Inverse equations: Given two equations/ graphs, they are inverses if they display the following attributes: - The x values and y values have switched - The Domain and Range have switched. - The Graphs reflect over the y=x line. **One - to - One Functions:** Two equations/ graphs are one - to - one if they - inverses of one another AND - BOTH functions. ## VERTICAL LINE TEST FOR FUNCTIONS $$y = x^2$$ Original Points Inverse Points Are the graphs inverses or relations? _ $$y = x^3$$ **Original Points** **Inverse Points** Are the graphs inverses or relations? **Original Points** $y = \sqrt{x}$ **Inverse Points** (0 , ____) (1,____) (4 , ____) (9 , ____) (16 , _____) Are the graphs inverses or relations? y = 2|x| **Original Points** **Inverse Points** (-3,___) (-2,___) (-1,____) (0 , ____) (1 , ____) (2 , ____) (3 , _____) Are the graphs inverses or relations? Are the graphs inverses or relations? _ $y = e^x$ **Original Points** Inverse Points (-3,___) (-2,___) (-1,___) (0 ,____) (2 , ____) (3,___)