14.10 Replication features

Nagaraju Inturi

nagaraju.inturi@hcl.com

7
P RS A

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Agenda

» Smart triggers
= Demo

» Asynchronous post commit triggers
= Demo

» Secondary server performance improvements

(2
FAC L [y

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Value Proposition

» Selectively trigger events based on changes in server data
» Real time ‘push’ notifications help clients avoid polling the server

» Small data flow allows simple small clients to work with many triggered events at once

(2
PRODUCTS
FAC L)T iTrorms

3| Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Use case: Banking

» Bank accounts
» | want to be alerted when an account balance drops below zero dollars
» | don’t want to write SPL or install stored procedures
» | want to be notified in my client application

» | don’t want to poll the database for this information or re-query each time a balance changes
from the client

&” PRODUCTS
FACL)) G’I’LATFORMS

4 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Smart Trigger Bank Code

public class BankMonitor implements IfmxSmartTriggerCallback {
public static void main(String[] args) throws SQLException {

IfxSmartTrigger trigger = new IfxSmartTrigger(args[0]); // pass in JDBC URL to SYSADMIN database

trigger.timeout(5).label("bank_alert");
trigger.addTrigger("account", "informix", "bank",

"SELECT * FROM account WHERE balance < 0", new BankMonitor());
trigger.watch(); //blocking call

}

@Override

public void notify(String json) {
System.out.println("Bank Account Ping!");
if (json.contains("ifx_isTimeout")) {

System.out.println("-- No balance issues");

}

else {
System.out.println("-- Bank Account Alert detected!");
System.out.println(" " + json);

}

(2
FAC L [y

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Example event data documents

Sample output for Insert operation:

{operation”: " “table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",” "card txn
alert","txnid”: 2250573177224 ,"operation owner _id":200 "operatlon session |d"5”comm|t time”:1488243530,”op _num™1,” "
{“U|d” 22,’cardid”:"6666-6666-6666-6666","carddata”: {"Merchant" "Sams CIub","Amount":200,"Date":2017-05-01T70:35:10.000Z } }}

»n.n "wn» n.n »n.n

Sample output for Update operation:

»n.n n»

{“opertlon " table:"creditcardtxns",”owner”:"informix",”database”: "credltdb" ” ” "card txn alert",”txnid”:2250573308360,
"operation_owner_ id": 200,"operation__ session_id": 5, commlt time”:1488243832,op_num™:1,” "{uid:21,cardid:"7777-7777-
rrrr-rrrr” ,"carddata”: {"Merchant" "Sams Club", "Amount": 200,"Date":"25-Jan- 2017 16: 15"}

3 ”:{*uid”:21,”cardid”:"6666-6666-6666-6666", "carddata”; {"Merchant":"Sams Club","Amount":200,"Date":2017-05-
017T10:35:10.000Z } }}

Sample output for Delete operation:

»n.n n»

{opertlon " “table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",” ":"card txn alert”,"txnid":2250573287760,
operation_owner id": 200,"operation session id":5,”"commit_time”:1488243797,”op _num”:1,” ” {“U|d” 22,"cardid”:"6666- 6666-

6666-6666","carddata”:{"Merchant":"Sams CIub","Amount":200,"Date":2017-05-01T73:35:06.000Z } }}

Sample output for multi row document when maxrecs input attribute set to greater than 1:

{“operatlon” " " “table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb", ”Iabel”:"card txn alert", “txnid”:2250573309999,
"operation_owner_id":200,"operation_session_id":5, ”commlt time”:1487781325 ,Jop_num”:1,” ”{uid:"7",”cardid”:"6666-
6666-6666-6666", *Carddata”: {"Merchant":"Sams Club", "Amount" :200,"Date":2017-05-01T15:10: 10.000Z 1,

{“operatlon” " " table:"creditcardtxns",”owner”:"informix",”database”:"creditdb", ”Iabel”:"card txn alert","txnid”:2250573177224,
"operation_owner_id":200,"operation_session_id":5, ”commlt time”:1488243530 ,;op_num”:1,” ":{*uid”:22,”cardid”:"6666-
6666-6666-6666", "Carddata”: {"Merchant™:"Sams Club", "Amount"- :200,"Date":2017-05-01T716:20: 10.000Z B

/ PRODUCTS
FAC LN, rorms

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Architecture Diagram

OLTP Clients

=

Logical Log

Event Data

Push-data Clients

—

Event Data

Event Daﬁ
Grouper

Event Data

o
n
“a

<

Push-data Sample app
~
sesid = task(“pushdata open”)
Task(“pushdata register”, {json})
Task(“pushdata register”, {json})
While (1)
{
bytes=Ifx_lo_read(sesid, buf, size, err)
Execute action;

}

- _/

FACL)

(o PRODUCTS

D & PLATFORMS

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Demo!

@
FaC L [y

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

e

Asynchronous post commit triggers —
Replication to SPL routine -
Streaming analytics

%
PRODUCTS
FACL)T irorms

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Use cases

» Realtime Streaming analytics on OLTP data
= MIN,MAX,AVG,SUM for a group of records.
e Example: Per store sales reports
» Realtime leaderboard calculation for an online game

= Build materialized views

» Data transformations

= Add additional fields ---like store id— while replicating data to central server.

» Update external systems like graph database, Hadoop, Spark, Queuing services ...

» “No Key” data replication support

» Replicate data for tables that do not have primary key, unique index or ER key.

’d
N S
F-AC L)7, RS

10 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

How it works? (1)

» Solution is based on Enterprise Replication

» As part of transaction replay, instead of applying data to target table, user defined stored procedure gets
fired for insert, update and delete operations.

» Works with loopback replication
= Source and target participant can be defined on the same table-- acts likes a post commit asynchronous trigger

= Source and target tables can be on the same server instance either in the same database or in different database

» Target table can be on a different Enterprise Replication server instance.

» Target table is used for parsing replicated row and extracting column values— data will not be applied to
target table

» User can specify where clause filter to fire SPL on specific dataset!

by
FAC L TS

11 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

How it works?(2)

» Data is staged in ER queues for asynchronous processing

» Source server id, transaction id, transaction commit time and operation
type(l/U/D) are passed in as argument values to the SPL routine along with user
data.

» For update operation, both before and after image of the column values are
passed in as arguments to SPL routine.

» SPL routine execution can be configured to be invoked as user informix or table
owner.

e
PRODUCTS
F-ACL) Eﬁ’LATFORMS

12 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

New options to ‘cdr define replicate’ command

13 |

--splname=<spl routine name>
= Stored procedure routine name to apply data to. SPL routine must exist at all participants

= Input arguments: operation type, source id, txnid, before image of the row column list, after image of the row column list

--jsonsplname=<spl routine name>

= Stored procedure routine name to apply data to. SPL routine must exist at all participants

» |nput arguments: json document

» —-jsonsplname option expects input arguments to splname routine to be a json datatype. With json document as input to
SPL routine, same SPL routine can be used for registering ‘replication to SPL’ replicate definition on multiple tables. For
certain use cases --like queueing data to message queues -- this makes developer job a lot easier.

» —-jsonsplname option is mutually exclusive to —splname option.

--cascaderepl=y|n enable cascade replication

= Required if replication to SPL needs to be executed for the data applied through Enterprise Replication

by
FAC L TS

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

--splname option stored procedure argument list

» Optype char(1) — operation type. Values include
» | — Insert
» U — Update
» D — Delete

» Soucre_id integer — Source server id. Same as group id.
» Committime integer — Transaction commit time.

» Txnid bigint — Transaction id.

» Before value column list.

» After value column list.

= Note: Column list for SPL routine extracted from select statement projection list

(
FAC L [y

14 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

--jsonsplname option SPL routine json argument

operation Operation type: Insert/Delete/Update

table Table name

owner Table owner

database Database name

txnid 8 byte unique id. Higher order 4 bytes: commit work log id, lower order 4 bytes: commit work log position.
commit_time Transaction commit time for the event data.

rowdata Row data in JSON document format. Data is returned in column name as key and column data as value.
before_rowdata Before row data for “update” operation.

Example document format :
{“operation”:" ""table”:"creditcardtxns",”owner”:"informix",’database”:"creditdb",”txnid”:2250573177224,"commit_time”:1488243530, 7:{“uid”:22, car
did”:"6666-6666-6666-6666","carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T710:35:10.000Z } }}

{“opertion”:" "table:"creditcardtxns",”owner”:"informix",”database”:"creditdb”,”txnid”:2250573308360,"commit_time”:1488243832,” ”:{uid:21,cardid:
"7777-7777-7777-7777" "carddata”:{"Merchant":"Sams Club","Amount":200, "Date":"25-Jan-2017 16:15"} },” 7{“uid”:21,”cardid”:"6666-6666-6666-
6666","carddata”:{"Merchant":"Sams Club","Amount":200, "Date":2017-05-01T710:35:10.000Z } }}

{“opertion”:" ""table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”txnid”:2250573287760,”commit_time”:1488243797, 7:{“uid”:22, car
did”:"6666-6666-6666-6666","carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T13:35:06.000Z } }}

€ pronucts
FAC< L)T irrorus
15 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Asynchronous post commit trigger support

» Define loopback replication server

» Create ‘replication to SPL’ type replicate with same “database and table” information for both
source and target participants. Loopback server group name shall be specified with target
participant definition:

» Example:

= cdr define repl rep1 -C always -S row -M g_cdr_utm_nag_1 -A -R --splname=logger4repl2spl
"test@g_mygroup:informix.t1" "select * from t1" "test@g_loopback:informix.t1" "select * from t1”

e Note: g _mygroup is the local server ER group, and g_loopback is the pseudo ER server group.

&” PRODUCTS
FACL)) G’I’LATFORMS

16 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Use case 1 — Build staging table for data changes (--jsonsplname example)

create database test with log;

create table t1 (c1 int, c2 int);

create table t2 (col1 int , col2 float);

create table staging (data json);

create procedure loggerdrepl2spl (data json)
insert into staging values (data);

end procedure;

$ cdr define repl rep1 -C always -S row -M g_cdr_utm_nag_1 -A -R --jsonsplname=loggerdrepl2spl "test@g_mygroup:informix.t1" "select *
from t1" "test@g_loopback:informix.t1" "select * from t1”

$ cdr define repl rep2 -C always -S row -M g_cdr_utm_nag_1 -A -R --jsonsplname=logger4repl2spl "test@g_mygroup:informix.t2" "select *
from t2" "test@g_loopback:informix.t2" "select * from t2”

$ cdr start repl rep1

$ cdr start repl rep2

(2
FAC L [y

17 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Use case 2 — Realtime aggregation framework

drop database retaildb;
create database retaildb with log;
create table sales (customerid int, storeid int , bill_amount float);

create table sales_summary(storeid int , s_count int, s sum float, s_avg float, s_min float, s max float);

CREATE PROCEDURE store_agg(opType char(1), srcid integer, committime integer, txnid bigint, customerid_bef integer, storeid_bef int, bill_amount_bef float, customerid int, storeid_aft int ,
bill_amount float)

END PROCEDURE;

$ cdr define repl rep1 -C always -S row -M utm_group_1 -A -R --serial --splname=store agg "retaildbo@g_mygroup:informix.sales"
"select * from sales" "retaildb@g_loopback:informix.sales" "select * from sales"

$ cdr start repl rep1

(
FAC L [y

18 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Use case 3: Leader board calculation

())
Ne L
~ j »| | Scores Async | | Leader | Smart | | Web
5COr table trigger board tngger App
table
G

C
FHHCL)

19 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Use case 4 — Publish data to MQTT using Java or C UDR

create database mqtt with log;
create table customer (name char(128), id int);
execute procedure sqlj.install_jar(‘file:3INFORMIXDIR/jars/mqtt_trigger.jar', 'mqtt_trigger_jar',1);

$cdr define repl mqrepl -C always -S row -M g_informix -A -R --serial --jsonsplname=mqtt_put
"mqtt@g_informix:informix.customer” "select * from customer" "mqtt@g_Ib:informix.customer" "select * from customer"

$ dbaccess mqtt -

> insert into customer values("Bill", 1);
$ mosquitto_sub -t 'test/topic' -v
test/topic

{"operation":"insert","table":"customer","owner":"informix","database":"mqtt","txnid":21475983636,"commit_time":1550879224,"rowda
ta":{"name":"Bill","id":1 }}

(
FAC L [y

20 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Comparing Async triggers, Smart triggers and CDC

Async triggers Smart triggers

Async trigger logic written in SPL, C and Java Trigger logic written in application and Data processing done in client application

UDRs. middleware service.

Designed for real-time streaming analytics on Designed for event processing and business Designed for Data streaming/replication

OLTP data logic exception handling

Can register where clause Can register where clause No where clause support

Data in SQL or JSON format Data in JSON format Byte stream

Push technology Push technology Push technology

Only committed transactions sent for async Only committed transactions sent to Smart All records returned to the user including

trigger execution Trigger analysis rollbacked operations

QoS: At least once delivery QoS: At most once delivery QoS: At least once delivery. CDC can read old
log files

@
FaC L [y

21 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Demo

@
FaC L [y

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Log replay performance

7
P RS A

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Log replay performance

» More than 500% improvement in log replay performance for RSS, SDS and HDR secondary

Servers.

» Similar improvement noticed for crash recovery performance

%
PRODUCTS
FAC L)T iTrorms

24 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

What’s changed ?

» Improvement to log replay performance
» Minimized latch and thread communication overhead

» Improvements to Read-ahead functionality at secondary server

= Non-blocking checkpoints at RS secondary server

» Benefits:
= Near zero latency for replication between Primary and Secondary servers (RSS, SDS and HDR).
e This enables customers to offload applications from primary server to one or more secondary servers.
e This also helps customers to meet recovery point objective in case of disaster scenarios.
» Impropved crash recovery performance

e This helps customers improve on recovery time object as crash recovery time is 5 times better than before!

= Improved log restore performance

e This helps customers improve on recovery time object in scenarios where server needs to be restored from backup.

by
FAC L TS

25 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Performance comparison chart for 8 minute workload at primary

26 |

Log Replay Rate

RSS Log Replay Performance Chart

——12.10xC11 ——14.10xC1

Completed in <12 mins

Completed in 66 mins

10 20 30 40 50 60 70

Time (Minutes)

@
FaC L [y

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

onstat changes (1)

» Added replication latency, and log replay rate to ‘onstat —g laq

» Note: Log replay rate is only available with “-r" option.

» Example:
Secondary Apply Queue: Total Buffers:12 Size:2048K Free Buffers:0
Log Recovery Queue: Total Buffers:12 Size:20480K Free Buffers:0
Log Page Queue: Total Buffers:512 Size:4K Free Buffers:1
Log Record Queue: Total Buffers:1000 Size:16K Free Buffers:1

Transaction Latency: 1 seconds

Apply rate: 347887.41 recs/sec

27 |

@
FAC L [y

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

New onconfig parameters(1)

» SEC_APPLY POLLTIME
= In micro seconds, how long apply thread should poll for new work before yielding.
» Recommended value for smaller systems (between 1 to 8 CPUVPs): 0
» Recommended value for larger systems(>= 16 CPUVPS): 1000

» Recommended to move poll threads to NETVP

» SEC_LOGREC_MAXBUFS
= Configure number of log buffers to be used for replaying log records at secondary server. Each log buffer of size 16KB.

= Recommended value : <= 1000 buffers

» RSS_NONBLOCKING_CKPT

= 1 - Enable non-blocking checkpoint at RS secondary server.

&” PRODUCTS
FACL)) G’I’LATFORMS

28 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

New onconfig parameters(2)

» SEC DR _BUFS

= Number of DR buffers to use for replication.
= Applicable to both HDR primary and HDR/RSS/SDS secondary servers
» Buffer size same as LOGBUFF size

» Supported values : >=12

29 |

(2
PRODUCTS
FAC L)T iTrorms

Copyright © 2017 HCL Products & Platforms | www.hcltech.com

OFF _RECOVERY_THREADS and LTAPEBLK recommendation

» Original recommendation:
= 4 times CPUVPs

» New recommendation

= Not more than 23 threads!
=5 7,11 or 23.

» LTAPEBLK
» Recommended value: 20480 (20MB)

C
FACL)

30 | Copyright © 2017 HCL Products & Platforms | www.hcltech.com

Questions ?

