
2 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

can be flexible and adaptable in defining
and applying an appropriate variant of
Scrum. This article describes our experience
implementing this process.

Why Scrum?
As members of the Software Technology

Group, our group is responsible for intro-
ducing new technologies and processes into
our organization at AG Communication
Systems in Phoenix, Arizona. We research
new approaches and sponsor their introduc-
tion and growth. We also conduct develop-
ment project checkups for ongoing projects
and postmortems for completed ones.

In our periodic postmortems and check-
ups, we noticed some recurring problems
for our New Business Opportunity (NBO)
projects. Figure 1 lists some comments aris-

ing from projects at our organization that
faced significant challenges.

In the new telecommunications market
where our company operates, change is
overwhelming. Software developers have al-
ways complained about changing require-
ments, but in traditional approaches they as-
sumed they would understand the require-
ments before moving on to the next phase.
In the current environment, however, proj-
ect requirements might be unclear or un-
known even as the project gets underway.
Indeed, the market might not be defined—it
might even be that no one clearly under-
stands the product under development.

Most development teams respond with,
“Make the chaos go away! Give us better
requirements!” Unfortunately or not, chaos
is the reality in this new business environ-

focus
The Scrum Software
Development Process
for Small Teams

Linda Rising and Norman S. Janoff, AG Communication SystemsIn today’s software
development
environment,

requirements often
change during the
product develop-
ment life cycle to

meet shifting
business demands,

creating endless
headaches for
development

teams. We discuss
our experience in
implementing the

Scrum software
development

process to address
these concerns.

A
t AG Communication Systems, software development teams
range in size from two to several hundred individuals. Intuitively,
the development process that’s appropriate for very large teams
won’t work well for tiny teams and vice versa. In our organiza-

tion, process diversity means adopting a flexible approach to development
processes so that each team can apply what works best. In experimenting
with the Scrum software development process, we found that small teams

process diversity

ment—as software developers we must
learn how to meet customer needs and turn
this chaos to our advantage.

In seeing that some of our NBO projects
were more successful than others, we strug-
gled to examine the postmortem data to learn
the secrets of those successful projects. Here
are some comments from successful teams:

■ We did the first piece and then re-esti-
mated—learn as you go!

■ We held a short, daily meeting. Only
those who had a need attended.

■ The requirements document was high-
level and open to interpretation, but we
could always meet with the systems en-
gineer when we needed help.

About this time, we discovered the Scrum
Web sites (www.controlchaos.com/safe and
www.jeffsutherland.org) and read a paper
presenting patterns for using the Scrum soft-
ware development process from the 1998
Pattern Language of Programming Confer-
ence.1 From the Scrum Web sites we learned
that Scrum is a process for incrementally
building software in complex environments.
Scrum provides empirical controls that al-
low the development to occur as close to the
edge of chaos as the developing organiza-
tion can tolerate.

The Scrum software development process
described in this article developed in a col-
laboration between Advanced Development
Methods and VMARK Software. Both com-
panies were reporting breakthrough pro-
ductivity. This approach overlapped signifi-
cantly with what we saw in postmortems of
successful projects. Our organization has
long used patterns successfully, not just for
design but for organization and process as
well.2,3 Many existing patterns supported
what we learned about Scrum and saw in
the postmortem data (see the “What’s a Pat-
tern?” sidebar). For example, Scrum advo-
cates the use of small teams—no more than
10 team members. Jim Coplien’s “Size the
Organization” pattern recommends 10-per-
son teams,4 while Fred Brooks argues that
“the small sharp team, which by common
consensus shouldn’t exceed 10 people.”5 Be-
cause Brooks, Coplien, and postmortems of
successful teams all support this and many
other Scrum tenets, we felt confident about
undertaking a pilot project.

Although most of our NBO teams were
small, some had grown to exceed the limit
of 10. We thought initially that we could
simply divide larger teams into collections
of smaller subteams, each no larger than 10.
We found that when the subteams are inde-
pendent and the interfaces well defined, this
works. When the overlap is considerable
and the interfaces poorly understood, the

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 3

In the late 1970s, two books appeared, written by Christopher Alexan-
der and his building architect colleagues. The Timeless Way of Building and
A Pattern Language presented Alexander’s description of recurring problems
in creating cities, towns, neighborhoods, and buildings, and the solutions to
these problems.1,2 He used the pattern form to document the problems and
their solutions.

Each pattern describes a problem that occurs over and over again in
our environment and then describes the core of the solution to that
problem in such a way that you can use this solution a million times
over without ever doing it the same way twice.2

Software professionals have also observed recurring problems and solu-
tions in software engineering. There is evidence of patterns at all levels of
software development, from high-level architecture to implementation, testing,
and deployment. There is considerable work going on to apply this technol-
ogy to software engineering. Patterns go a long way toward capturing what
experts know, letting them share that knowledge with others.

On the surface, a pattern is simply a form of documentation. Pattern au-
thors document solutions they have observed across many software projects.
Experienced designers read these patterns and remark, “Sure, I’ve done
that—many times!”

This kind of documentation captures knowledge, previously found only in
the heads of experienced developers, in a form that is easily shared.

Patterns are not theoretical constructs created in an ivory tower; they are
artifacts that have been discovered in multiple systems. In patterns, the solu-
tion is one that has been applied more than twice. This “rule of three” en-
sures that the pattern is documenting tried and true applications, not just a
good idea without real use behind it.

The approach calls to mind the notions of cohesion and coupling Ed Your-
don and Larry Constantine developed during many late Friday afternoon
postmortem sessions, discussing lessons learned from past projects.3 The co-
hesion and coupling ideas captured qualities of real systems. The guidelines
were not theoretical musings, but rested on observations of system capabili-
ties that made life easier for developers and maintainers.

This is true for all patterns.

References
1. C.A. Alexander, The Timeless Way of Building, Oxford Univ. Press, New York, 1979.

2. C.A. Alexander et al., A Pattern Language, Oxford Univ. Press, New York, 1977.

3. E. Yourdon and L. Constantine, Structured Design, Prentice-Hall, Englewood Cliffs, N.J., 1978

What’s a Pattern?

benefits are not as great. Clearly, this is not
an approach for large, complex team struc-
tures, but we found that even small, isolated
teams on a large project could make use of
some elements of Scrum. This is true process
diversity.

While conducting a project checkup, we

thought that Scrum might address some of
the issues facing the particular team. After
we described the approach as we then un-
derstood it, the team decided to try Scrum
and became our first pilot project. We did-
n’t understand a lot about the approach, so
we learned as we went along, as did the

4 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0

The following reports summarize the
experience with Scrum of three diverse
software development teams at AG
Communication Systems. The A-Team
developed a new multiplatform simulator
for the internal use of our GTD-5 EAX
switching system software developers.
The B-Team’s focus was a new product
in the small call-center market. The C-
team developed a new feature for the
GTD-5 EAX switching system.

A-Team
A-Team’s new leader called for a

project checkup. As a result of some
problems that surfaced during the

checkup, we offered to give a short
Scrum presentation. The team decided to
pilot a one-month sprint. To provide
some on-the-job training in the ap-
proach and also to learn how this team
would adapt the approach to its appli-
cation, we sat in on the Scrum meetings.

At first, the team was uneasy about
spending a lot of time in daily meetings
and proposed holding sprint meetings
every other day. The schedule of Mon-
day, Wednesday, and Friday one week,
followed by Tuesday and Thursday of
the following week seemed to work best.
During these meetings, the team began
to grow together and display increasing

involvement in and delight with others’
successes. The team completed a suc-
cessful sprint, with the planned compo-
nents delivered on time.

The team began to cooperate almost
immediately. The changes happened be-
fore our eyes. One plausible explanation
is that our developers are superb engi-
neers; they love to solve problems. When
one team member shares an obstacle in
the Scrum meeting, the entire team’s re-
sources come together to bear on that
problem. Because the team is working
together toward a shared goal, every
team member must cooperate to reach
that goal. The entire team immediately
owns any one individual’s problems.

Detailed problem solving does not
happen in the meeting, of course—only
an offer of help and an agreement to
meet after the Scrum meeting. For exam-
ple, a team member would say, “I ran into
a problem.” Typical responses would be,
“I had that problem a couple of weeks
ago. I can help with that. Let’s talk offline;”
“I know who is working in that area. I’ll
help you get in touch with them;” or “I’m
having the same problem myself. Let’s get
together after the meeting and talk about
it.” We immediately noticed an increase
in volunteerism in the team.

The celebration of small successes
was also evident. At every meeting, as
small tasks were completed and the
team could see progress toward the
sprint’s goal, everyone rejoiced. On the
sprint’s last day, we could feel the excite-
ment as the responses around the table
were, “I finished my task! I finished my
task! I finished my task!” They did it.
They reached their goal together.

Figure A lists comments from the
team leader at the end of the sprint.

Our biggest outcome from this pilot
came in the definition of the Scrum mas-
ter’s task. We originally thought that this

Experience Reports

Give it time to get started before expecting big results. It gets better as the
team gains experience.

Tasks for a sprint must be well quantified and achievable within the sprint
time period. Determine the sprint time by considering the tasks it con-
tains.

Tasks for sprints must be assigned to one individual. If the task is shared,
give one person the primary responsibility.

Sprint tasks might include all design-cycle phases. We set goals related to
future product releases in addition to current development activity.

Scrum meetings need not be daily. Two or three times a week works for us.
The Scrum master must have the skill to run a short, tightly focused meet-

ing.
Stick to the topics of the sprint. It’s very easy to get off topic and extend

what was supposed to be a 10 to 15 minute meeting into a half-hour or
more.

Some people are not very good at planning their workload. Sprint goals are
an effective tool for keeping people on track and aware of expectations.

I’ve noticed an increase in volunteerism within the team. They’re taking an
interest in each other’s tasks and are more ready to help each other out.

The best part of Scrum meetings has been the problem resolution and
clearing of obstacles. The meetings let the team take advantage of the
group’s experience and ideas.

Figure A. A-Team’s team leader comments.

team. The pilot project and each succeeding
project taught us more about what worked
for each group and what components would
address particular needs.

The “Experience Reports” sidebar de-
scribes three of our experiences in imple-
menting the Scrum approach.

Scrum

A scrum is a team of eight individuals in
Rugby. Everyone in the pack acts together
with everyone else to move the ball down
the field.

For those who know rugby, the image is

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 5

role would be hard to fill: we needed
someone who could facilitate a tight
meeting, keep everyone on track and
solve problems on the fly. The A-Team
experience taught us that the team
solves the problems—or most of them.
The team still needs a capable Scrum
master’s guidance, but the team ad-
dresses and resolves most issues.

After this pilot project, we continued to
present the Scrum overview at team meet-
ings and to leaders of various business
units: we took the Scrum story to both the
grassroots level and to management.
Whenever we detected a flicker of inter-
est, we volunteered to work with the team
to implement Scrum. Once the team be-
gan to use the process, we attended the
Scrum meetings in the first sprint to pro-
vide guidance, lend moral support, and
share successful experience across teams.
We saw first hand what worked well for
us and what teams learned about things
that we could adapt for our environment.
This was process diversity in action. Teams
could modify Scrum to meet the team’s
needs. We could help them tailor the
process based on what we had learned.

B-Team
Today’s chaotic telecommunications

business environment reflects back on de-
velopment teams. A team’s software de-
velopers might need to simultaneously
support the present release in the field,
develop new features for the next release,
and estimate features for a future release.
Management might also tap some of the
developers for other projects.

The B-Team found itself in this situa-
tion. One week into their first sprint, the
company made a major strategic
change that significantly affected the
backlog items committed for delivery.
Should the team violate a cardinal
Scrum principle by letting outside fac-

tors affect the sprint? Painful as it was,
the team decided to modify the backlog
to reflect the new strategy. They consid-
ered the outside influence a global
change event, not the typical occur-
rence of a new or modified feature. We
learned that rules for any approach
must be considered in light of the over-
all business context. Any rule is just a
rule, and if there are compelling busi-
ness reasons, no process should stand
in the way of making the best decision
for the overall project.

Scrum works best when each devel-
oper focuses exclusively on the sprint. B-
Team developers had numerous responsi-
bilities in addition to the sprint’s backlog
items. As a consequence, the team over-
committed itself. In Scrum, overcommit-
ment becomes visible very quickly. Rapid
feedback helps keep developer commit-
ment aligned with the goals of a time-
boxed sprint.

B-Team’s Scrum master used an Excel
spreadsheet to track the backlog items,
sorting the backlog by person and by
priority, for each sprint. Some team
members reported backlog completions
in every Scrum meeting, while others
could only report partial progress. To
address the partial-progress reporting,
the team tried to define task granularity
to allow completion of at least two tasks
per week. If tracking the backlog be-
comes too complicated, though, it sug-
gests that perhaps the team is trying to
make the process too difficult.

During the daily meetings, the Scrum
master would call attention to backlog-
item priority. This was especially helpful
for new team members, who might have
gone off in another direction. The B-
Team completed a series of incremental
sprints tht led to a product presently in
market trials with a number of cus-
tomers.

C-Team
We tried applying some of the Scrum

development process for preliminary
testing and bug fixing for a C-Team fea-
ture. The team was scheduled for four
testing times in eight days, so they
planned a half-hour Scrum meeting be-
fore and between each test time.

During the brief team meetings, team
members could ensure that the proper
load was used for the next scheduled
test time. They redefined some testing
procedures to make things go faster. The
meetings let all testers hear what was
planned and volunteer to work the next
test time. The meeting also served to re-
mind everyone of current load problems
and events planned for the next couple
of days.

The group as a whole decided the
kind of testing to perform in the next test
time, not just the tester who worked that
test time. Added fixes were announced
to the group.

The Scrum master announced the lat-
est load schedule and informed every-
one of information from outside the
group that might have come in over e-
mail but was missed by someone on the
team. During one meeting, the Scrum
master made a phone call to check the
load status to help decide whether to go
ahead with the next scheduled test time.

We saw that the regularly scheduled
meeting gave the team an efficient way
for sharing information and tracking
progress. The team met its goal. The
feature was ready for integration testing
at the end of the sprint.

Even though all three teams imple-
mented different instantiations of Scrum,
they were all enthusiastic about the ap-
proach and felt that the experience had
been a successful one. They were all
willing to continue using it on their next
release or project.

clear. Teams work as tight, integrated units
with each team member playing a well-
defined role and the whole team focusing on
a single goal. In development teams, each
team member must understand his or her
role and the tasks for each increment. The
entire team must have a single focus. The
priorities must be clear. As we now describe,
the Scrum development process facilitates
this team focus.

How does Scrum work?
Scrum is a software development process

for small teams. As Coplien and Brooks
have shown, small teams that work inde-
pendently are more effective..4,5 Well-sea-
soned research in social dynamics supports
this view. The phenomenon called social
loafing, identified as early as 1927, empiri-
cally measured individual contribution to a
group effort.6 Using a gauge attached to a
rope, the study found that individuals
pulling the rope averaged 138.6 pounds of
pressure. However, groups of three aver-
aged only 2.5 times the individual rate, and
groups of eight averaged less than four
times the individual rate.

As in all projects, there must be an initial
planning phase. During this phase, the proj-
ect team must develop an architecture and
identify a chief architect. During develop-
ment, the team should be prepared to make
changes to this architecture, but they need a
plan, an architecture, and a chief architect
at the start. The chief architect defines the
development project’s vision based on this
architecture and ensures that vision’s consis-
tency throughout all the development
phases. Coplien’s pattern “Architect Con-
trols Product” supports this understanding:
“The Architect role should advise and con-
trol the Developer roles and communicate
closely with the developers.”4

After initial planning, a series of short
development phases, or sprints, deliver the
product incrementally. A sprint typically
lasts one to four weeks. A closure phase
usually completes product development.

The team tracks all currently identified
tasks, capturing them in a list called the
backlog. The backlog drives team activity.
Before each sprint, the team updates the
backlog and reprioritizes the tasks—each
team signs up for a number of tasks and
then executes a sprint. Individual team

members agree to complete tasks they be-
lieve are feasible during each sprint. The
team defines task granularity as appropri-
ate, commonly specifying that a task must
be completed in less than a week—larger
tasks are more difficult to define and report.

During a sprint, no changes are allowe-
from outside the team.

What happens during a sprint?
A sprint produces a visible, usable, deliv-

erable product that implements one or more
user interactions with the system. The key
idea behind each sprint is to deliver valuable
functionality.

Each product increment builds on previ-
ous increments. The goal is to complete
tasks by the sprint’s delivery date. A sprint
is time-boxed development, meaning that
the end date for a sprint does not change.
The team can reduce delivered functionality
during the sprint, but the delivery date can-
not change.

During the sprint, the team holds fre-
quent (usually daily) Scrum meetings. These
meetings address the observation made by
Brooks: “How does a project get to be a
year late? One day at a time.”5 When the
team comes together for a short, daily meet-
ing, any slip is immediately obvious to
everyone. The meetings involve all team
members, including those who telecom-
mute. The meetings serve a team-building
purpose and bring in even remote contribu-
tors, making them feel a part of the group
and making their work visible to the rest of
the team.

How do you plan and estimate?
Often, the marketing group or the cus-

tomer will set the release date. With a re-
lease date set, the development and market-
ing groups must work together to provide
the features with the highest value for the
product’s first release. Marketing should
prioritize the features, while the product de-
velopment group provides estimates for the
effort. Marketing and product development
must agree on the target set of features. If
the product development group cannot de-
liver the requested features, the groups must
negotiate a reduced set of features.

In negotiating features in the release,
management must identify available devel-
opers for feature development. The num-

The team can
reduce

delivered
functionality
during the

sprint, but the
delivery date

cannot change.

6 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0

ber of developers for each team must meet
the Scrum recommendation: no more than
10. Of course, you can have several teams.
To complete negotiations with the market-
ing department, the product development
group must have the required developers
committed to the project for the identified
time period.

Once negotiations between the market-
ing and product development groups are
complete, the backlog is allocated to sprints
in priority order. The product development
group also establishes the target develop-
ment environment and determines the risks
associated with it. While the marketing de-
partment understands what the customer
needs and the value to the customer, prod-
uct development members understand the
risk of new technologies, tools, or software
processes. They identify and address these
risks in the decision-making that leads to
the feature allocation to sprints. In general,
they address risky items in early sprints to
allow time to recover if technical difficul-
ties arise.

Planning proceeds relatively quickly be-
cause the initial assumptions will surely
change as sprints deliver incremental func-
tionality.

Who leads the team?
The Scrum master leads the Scrum meet-

ings, identifies the initial backlog to be com-
pleted in the sprint, and empirically meas-
ures progress toward the goal of delivering
this incremental set of product functional-
ity. The Scrum master ensures that everyone
makes progress, records the decisions made
at the meeting and tracks action items, and
keeps the Scrum meetings short and fo-
cused.

The Scrum master works constantly to
reduce product risk through the incremental
delivery of features, rapid response to devel-
opment obstacles, and continual tracking of
the delivery of backlog items.

What happens during a Scrum meeting?
Each team member must answer three

questions:

1. What have you completed, relative to the
backlog, since the last Scrum meeting?

2. What obstacles got in your way of com-
pleting this work?

3. What specific things do you plan to ac-
complish, relative to the backlog, be-
tween now and the next Scrum meeting?

The Scrum meeting should last 15 to 30
minutes, which provides enough time to ad-
dress obstacles, but does not allow time to
brainstorm a solution. All discussion other
than responses to the three questions is de-
ferred to a later meeting involving only
those actually affected by the discussion.
The goals of the Scrum meeting include

■ focusing the effort of developers on the
backlog items,

■ communicating the priorities of backlog
items to team members,

■ keeping everyone informed of team
progress and obstacles,

■ resolving obstacles as quickly as possi-
ble,

■ tracking progress in delivering the back-
log functionality, and

■ addressing and minimizing project risk.

What happens at the end of a sprint?
At the end of a sprint, the team produces

an increment that builds on previous incre-
ments. The team can trim functionality but
must meet the promised delivery date.

After each sprint, all project teams meet
with all stakeholders, including high-level
management, customers, and customer rep-
resentatives. All new information from the
sprint just completed is reported. At this
meeting, anything can be changed. Work
can be added, eliminated, or reprioritized.
Customer input shapes priority-setting ac-
tivities. Items that are important to the cus-
tomer have the highest priority.

New plans and estimates are made fol-
lowing the same process discussed under
“How do you plan and estimate?” Assign-
ments are then made to teams for the next
sprint. As sprints finish, estimates become
better as planners see what each team has
produced in previous sprints. With the small
time increments, the planners must be care-
ful in their estimation, because, as Brooks
states, “Extrapolation of times for the hun-
dred-yard dash shows that a man can run a
mile in less than three minutes.”5

Because each sprint produces a visible,
usable, increment, product delivery can take
place after any sprint. In fact, delivery of a

The team can
trim

functionality but
must meet the

promised
delivery date.

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 7

sort does take place and feedback from the
business and marketing side and from cus-
tomers is a reaction to the current incre-
ment’s delivery. Typically, final delivery
takes place after a wrap-up phase that is run
as a final sprint.

The organization can make one very im-
portant decision at the end of a sprint:
whether to continue product development.
Given what was delivered during the last
sprint and the current state of the market,
the stakeholder meeting should address the
question, “Should this project continue?”
This is a business decision and must be
made after considering all the technical and
marketing issues.

As a result of the interaction of small
teams in small, focused development cycles,

■ the product becomes a series of man-
ageable chunks,

■ progress is made, even when require-
ments are not stable,

■ everything is visible to everyone,
■ team communication improves,
■ the team shares successes along the way

and at the end,
■ customers see on-time delivery of incre-

ments,
■ customers obtain frequent feedback on

how the product actually works,
■ a relationship with the customer devel-

ops, trust builds, and knowledge grows,
and

■ a culture is created where everyone ex-
pects the project to succeed.

M ost of Scrum’s elements are not
new. It is basically an incremental,
time-boxed development with an

added twist: the frequent meetings where
the three questions are asked. Barry
Boehm’s spiral model certainly addresses
the element of risk in software develop-
ment.7 The essential ideas behind the spiral
model are exactly the same as those in
Scrum—just speeded up! A sprint typically
lasts one to four weeks and an entire project
only a few months. During that short time,
the original customer might leave and a new
one arrive—with new constraints. In addi-
tion, technology might change out from un-
der the team.

We’ve found that Scrum is appropriate
for projects where we can’t define require-
ments up front and chaotic conditions are
anticipated throughout the product devel-
opment life cycle. At AG Communication
Systems, we continue to evolve the ap-
proach as our development groups gain ex-
perience with it.

Acknowledgments
We thank the open-minded, openhearted develop-

ment teams and managers at AG Communication Sys-
tems for their continued support of innovative ideas,
as well as the reviewers for their helpful comments.

References
1. M. Beedle et al., “SCRUM: An Extension Pattern Lan-

guage for Hyperproductive Software Development,”
Pattern Languages of Program Design 4, N. Harrison,
B. Foote, and H. Rohnert, eds., Addison-Wesley, Read-
ing, Mass., 2000, pp. 637–651.

2. B. Goldfedder and L. Rising, “A Training Experience
with Patterns,” Comm. ACM, Vol. 39, No. 10, Oct.
1996, pp. 60–64.

3. N.S. Janoff, “Organizational Patterns at AG Communi-
cation Systems,” The Patterns Handbook, L. Rising,
ed., Cambridge Univ. Press, New York, 1998, pp.
131–138.

4. J.O. Coplien, “A Generative Development-Process Pat-
tern Language,” Pattern Languages of Program Design,
J.O. Coplien and D.C. Schmidt, eds., Addison-Wesley,
New York, 1995, pp. 184–237.

5. F.P. Brooks, The Mythical Man-Month: Essays on Soft-
ware Engineering, Addison-Wesley, New York, 1995.

6. L. Fried, “When Bigger Is not Better: Productivity and
Team Size in Software Development,” Software Engi-
neering Tools, Techniques, Practice, Vol. 2, No. 1, pp.
15–25.

7. B.W. Boehm, “A Spiral Model of Software Develop-
ment and Enhancement,” Computer, Vol. 21, No. 5,
May 1988, pp. 61–72.

8 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0

About the Authors

Linda Rising is the editor of The Pattern Almanac 2000 and A Patterns Handbook (Cam-
bridge Univ. Press) and was also the feature editor for a special issue of IEEE Communications
on design patterns in communications software, which appeared in April 1999. She is inter-
ested in patterns and processes for software development and has worked in the telecommuni-
cations, avionics, and strategic weapons systems industries. She has a PhD from Arizona State
University in the area of object-based design metrics and is a member of the ACM and IEEE
Computer Society.

Norman S. Janoff is a software project engineer at AG Communication Systems in
Phoenix, Arizona. He has worked as a software manager on a large telecommunication switch-
ing system and as a software engineer. His current research interests include software processes
and software metrics. He received a BS in electrical engineering from the University of Michi-
gan, an MS in electrical engineering from the University of Illinois, and an MBA from the Uni-
versity of Chicago.

Contact the authors at AG Communication Systems, 2500 W. Utopia Rd., Phoenix, AZ, 85027; risingl@acm.org,
janoffn@agcs.com.

