www.zazamedia.de/pages/BASEX%20-
%2005-06.html
“London Interruption” [13-02-06] entry
http://gd.tuwien.ac.at/softeng/lambs-archive/
archive/cubicle
News group exchange
http://www.12simplesecrets.com/manage-
ment.htm
“The 12 Simple Secrets”
http://www.news.cornell.edu/releases/Jan01/
noisy.offices.ssl.html
“Even low-level office noise can increase
health risks and lower task
motivation for workers, Cornell research-
ers find”
http://www.findarticles.com/p/articles/mi_
m3495/is_n3_v43/ai_20853287
“A humanistic approach to space - offices
designs”
http://money.cnn.com/2006/03/09/magazines/
fortune/cubicle_howiwork_fortune/index.
htm?cnn=yes
“Cubicles - the Great Mistake”

A Sampling of Responses:

Organizations are definitely moving toward

©2006 The Software Practitioner NOVEMBER 2006

6

We at the Software Practitioner engage in bi-
ased reporting when it comes to software project
failure! You have probably noticed that we tend
to paint a rosy picture of the success/failure rate
for software, and emphasize research findings
that support that viewpoint.

So in the interests of fair play, in this article
we will do the opposite. This is a report on a
very visible piece of writing that appeared in
IEEE Spectrum several months ago [Charette
2005]. In that article, Robert Charette, a con-
sultant who specializes in risk management
activities for software projects, presented an
alarmist – and alarming – view of where soft-
ware has been headed, and where it’s going in
the future.

For example, Charette said such damning
things as:

• “few IT projects … truly succeed.”

• “the problem only gets worse as IT grows
ubiquitous”

• “over the last five years, … project failures
have likely cost the U.S. economy … as
much as $75 billion”

• all of this represents “a tortured history of
bad software”

Charette also speaks of a “Software Hall of
Shame,” identifying a dozen or so projects that
lost huge amounts of money for their companies,
and liberally sprinkling his article with case
studies of failed projects. He also notes that
“IT spending is now one of the largest company
expenses outside of employee costs.”

The data Charette cites to make his point is
not quite as convincing as his rhetoric, however.
He suggests that “5-15% [of software projects]
will be abandoned …,” and notes later in the
article that “I am convinced that the failure rate

“A Tortured History of Bad Software”

Yet another source of data on software proj-
ect failure will soon be published. In [Sauer,
Gemino and Reich 2007], the authors report
on a study of project experiences in the U.K.
and find that:

• 67% of projects are delivered close to or
exceeding expectations for budget, sched-
ule, and scope.

• 23% of projects are budget or schedule
challenged

• only 9% of projects are abandoned.
These figures contrast drastically with those

reported by Standish, which repeatedly (in all of
its every-two-year studies) shows projects chal-
lenged or failing at the over 50% level.

The research approach used by the authors

for this study was to ask 421 experienced UK
project managers to discuss their most recent
completed project.

There was, however, a peculiar aspect to
the findings of this study. Although it is com-
monly assumed that large software projects fail
more often than small ones, in this study “Star
projects” (those where project performance was
superior) were “distinctly larger” than the less
effective but still successful “Good projects.”
The authors speculated that “organizations
assign their very best project managers to the
projects with the largest budgets.”

The authors also found that projects with
managerial changes were less likely to be suc-
cessful. It was not clear whether the manage-

More Data on Software Failure: 67% Successful!

the open, collaborative spaces - since I see a lot
of “agile” teams, this is part of that approach
to development. But, these same organiza-
tions also realize the importance of a quiet
space, not only for working, but for a change
of pace or to make a private phone call. So,
they have both.

Here’s one example. A large project in
Texas had several large rooms where 4-6 people
worked in a collaborative setting. Each large
room had two little “closets” where an individual
could have a quiet space as needed. The small
closets didn’t belong to anyone, they reminded
me of the study carrels we used to have in the
library. They were sound proof and allowed a
place to think and work quietly.

The large project also had a small kitchen
with a few tables where the team had breaks
and lunch. It looked like a very nice working
environment! I see this in so many places, I
might almost call it a trend.

Our building has so-called “cockpits” (en-
closed 1-person work carrels) where you can
work alone undisturbed or make a private call.
One obvious problem with this: you have to
walk to get to them. Perhaps not surprisingly
they are often empty.

I do believe that open cubes increase com-
munication, but only if the people in the pod are
working on the same project -- and I mean the
same *specific* project, not projects that are
only loosely related. So I think increased com-
munication can be a definite benefit.

No question that collaboration and knowl-
edge transfer are important, at some points in
the software creation process, but they won’t
be improved with cubicles. The impediments
to collaboration and knowledge transfer among
programmers are cultural, not physical.

The real reason for cubicles is cost. It’s
vastly cheaper to have a big room and movable
partitions. Pods and open space may be great for
some professions, such as advertising, but for
programmers, in my view all those “benefits”
are just a cover story for lower cost.

The proposed design has some positives, but
having less space for whiteboards sounds like
a real negative to me. I work in a building full
of cubicles. Almost every cubicle has a small
whiteboard, about 2’x3’. We use them often
when having informal discussions involving
two or three (or sometimes more, even though
it’s a squeeze) people. I think they help com-
munication a lot.

What have I found that enhances software
development productivity?

1. Long periods without distraction; no
phone calls, emails, internet browsing.
For me a maximum of 2 hours.

2. At the end of each development shift (e.g.
up to 2 hours) a good break from develop-
ment to work on small/short tasks to relax
the mind. Make some phone calls, respond
to e-mails etc.

3. Views are good. From my desk I have a
view of the outside world into something
serene i.e. not distracting. I have found
it greatly reduces eye and back strain
if, during moments of consideration I
can look away from my screen, into the
distance, but not be distracted by what I
see.

4. Collaboration is best done during these
breaks from development. When a vexing
problem is taking too much time then end
a development session. Spend some time
on non-development tasks to relax the
mind then take the problem to associates,
news groups, on-line resources etc., for
a solution before commencing the next
development session.

ment change was a cause or a result of poor
project performance, however.

In a private communication, the third author
of the paper notes that data collected for a subse-
quent study in the US shows the same patterns as
their UK data, thus reinforcing the disagreement
with Standish data. This same author suggests
“we [researchers and practitioners] need to stop
using Standish, start collecting our own data, and
put [Standish] behind us.”

Reference:
Sauer, Gemino, and Reich 2007 – “IT Project

Performance: The Impact of Size and Volatility,”
accepted for publication in Communications of
the ACM; Chris Sauer, Andrew Gemino, and
Blaize Horner Reich

is 15-20% for projects that have budgets of $10
million or more.” This certainly supports his
notion that “such failures occur far more often
than they should,” but those percentages – being
far from the failure rates that Standish cites in
its Chaos studies - seem mild compared to the
extreme verbiage that represents the main thrust
of the article.

Still, what Charette says here is typical of
the bad press software projects are getting in
a great deal of the literature – be that literature
academic, practitioner, or popular. And, once
again, we present it here in the interests of
journalistic fair play.

Reference:
Charette 2005 – “Why Software Fails,”

IEEE Spectrum, Sept., 2005; Robert N.
Charette

©2006 The Software Practitioner

7
NOVEMBER 2006

CONFERENCE CONFERENCE CONFERENCE CONFERENCE CONFERENCE

Schloss Dagstuhl, Germany - 14 years ago
a conference was held here at Dagstuhl castle
on the subject of empirical research in software
engineering. During the last week in June, 2006,
the first repeat of that conference was held, with
over 60 attendees from all parts of the software
engineering world gathering together to revisit
that topic.

The purpose of the conference was to update
the status of empirical research into software
engineering, 14 years later, and as part of that
updating two interesting presentations were
made:

Marv Zelkowitz of the University of Mary-
land presented his own update of an earlier
study on the prevalence of computing research
that evaluates its findings. (Numerous studies
through the years have shown that the lack of
validating research may well be one of the most
serious problems in computing research).

Walter Tichy of the University of Karlsruhe
presented his initial study of the characteristics

Dagstuhl Revisited
Trends and Status of Empirical Software Engineering Research

of empirical research in software engineering.
What made Zelkowitz’ study particularly

interesting was that, for the first time since his
studies began in 1985, there was an improve-
ment in the quantity of validating research.
The number of studies that did not support their
findings with validating research dropped from
27% in 1985 to 11% in 2005, Zelkowitz found,
and the percentage of those papers that used
one or more validation methods rose from 29%
to 66%. Zelkowitz concluded that “clearly the
situation is improving,” and speculated that the
accessibility of open source software may be
one reason this data is improving. But he also
noted that his study assessed the quantity, but
not the quality, of those validations.

Whereas Zelkowitz’ study was longitudinal,
covering several snapshots over a 20-year span,
Tichy’s findings were a single-point summary
of empirical research, circa 2006 (his study
examined the full 10.5 year spectrum of pub-
lications in the Journal of Empirical Software

Engineering). He particularly focused on the
quality of those studies, via such classifications
as research method used and the background
of the study subjects (e.g., professional vs.
student). The most common topic areas, Tichy
found, were metrics and software process. But
perhaps more interesting were Tichy’s views
on “what is missing?” from such empirical
research. Tichy noted few studies of such
formerly important topics as programming lan-
guages, design notations, and formal methods.
He also suggested several Grand Challenges for
the field, including

• which software methods work, and
why?

• including context in studies (overcoming
the “it depends” issue)

• how to handle outsourcing / global devel-
opment

Together, the two presentations gave a nice
view of both the status and trends in empirical
software engineering research.

by Christopher Ackermann and
Mikael Lindvall
Fraunhofer Center for Experimental
Software Engineering Maryland

Introduction
For the 30th anniversary of the NASA/IEEE

Software Engineering Workshop (SEW-30),
NASA technical staff, contractors, academics
and industrial practitioners interested in the
advancement of software engineering gathered
at the Loyola College in Columbia, Maryland.
Conference Chair Mike Hinchey coordinated
the event, which provided a forum sharing expe-
rience as well as discussing new and emerging
technologies.

Researchers and practitioners from different
countries participated in the workshop and
provided insight into the research work that
is being conducted in the different research
centers, universities and companies. Many good
speakers presented their findings, approaches
and techniques addressing various aspects
of software development and maintenance.
Interesting talks on topics from requirements
modeling to formal methods and their applica-
tion were presented. In this summary, we can
not entirely cover all of the talks but mention a
few that caught our attention.

Keynote speaker Victor Basili from the Uni-
versity of Maryland and the Fraunhofer Center
for Experimental Software Engineering Mary-
land opened the workshop with a presentation
about the role of empirical studies in Software
Engineering. He pointed out that human-based
studies are crucial to analyze and synthesize
products, processes and the relationships be-
tween them. The results can then be used for
evolution, which requires the willingness to

The 30th NASA/IEEE Software Engineering Workshop 2006
change the way we think. Vic used examples
from some of his recent projects to show how
the use of empirical approaches and their results
can be beneficial.

Together with Barry Boehm, he leads the
Center for Empirically Based Software Engi-
neering (CeBASE). The goal of CEBASE is to
use empirical results to help researchers evalu-
ate software technologies and to help software
developers choose among them.

He was also one of the leaders of NASA’s
High Dependability Computing Project
(HDCP), which aimed to increase the ability of
NASA to engineer highly dependable software
systems via the development, evolution, and
empirical evaluation of new technologies. As
part of HDCP, he developed the Unified Model
of Dependability (UMD), which is a require-
ments engineering framework for eliciting and
modeling dependability requirements. Also part
of HDCP, he led the development of a software
testbed, which is a set of artifacts and the infra-
structure needed for running experiments with
the goal to evaluate technology. The testbed
is based on a safety critical air traffic control
software component called TSAFE and seeded
with faults of various kinds that can be use to
determine which ones can be detected by a
particular technology. One such technology was
Tevfik Bultan’s design for verification approach
that is based on model checking. The result of
that work earned a best paper award at the Au-
tomated Software Engineering conference.

The goal of the High Performance Comput-
ing Systems (HPCS) project is to improve buy-
ers’ ability to select the best high end computer,
not only based on computation speed, but also
based upon productivity. The productivity
pertains to the Time To Solution (TTL), which

takes into account not only the execution time
but also the time to develop the software.

Victor’s vision is an empirical research
engine for software engineering that facilitates
experimentation and evaluation of technolo-
gies and that could be used to build models
supporting the decision making process. He
stressed that we need empirical studies to test
and evolve technologies for their appropriate-
ness in context.

Other speakers also reported about achieve-
ments in the empirical domain. Giuseppe Lami
from the Institute of Information Sciences and
Technologies in Italy presented the results of
an empirical study that investigated the rela-
tionship between quality of requirements and
quality of the final product. The hypothesis
that expressiveness defects in requirements
result in an increased number of test failures
was supported by the results of this study,
which was based on data from an industrial
software project.

The empirical study conducted by Christo-
pher Ackermann from the Fraunhofer Center
for Experimental Software Engineering in
Maryland aimed to gain understanding of how
change requests affect software. In order to de-
termine change impact, he analyzed data from
historical change request and their implementa-
tions. His results suggest that the implementa-
tion effort of many of the change requests was
underestimated because the programmers were
not aware of all the software aspects that were
affected. His idea is to help programmers under-
stand the severity of the change by illustrating
the change impact in a set of selected diagrams
that would most clearly reveal the impact on the
different software aspects.

Other interesting papers that we just want to

©2006 The Software Practitioner NOVEMBER 2006

8

mention briefly were the validation technique
for Design Patterns developed by Benjamin
Tyler from Ohio State University et al. and the
concept of how to engineer survivable security
biometric systems established by Roy Sterrit et
al from Northern Ireland.

Formal Methods
In this year’s workshop, a trend toward

formal methods was clearly noticeable. Many
of the papers incorporated at least some formal
methods aspects. One reason for the unusually
high numbers of papers on formal methods is
probably the fact that SEW-30 was collocated
with three other workshops with close connec-
tions to formal methods as part of the Systems
and Software week, see http://www.system-
sandsoftwareweek.org.

The industry, however, does not seem
to adopt these concepts in a broad manner.
Although, some speakers reported successful
applications of formal methods, many others
have not developed sufficient trust in those
techniques and their return of investment.

Manfred Broy from the Technical University
of Munich in Germany made clear, however,
that formal techniques are needed especially
in the automotive domain. He talked about the
key properties of automotive systems, such as
real-time behavior and what challenges arise
from these requirements. While working with
automotive systems, he realized that people
tend to forget about the specific attributes of
automotive applications, such as, what he calls,
feature interactions. Feature interaction refers
to the interactions of different devices in a car,
which requires appropriate interfaces. The com-
munication between these devices in the safety
critical automotive domain must be highly reli-
able. Formal methods could be an appropriate
technique to ensure this level of reliability.

Development of automotive systems neces-
sitates a requirements engineering approach
that takes into account the concurrent and
distributed behavior of that type of software
and that provides quality insurance having in
mind that they must be dependable during their
entire long life time.

He said that the industry asks for formal
methods that enable them to verify automotive
systems. However, existing modeling languages
are not sufficient to model the automation of
these systems and there is need for new model-
ing techniques. A modeling technique that meets
the requirements of the automotive domain is
currently under development by Manfred.

The need and the opportunity for solving
problems with formal methods was also rec-
ognized by a number of other researchers of
which we will mention a few.

A first step towards higher acceptance of
formal methods could be the work of Yves
Ledru et al. They developed an approach to
transform a formal specification to a graphical
notation that can be used to illustrate specifi-
cations. Yves is a professor at the University
Joseph Fourier in France. His work attempts
to close the gap between formal methods
and stakeholders, who often have difficulties
understanding the abstract notation of formal

description languages. He particularly focuses
on the B method, which is a formal approach
that covers the entire software development life
cycle. His technique produces UML diagrams
from existing B descriptions, which can be used
to illustrate the specification to stakeholders.

Frantisek Plasil is a professor at the Charles
University in Prague. He presented a model
checking approach that evaluates the behavior
of software and its conformance to a high-
level specification defined using behavior
protocols. The main concept is to combine the
Java PathFinder model checker developed by
NASA Ames Research Center and the Protocol
Checker, which was developed at the Charles
University. The Java PathFinder is used to parse
the source code. The parsing results are sent to
the Protocol Checker, which evaluates the con-
formance of that data to the specified behavior.
The results show that the model checking ap-
proach can be applied in a reasonable time. It
does, however, require modifications to the Java
PathFinder, which lead to some considerable
drawbacks on the performance side.

The popularity of the Java PathFinder
among researchers motivated Luigi Rigo from
the University of Milan in Italy to transform
the tool into a plug-in that can be integrated
into the Eclipse developing environment. This
is a crucial step in making such tools more at-
tractive for software developers by integrating
them with common development environments
and allowing developers to easily apply them
with little effort.

Model checking is also an essential part of
the testing technique presented by Rick Kuhn
from the National Institute of Standards and
Technology (NIST) in Maryland. Rick et al.
describe an approach for automated specifica-
tion-based testing that integrates combinatorial
testing with model checking. Algorithms that
emerged from recent advances in Software
Engineering are used to efficiently generate
covering arrays. Model checking was then ap-
plied in order to generate useful combinatorial
tests. A valuable outcome of this research is
the description of the most efficient way to use
Model Checking for this purpose. The results
of his research suggest that the approach can be
used to effectively test software systems. Rick
also pointed out that due to the large number of
test cases that has to be generated even for a rela-
tive small software system, the approach would
probably not be practicable for large systems.

A successful application of formal methods
was presented by Jinli Zu from the Nokia Re-
search Center in Finland. Jinli described how
the Nokia Research Center investigated using
formal methods to solve reliability issues. This
might serve as an example for situations in
which companies reach for formal verification
in order to meet certain goals.

Their need was to incorporate the evaluation
of behavioral properties, such as performance
and reliability, into the early phases of system
design. Although behavioral properties are es-
sential to the quality of software, they have not
been part of the system design at their facilities
and with conventional architecture analysis
methods they found that it was not possible to

evaluate the behavioral properties.
To address this issue, the research center

considered the use of formal methods and found
that Colored Petri Nets could help to achieve
their goal of incorporating behavioral evaluation
into the design phase. They used the Colored
Petri Nets to create software architecture-level
behavior models and applied the technique
in a case study to a large telecommunication
system. The results suggest that the technique
can indeed be used to quickly evaluate new
architectural solutions at an early design stage
with respect to reliability and performance.

The researchers of the Nokia Research
Center have not only shown that techniques
based on formal methods can be successfully
applied in practice but their work also indicates
that there is a wide range of issues where formal
approaches can help to solve problems.

Verified Software Grand Challenge
Keynote speaker Jim Woodstock from the

University of York, UK, took the role of formal
methods to yet another level. He stated that
methods for formal verification of correctness
could be used to give warranties for software.
This is something that nowadays seems im-
possible considering the high number of bugs
and the lack of reliability in current software
products.

He claimed that formal methods are practi-
cal to use and are also the cheapest way to en-
sure the functional correctness of software. For
formal methods to be successful, Jim added, it is
crucial that developers and software engineers
are willing to change their habits and adopt the
new techniques.

Jim forecasted that in 5 years, the research
community will have developed a foundation
for work through development of mature tools
and standards based on formal methods. In 20
years he says, “we want to have well developed
theory and a powerful suite of tools.”

Conclusion
The workshop was a successful gathering of

people from industry, academia and research,
where many new ideas were presented and
research opportunities were pointed out. The
speakers of the workshop openly discussed not
only their successes but also some drawbacks
of the approaches they reported on so that oth-
ers can learn from them and use the knowledge
for their own work. Much of the workshop was
also about the future of software engineering,
the needs and the opportunities. For example,
David Atkinson from the Jet Propulsion Labo-
ratory/Caltech presented NASA’s road map for
the following years and pointed out challenges
of software used in space shuttles, robots and
on the ground. It seems like interest in formal
methods is growing. However, the currently
available formal techniques and tools have not
yet been able to fully convince industry because
they are still too difficult to use compared to
the perceived value. However, an event like
the software engineering workshop gives the
opportunity to align research with the needs of
practitioners in order to make formal methods
more useful in practice.

CONFERENCE CONFERENCE CONFERENCE CONFERENCE CONFERENCE

©2006 The Software Practitioner

9
NOVEMBER 2006

CONFERENCE CONFERENCE CONFERENCE CONFERENCE CONFERENCE

Acapulco, Mexico – The top priorities of
CEOs, according to an IDC survey reported
on by Eric A. Prothero, a keynote speaker at
AMCIS (Americas Conference on Information
Systems) here August 5, are:

1. Customer care
2. Product innovation
3. Sales Productivity
4. IT responsiveness
5. Business monitoring
The interesting thing about those findings,

from an IT point of view, is that “customer
care” is relatively flat over time, but the con-
cern for “IT responsiveness” is booming. 72%
of CEOs identified IT as the key to corporate
innovation. And, in what Prothero called a
“scary” statistic, nearly all CEOs and CFOs
said that their enterprise should adopt an “ag-
gressive” stance toward IT, while only half of
the CIOs - the ones responsible for IT – agreed.
(Prothero speculated that it was because CIOs
were already too busy).

Prothero, VP for Latin America for IDC,
chose as the title of his keynote “Changes in
the Use and Consumption of IT Around the
World.” He accompanied his talk with lots of
gee-whiz statistics:

• worldwide IT spending is engaged in
“huge growth,” reaching over one trillion
dollars (1000 billions) in 2005

• the rise in IT spending, after a fall over
the dot-com bust, is now steeper than
ever

• 23% of business investment world wide
is now for IT

• less than 50% of the devices connected
to networks are PCs

Prothero also provided some interesting

“IT Responsiveness” Fastest-Growing CEO Priority
demographic data:

• 51% of the population in emerging nations
is under 20 years old (that figure is 21%
in developed countries)

• the “huge” college population in China+I
ndia+Russia+Mexico+Brazil is more than
25% higher than US+Europe+Japan

• Estonia is the leading country in electronic
penetration, with (for example) 108% of
the people having cell phones

Prothero ended his talk with a look toward
IT’s future. He sees lots of growth in a field
called “crowd sourcing,” where communities
form around growing certain kinds of content
(he talked about several examples, including a
“seekers/solvers” community that either posts
problems to be solved, or works to find solutions
to posted problems, and a photographic com-
munity that posts photos for others to download,
where the posters get a royalty).

But Prothero identified three specific trends
for the future:

1. A transition to “dynamic IT,” where sys-
tems are thoroughly integrated (this is a
vendor-driven trend, he said, with such
vendor-chosen names as “on demand,”
“web services,” and “service-oriented
architecture.”

2. The “long tail” phenomenon (the name is
taken from a book title, and refers to the
typical usage curve where there is a spike
of high usage organizations followed by
a long tail of lesser users). The trend is
about serving huge numbers of lesser
users. Prothero sees such companies as
Google and eBay successfully pursuing
the long tail.

3. A shift in the innovation balance from
large companies to small, independent
sources (Prothero derived this trend from
the book Open Innovation). The trend
is toward building what Prothero called
“innovation communities.”

Prothero’s talk, late in the second day
of the AMCIS conference, was lightly
attended. Apparently most conference
attendees chose to pursue Acapulco’s fine
beaches instead!

Brisbane, Australia - Australian Dave
Thomas, a researcher at Object Mentor, speak-
ing at a Queensland University of Technology
industry seminar here August 29, found lots of
fault with existing software approaches, and
proposed a very different approach, in his talk
“Radical Thoughts on the Future of Program-
ming, 2010-2020.”

Thomas spared almost none of today’s tech-
nologies from criticism:

• “open source allows everyone to have
their own copy of the application” (he
went on to say that he learned why that is
a mistake, and learned the value of closed
source, when he kept making homegrown
changes to a system until it crashed, and
he couldn’t recover a working version)

• Java and C++ are creating a “legacy
mess”

• “the bug rates for Java libraries don’t go
down”, OMG and UML are for “losers”

But he saved his most scathing criticism for
object-orientation:

• “objects are too hard for normal people”
• “object-think is artificial for many com-

putations”
• “objects are too cumbersome and slow

for current machines to execute them ef-
ficiently”

He also lit into some of the social infrastruc-
ture surrounding the programming field:

• “certification is for the incompetent”
• “CS graduates are getting dumber and

dumber”
• “many CS algorithms are wrong” (they

ignore cache, for example)
What DOES Thomas believe in? Model-

driven development, specifically when it’s
application-domain focused. He sees models
being developed in what he calls VHLLs
(Very High Level Languages) focused on do-
main-oriented programming (DOP). VHLLs,

Speaker Advocates His Own Version
Of “Out With the Old,” “In With the New”

By Robert L. Glass
Revised, Updated, Expanded

Coming November 2006

www.DeveloperDotStar.com/creativity

DO YOU HAVE A
SOFTWARE CREATIVITY

STORY?

Software Creativity 2.0

To celebrate the forthcoming publication of
Software Creativity 2.0, developer.* Books
is sponsoring a contest for people who have
read or owned the scarce 1995 first edition
of Software Creativity, by Robert L. Glass.

The three best stories we receive will win
signed copies of Software Creativity 2.0

and Software Conflict 2.0, plus a one year
subscription or renewal to The Software

Practitioner. Please visit the URL below for
more information.

Thomas says, must have simple syntax, clear
(although complex) semantics, and “support
mapping domain abstractions.” He went on
to identify several current such DOP-focused
languages, while noting that few of them are
very well known. He had a special role for
the Agile approaches in this regard, noting
that the “Ultimate Pair” programming should
consist of a domain expert and an expert
developer.

Thomas, who performs research toward the
goals he identified in his talk, identified these
DOP challenges/opportunities for VHLLs:

• language design – they must be expressive,
readable, writeable, and strong on specif-
ics, providing uniform access to data

• fusion – they must support multiple do-
mains/paradigms

• implementations – they must provide for
direct execution, and hardware software
co-design of solutions.

©2006 The Software Practitioner NOVEMBER 2006

10

REVIEW REVIEW REVIEW REVIEW REVIEW REVIEW REVIEW REVIEW

by Malcolm Gladwell
Published by Little, Brown, and Co., 2005

Review by Robert L. Glass

Which is better, a solution arrived at by deep
thought, or one arrived at in the blink of an eye?
This book takes the position that those blink
solutions may be just as good.

What’s more, it’s convincing at it. Via an-
ecdotes and research results, Blink spins a neat
web of belief.

By the time I’d read only a few pages, I found
myself believing in the power of what the author
variously calls “fast and frugal” decision-mak-
ing, using the “adaptive unconscious,” “rapid
cognition,” “snap judgment,” and “thin slicing.”

Personally, I think what the author is talking
about here could be called “intuitive thinking,”
but for some reason he never uses that term.

This book is in the genre of “one trick pony”
books (books that develop a single narrow theme
and then elaborate on it for a couple of hundred
pages). That’s not necessarily bad – Gerry
Weinberg’s eventual best-seller The Psychology
of Computer Programming was labeled a one
trick pony book by the publishing houses that
made the mistake of not publishing it!

The author says he has set three tasks for
himself in writing the book – (1) to convince
his readers that quick decisions can be every
bit as good as those made cautiously (I’d give
him an A+ for accomplishing that); (2) to teach
us when to trust this thinking process (I think

the author neglected this task, and I’d give him
only a C); and (3) to convince the reader that
quick decision-making can be educated and
controlled (if examples were sufficient to ac-
complish this task, then the author did just fine.
But given that he doesn’t say much about how
to “educate and control” the process, I’d give
him only a B here).

The author isn’t entirely a blink fanatic. He
does, for example, say that “spontaneity isn’t
random,” noting that effective spontaneity de-
pends on appropriate preparation.

Is this a book that’s worth reading? Yes.
Treat it as a lightweight, enjoyable read, with
some mildly profound implications. And then
consider how to take that one trick pony to
heart!

Blink: The Power of Thinking Without Thinking

by Johann Rost
Published by Auerbach, 2006

Review by Robert L. Glass

There’s a lot published on the subject of
computing outsourcing. A lot of it is hype
– hand-wringing scenarios about how good or bad
it’s going to be. A lot of it is academic – mate-
rial written by people who have never done any
outsourcing, but who have read enough theory
on the subject that they sound – at first hearing
– like experts.

This book is different. First of all, it’s objec-
tive. The author tells it like it is, not like some
people wish it were. Secondly, it’s “been-there,

done-that.” The author’s material has a fresh,
believable tone, derived from his real outsourc-
ing experiences.

The book is also different in another way.
Much outsourcing talk, of course, is about the
Asian countries, like India and China. There’s
some of that in this book. But an interesting
fraction of this book’s content is about eastern
European outsourcing. The author is a Ger-
man software practitioner serving as a visiting
professor of information systems in Romania,
and there’s a lot of that background in what he
writes.

What’s good about the book? Its anecdotes
– the author illustrates many of his points with
stories about real outsourcing experiences. Its

content – there’s material on myths vs. realities,
on particularly frequent challenges … and even
sections on such far-out topics as “industrial
espionage” and “business continuity in case of
war.”

What’s bad about it? The net effect of some
of the anecdotes is chilling, since they report on
incidents most prospective outsourcers would
rather not ever have to think about. The index,
which is so short that almost none of the book’s
key topics are reported there.

But on balance, this is a very good book. If
you’re considering any form of outsourcing,
especially offshore outsourcing, it’s hard to
imagine tackling it without having read this
book first.

The Insider’s Guide to Outsourcing Risks and Rewards

Robert L. Glass

Here’s a puzzle for you. I’m going to
describe an embedded software project, and
your part in solving the puzzle is to decide
whether the project’s problems are due to
software or something else.

The application is the Royal Australian
Navy Seasprite helicopter project. The
Seasprite is/was a 1960s era aircraft, and the
software portion of the project had to do with
modernizing the capabilities of that ancient
chopper. The contract to do the work was
let around 1996, and the sole customer for
the upgrade work was the Royal Australian
Navy (the Navy calls it a “one-off” develop-
ment). The cost of 11 updated Seasprites was
a (fixed-price) $660M, and the chopper’s
builder, Kaman Aerospace International, a
U.S. firm, was to do the work. Initial deliver-

The Seasprite Puzzle
ies were to have happened in late 2000, with all
work completed by mid-2001.

Litton Systems was subcontracted to do the
software portion of the upgrade, but it ran into
trouble fairly early and the work was transferred
to CSC Australia and Northrop Grumman. As
is typical of such Australian projects, $350M
of the software spend was to be performed by
Australian companies.

That was then, this is now. What’s been hap-
pening lately?

At this point, only 9 of the choppers has been
“provisionally” accepted, and none of them have
been unconditionally accepted. According to
Australian Defence sources, a stability problem
has developed when flying the chopper under
extreme instrument-flying conditions. The prob-
lem is severe enough that the aircraft has been
grounded from operational flying. The govern-
ment is considering “all options,” and “legal ac-

tion” has been mentioned as one of them. It
looks likely that Defence is going to give up
on ever flying the aircraft operationally.

Defence people are saying things like “in
retrospect, it looks like the specs exceeded
what was practical” and “it was probably a
mistake to pursue ambitious Australian re-
quirements rather than buying off the shelf.”
But they are also calling this a “software
failure.”

So there’s the puzzle. Does this sound
like a “software failure” to you? Or some
kind of interrelated complex embedded
system problem that simply was too big to
be tackled by any discipline, software or
otherwise?

Information Source – “Nelson Faces a
Systems Failure,” the Australian, May 16,
2006; Patrick Walters

