Inverse equations: Given two equations/ graphs, they are inverses if they display the following attributes:

- The x values and y values have switched
- The Domain and Range have switched.
- The Graphs reflect over the y=x line.

One - to - One Functions: Two equations/ graphs are one - to - one if they

- inverses of one another AND
- BOTH functions.

VERTICAL LINE TEST FOR FUNCTIONS

$$y = x^2$$

Original Points

Inverse Points

Are the graphs inverses or relations? _

$$y = x^3$$

Original Points

Inverse Points

Are the graphs inverses or relations?

Original Points

 $y = \sqrt{x}$

Inverse Points

(0 , ____)

(1,____)

(4 , ____)

(9 , ____)

(16 , _____)

Are the graphs inverses or relations?

y = 2|x|

Original Points

Inverse Points

(-3,___)

(-2,___)

(-1,____)

(0 , ____)

(1 , ____)

(2 , ____)

(3 , _____)

Are the graphs inverses or relations?

Are the graphs inverses or relations? _

 $y = e^x$

Original Points

Inverse Points

(-3,___)

(-2,___)

(-1,___)

(0 ,____)

(2 , ____)

(3,___)