ABSODEX General Catalog

1111 Davis Dr., Unit 1 Newmarket, Ontario Canada L3Y 9E5
Tel: 905 716-5856
Email: info@martechsales.com
Web: www.martechsales.com

There is a reason why people choose us

A broad lineup of ABSODEX selectable according to applications/purposes

All actuators are absolute types

3 user friendly features of ABSODEX

Flexible Operation

With an abundant programming function realize the operation that you want.

Indexing operation

Continuous rotation

Reduce Workload and Save Space
A simple design with 4 standard useful features.

High reliability \& maintenance-free
No more damaged or worn gears from a gearless design.

Concern for gear damage or friction

No worries Gearless structure

Compatibility

Freely combine compatible drivers and actuators

TS/TH driver

(AX1000T, 2000T, 4000T)
Mounting holes
added to the main unit
Separate power and
control power
Connector adoption
Terminal for safety function
Torque Offo Function (Safe one can easily
incorporate it with the drive
circuit to cut OFF power.

For the IoT of equipment!
OMonitor function
(TS/TH wiresaving serial communication)
ONetwork operation mode
(TS/TH wiresaving serial communication)

Operation made easier

The AxTools is here to help you from operation settings to adjustments.
AX Tools is Easier than ever to use for both first-time and experienced users. Intuitive operation with a simple and easy to use interface.

Free software

Desired conditions can be instantly implemented.

Industry's first! Equipped with an AI that Supports adjustments

Case Study

Compact and easy to use

Assembly, Inspection Machines
Conduct setup changes without time loss

Electronic substrate conveyor
Rotate electronic substrates by 90°

Pick and place device
Work is conveyed using an equipped parallel displacement mechanism.

Industry's smallest and lightest!
*As of O ctober 2016, CKD research

Compatible with a Wide range of Needs

5 sizes lined up from 22 to $210 \mathrm{~N} \cdot \mathrm{~m}$

- Improved indexing accuracy and deflection of shaft/surface, allowing for precise positioning

```
Most suited for
Precision measurements Inspection machines Assembly machines
```


- 3 sizes lined up from 6 to $18 \mathrm{~N} \cdot \mathrm{~m}$
- High speed operation, compact design

Most suited for

Pick\&Place Turn tables Assembly machines

(

8 sizes lined up from 9 to $1000 \mathrm{~N} \cdot \mathrm{~m}$

Wide selection, supporting large inertial loads

Pick and Place Turn tables Inspection machines Assembly machines

CC-Link

Safety Standards
Safety Standard Certification compatible (Safe Torque Off function)
International Standards
Compliant with UL/CUL (N.A. standards) and CE (European standards)
c ${ }^{(1)}$ U
C

Support for domestic and international networks

Ideal for the IoT of equipment!!

OAbundant monitoring functions
The current status of ABSODEX can be monitored with extensive monitoring functions such as current position, speed, electronic thermal value, and alarm.
OMonitor function also available for preventive maintenance!
Torque load factor: Monitors current torque load facto

- Torque load factor: M onitors current torque load fa

Network operation mode (Direct value mode) added!
The network operation mode allows flexible positioning from the host controller to any position
CC-Link CC-Link is a registered trademark of Mitsubishi Electric Corporation.
${ }^{\text {PROFIBUS PR PROFIBUS }}$ is a trademark of PROFIBUS User Organization.
DeviceNet ${ }^{\text {t/ }}$ DeviceNet ${ }^{\text {t" }}$ is a registered trademark of ODVA.
EtherCAT® EtherCAT® is a patented technology, licensed
Ethervet/I © EtherNet/P © is a registered trademark of ODVA. Beckhoff Automation GmbH in Germany thervetI/P © Ethervet/IP © is a registered trademark of ODVA.

System configuration

AX1000T/2000T/4000T

- Basic setting items

Input a program from a PC or the dialog terminal.
. Set necessary parameters in the same way
Set the appropriate gain.

- Basic driving methods

1. Select a program to execute from PLC
2. Input the start signal from the PLC
3. After indexing is started, the driver outputs a positioning completion signal.

To comply with the CE marking, the parts shown below or overcurrent/short circuit protection Component is required. In addition, the driver must be installed within the switchboard. For details on the selection, installation and wiring methods of these components, refer to the instruction manual or technical data (ABSODEX AX series TS/TH type technical data).

Part name	Application	Model No .	Manufacturer
Noise filter	Thee.phseselingepensere 200 to 230 vac	3SUP-EF 10-ER-6	Okay E Electici Industies Co , Lto.
	Singl-phase 100 to 115 VaC	NF2015A-OD	Soshin Electric CO., Ltd.
Ferrite core	Common	RC5060zz	Soshin Electric Co., Ltd.
Surge protector	Common	RSPD-250-U4	Okaya Electric Industies Co , Lto.
		LT-C32G801ws	Soshin Electric Co., Lta.
FG clamp ${ }^{\text {+1 }}$	Common	FGC-5,FGC-8	Kitagawa Industries Co, ,tod.

${ }^{*}$) Use an FG clamp with a motor cable and resolverUsed to ground the shield of cable (encoder cable).
*2) Parts available for purchase from CKD Refer to the ABSODEX related parts model No. table (page 51).

Configuration (when set model No . is selected)		
	Name	Quanity
	Actuator	1
	Driver (with controller)	1
	Motor cable, resolver cable (encoder cable)	1 each

Programming tool

- Dialog terminal "AX0180" is available.

The "AX Tools" configuration tool is available. ABSODEX programs are created, parameters set, and operation commands, etc., issued from the PC. The and program can be saved. The PC communication cable (model No.: AX-RS232C-9P) is required.

Note)for the notes on the connection method, make sure to read the instruction manual (technical data).
page 45 (for AX90000TS/AX9000TH).

Note) The PC communication cable is designed specifically for ABSODEX. You cannot use a commercially available cable as it is. If used by mistake, the driver and PC may become damaged.
Note) Connect the dialog terminal and PC when adjusting only. During normal operation, disconnect the computer communication cable from CN1.
Note) When the PC recovers from the sleep mode the USB-serial conversion cable may not be recognized, leading to communication errors.

* Please download and use the latest version of the setting tool "AX Tools" from our website.
- Basic setting items
. Input the program from the PC
. Set the required paramete
Set the appropriate gain.

Configuration (when set model No. is selected)

Name	Quanity
Actuator	1
Driver (with controller)	1
Motor cable and resolver cable	1 each
Included accessories: I/O connector, power supply connector, and ope tool for power supply connector Note) For details, refer to the accessories supplied with the driver in page Note) The connectors for motor cable come with the motor cable. Note) For the notes on the connection method, make sure to read the instruction manual (technical data) before use	

- Basic driving methods

Select a program to be executed from the PLC
2. The start signal is input from the PLC
3. After the drive operation, the positioning completion signal is output from the driver.
 cable 1 1 piece each of farse
and smil set Optional
and smali set: Optional
PC comm
cable
tsold
cable munication
sold separately
${ }^{\text {sold separatey }}$

Motor cable
I/O connector
(Driver accessory)
*Devices indicated with an asterisk are to be provided by the customer.

To comply with CE marking, the parts listed in the table below ar required. For details on the installation and wiring method, refer to the

Specification parts	Model No.	Manufacturer
Noise filter	NF2015A-OD *1)	Soshin Electici Co, Lto.
Surge protector	R/A/V-781BWZ-4 RSPD-250-Q4 RSPD-250-U4	OKAYA ELECTRIC INDUSTRIES CO. LTD.
	LT-C32G801WS	Soshin Electric Co, Lto.
FG clamp	FGC-5, FGC-8	
Clamp filter for power cable (set of 2 pieces/small)	ZCAT2035-0930A	TDK
Clamp filter set for resolver cable	ZC AT 2035-0930A ZCAT 3035-1330	TDK

Programming tool

- The "AX Tools" configuration tool is available (Windows version, free of charge)
BSOODEX programs are created, parameters set, and peration commands, etc., issued from the PC
he created program can be saved
he PC communication cable (model No.: AX-RS232C-9P) is required.
e) The PC communication cable is designed semmercially available cable as it is If used by mistake, the driver and PC may become damaged
te) Connect the computer communication cable only
when performing adjustments. During normal peration, disconnect the computer communication cable from CN1.

Note) When the computer resumes from sleep state the USB-serial conversion cable may not b recognized, causing communication errors to occu. Note) Please download and use the latest version of the setting tool "AX Tools" from our website.

ABSODEX system table

\%	Actuator Series	Torque ($\mathrm{N} \cdot \mathrm{m}$)													
		1.2	3	6	9	12	18	22	45	75	150	210	300	500	1000
	$\begin{aligned} & \text { AX6000M } \\ & \text { Series } \end{aligned}$	$\underset{\substack{\text { Ax6001 } \\ \text { MU }}}{ }$	∞												
										(0)					
	AX1000T Series (large)														
	$\begin{gathered} \text { AX2000T } \\ \text { Series } \end{gathered}$					A×2012T									
	AX4000T Series (compact/ medium)														
	AX4000T Series (large)														

haracteristics of the driver
Drivers can be commonly used for supported actuators. The controller function allows you to use an NC program to desirably set the actuator's rotation angle, movement time, timer, etc. M code output, encoder output,
etc., are also available to connect to an external PLC, motion controller, etc.

AX6000M series

Minimum size of 80 mm diameter
Compatible function allows free combination of driver, actuator, and cable
Max. torque: 1.2, $3 \mathrm{~N} \cdot \mathrm{~m}$
Supported driver: MU driver

Actuator specifications

Item	AX6001M	AX6003M
Max. output torque $\mathrm{N} \cdot \mathrm{m}$	1.2	3.0
Continuous output torque $\mathrm{N} \cdot \mathrm{m}$	0.4	1.0
Max. rotation speed rpm	240 (*1)	
Allowable axial load N	600	
Allowable moment load $\mathrm{N} \cdot \mathrm{m}$	5	
Output shaft moment of inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.00034	0.00059
Allowable moment of load inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.034	0.059
Index accuracy (*3) sec	± 90	
Repeatability (*3) sec	± 10	
Output shaft friction torque $\mathrm{N} \cdot \mathrm{m}$	0.13	0.22
Resolution $\mathrm{P} / \mathrm{rev}$	540672	
Motor insulation class	Class A	
Motor withstand voltage	550 VAC 1 minute	
Motor insulation resistance	$10 \mathrm{M} \Omega$ or more 500 VDC	
Operating ambient temperature	0 to $40^{\circ} \mathrm{C}$	
Operating ambient humidity	20 to 85\% RH, no condensation	
Storage ambient temperature	-10 to $65^{\circ} \mathrm{C}$	
Storage ambient humidity	20 to 90\% RH, no condensation	
Atmosphere	No corrosive gas, explosive gas, or dust	
Weight kg	$1.2(1.4) * 2$	$1.8(2.0) * 2$
Output shaft runout (*3) mm	0.03	
Output shaft surface runout (*3) mm	0.05	
Degree of protection	IP 20	

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: The values in () are the actuator weight with the mounting base option.
*3: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.

Speed/maximum torque characteristics

AX6001M
(rpm)

*The graph shows the characteristics when 24 VDC
(ambient temperature: $25^{\circ} \mathrm{C}$) is connected.
(Note) Moment load (simple formula)

(Fig. a)
$M(N \cdot m)=F(N) \times L(m)$
M:Moment load
F: Load
L: Distance from the output shaft center

- AX6003M
(rpm)

(N•m)
*The graph shows the characteristics when 24 VDC (ambient temperature: $25^{\circ} \mathrm{C}$) is connected.

(Fig. b)
$M(N \cdot m)=F(N) \times(L+0.02)(m)$
M:Moment load
F: Load
L: Distance from the output shaft flange surface

Always read the safety precautions on pages 61 to 66 before use.

How to order

- Set model No. (actuator, driver, cable)

Body model No. Option model No.

Code	
A Size (max. torque)	
$\mathbf{0 0 1}$	$1.2 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 0 3}$	$3.0 \mathrm{~N} \cdot \mathrm{~m}$
B Driver type	
MU	MU driver
C Mounting base	
B lank	Standard (without mounting base)
BS	With mounting base
D Cable length	
DM00	Without cable
DM02	2 m
DM04	4 m
DM06	6 m
DM08	8 m
DM10	10 m
E Interface specifications	
U0	Parallel I/O (NPN)
U1	Parallel I/O (PNP)

*1: Cable is a movable cable.
Refer to page 9 for dimensions of the cable. The lead-out cable is not movable.
2: C
C When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available. The surface is treated with electroless nickel plating.
*3: Positioning pin holes may not be surface treated.
*4: The surface part is treated with electroless nickel plating. The fixed section is made of stainless steel.

Actuator body discrete model No.

Driver discrete model No.

Cable discrete model No.

- Motor cable

AX-CBLM8-DM04

- Resolver cable

AX-CBLR8-DM04
DCable length
(Note: "DMO4" when cable)

Dimensions

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

${ }^{*}$) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

Interface specifications: Parallel I/O (NPN) Actuator
AX1000T

F eatures
Ultra-compact/lighter weight (resin body adopted)
Easy wiring with connector

General specifications

Item		Model
		MU driver AX9000MU
Power supply voltage	Main power supply	24 VDC $\pm 10 \%$
	Control power	24 VDC $\pm 10 \%$
Structure		Driver and controller integrated
Operating ambient temperature		0 to $50^{\circ} \mathrm{C}$
Operating ambient humidity		20 to 90\% RH (no condensation)
Storage ambient temperature		-10 to $65^{\circ} \mathrm{C}$
Storage ambient humidity		20 to 90\% RH (no condensation)
Atmosphere		No corrosive gas or dust
Anti-noise		$1000 \mathrm{~V}(\mathrm{P}-\mathrm{P})$, pulse width $1 \mu \mathrm{sec}$, rising, falling time 1 nsec impulse noise test, induction noise (capacitive coupling)
Vibration resistance		$4.9 \mathrm{~m} / \mathrm{s}^{2}$
Weight		Approx. 0.5 kg
Degree of protection		IP 2 X

How to order

$$
\begin{aligned}
& \text { AX9000MU -U0 } \\
& \text { AX9000MU -U1 }
\end{aligned}
$$

Interface specifications
U0: Parallel I/O (NPN)
U1: Parallel I/O (PNP)

Performance specifications

Item	Description
No. of control axes	1 axis, 540,672 pulses/1 rotation
Angle setting unit	${ }^{\circ}$ (degree), pulse, indexing No.
Angle min. setting unit	$0.001^{\circ}, 1$ pulse
Speed setting unit	sec, rpm
Speed setting range	0.01 to $100 \mathrm{sec} / 0.11$ to 240 rpm
Equal divisions	1 to 255
Max. command value	7-digit numeric input $\pm 9,999,999$ pulse
Timer	0.01 sec to 99.99 sec
Programming language	NC
Programming method	Set data through R S-232C port with a PC.
Operation mode	Auto, MDI, jog, single block, servo OFF, pulse train input mode
Coordinates	Absolute, incremental
Acceleration curve	[5 types] Modified Sine (MS), Modified Constant Velocity (MC/MC2) Modified Trapezoid (MT), Trapecloid (TR)
Status display	R UN: Normal operating state
	ALM2: Alarm 2 state
	ALM 1: Alarm 1 state
	SERVO: Servo state
	CHARGE: Charge state
Communication interface	RS-232C compliant
I/O signal	Refer to interface specification pages.
Program capacity	Approx. 6,000 characters (256)
Electronic thermal	Overheating protection for actuator

Power capacity

Parallel I/O (NPN)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input $+24 \mathrm{~V} \pm 10 \%$		
3 to 4	External power supply input GND		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input// Program No. selection input (Bit 4)	Positive	Edge Level
10	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/P rogram stop input	Positive	Level Edge
15	Continuous rotation stop input	Positive	Edge
16	Answer input/Position deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

Input/output circuit specifications

| Description | 1 circuit current
 (mA) | Max. points
 (Circuit) | Max. current
 (mA) | Max, power
 consumption
 (mA) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input circuit | 4 | 14 | 56 | 746 |
| Output circuit | 30 | 18 | 540 | |
| Brake output (BK+, BK-) | 75 | 2 | 150 | |

* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (Incremental)

Pin No.	Signal name
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	$-Z$ phase (Line driver output)

CN3 input/output circuit specifications

- Input circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$ Rated current 4 mA (24 VDC)

- Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 30 mA (MAX)

- Pulse train input circuit

Maximum input frequency Line driver 1 Mpps Open collector 250 Kpps

- Encoder output circuit

O utput format: Line driver Line driver: DS26C 31

MU driver

Parallel I/O (PNP)

CN3 input signal

Pin No.	Signal name	Logic	Judgment
1 to 2	External power supply input GND		
3 to 4	External power supply input +24V $\pm 10 \%$		
5	Program No. selection input (bit 0)	Positive	Level
6	Program No. selection input (bit 1)	Positive	Level
7	Program No. selection input (bit 2)	Positive	Level
8	Program No. selection input (bit 3)	Positive	Level
9	Program number setting input 2nd digit/ Program number selection input (bit 4)	Positive	Edge Level
10	Program number setting input 1st digit/ Program number selection input (bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin position return command input	Positive	Edge
13	Startup input	Positive	Edge
14	Servo-on input/ Program stop input	Positive	Level Edge
15	Continuous rotation stop input	Positive	Edge
16	Answer inputPosition deviation counter resetinput	Positive	Edge
17	E mergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal

Related parts	Dialog terminal	Drivers	Actuator
model No. table	AX0180	AX9000TS/TH	AX4000T

Pin No.	Signal name
19	PULSE/UP/A-phase
20	- PULSE/-UP/-A-phase
21	DIR/DOWN/B-phase
22	-DIR/-DOWN/-B-phase

I/O circuit specifications

Description	1 circuit current $(\mathbf{m A})$	Max. number of points (Circuit)	Max. current (mA)	Max. current consumption (mA)
Input circuit	4	14	56	746
Output circuit	30	18	540	
Brake output (BK+, BK-)	75	2	150	

*The maximum simultaneous output points of the output circuit are 18 points out of 14 points.

CN3 I/O circuit specifications

- Input circuit

- Output circuit

CN3 output signal

Pin No.	Signal name	Logic
33	M-code output (bit 0)	Positive
34	M-code output (bit 1)	Positive
35	M-code output (bit 2)	Positive
36	M-code output (bit 3)	Positive
37	M-code output (bit 4)	Positive
38	M-code output (bit 5)	Positive
39	M-code output (bit 6)	Positive
40	M-code output (bit 7)	Positive
41	In-position output	Positive
42	Output of positioning completion	Positive
43	Startup input standby output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Split position strobe output	Positive
50	M-code strobe output	Positive

CN3 encoder output signal(Incremental)

Pin No.	Signal name
23	A-phase (line driver output)
24	-A-phase (line driver output)
25	B-phase (line driver output)
26	-B-phase (line driver output)
27	Z-phase (line driver output)
28	-Z-phase (line driver output)

Rated voltage: $24 \mathrm{~V} \pm 10 \%$ Rated current: 50 mA (max.)

Pulse train input circuit

O utput format: Line driver
Line driver used: DS26C31

Driver accessory

Model No.	Specifications	CN3 connector	CN5 connector
AX9000MU-U0	Parallel I/O (NPN)		Power supply connector 04J FAT-SBXGGKS-A $1030-3000$ PE (plug) O350-52A0-008 (shell)
AX9000MU-U1	Parallel I/O (PNP)	Sumitomo 3M	J-FAT-OT J.S.T. Mfg. Co., Ltd.

When ordering additional parts, refer to "How to order".

Installation Dimensions

AX6000M ${ }_{\text {serese }}$

Cable Specifications

*1) $\square \square$ indicates the cable length.

Safety precautions

- For uses in which the cable is repeatedly bent, fix the cable sheath part near the connector of the actuator body.
- The lead-out cable of the actuator section is not movable. Make sure to fix the cable in the connector section to prevent the cable from moving. Do not pull the lead-out cable to lift the unit or apply excessive force to the cable. Otherwise, malfunction, sounding of an alarm, damage of the connector part, or disconnection may result.
- When connecting the cable, fully insert the connector. Also, tighten the connector mounting screws and fix screws securely.
- Do not modify the cable, including disconnection or extension. Such modification may cause failure or malfunction.
- For the cable length L, refer to the cable length shown in the How to order.

AX1000T series

High accuracy specifications (index accuracy, output shaft runout, etc.) Compatible function allows free combination of driver, actuator, and cable

- Max. torque: 22/45/75/150/210 N•m
- Supported driver: TS/TH driver

Actuator specifications

Item		AX1022T	AX1045T	AX1075T	AX1150T	AX1210T
Max. output torque	$N \cdot m$	22	45	75	150	210
Continuous output torque	$\mathrm{N} \cdot \mathrm{m}$	7	15	25	50	70
Max. rotation speed	rpm	240 (*1)		140 (*1)	120 (*1)	
Allowable axial load	N	600		2200		
Allowable moment load	$\mathrm{N} \cdot \mathrm{m}$	19	38	70	140	170
Output shaft moment of inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.00505	0.00790	0.03660	0.05820	0.09280
Allowable moment of load inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.6	0.9	4.0	6.0	10.0
Index accuracy (*3)	sec	± 15				
Repeatability (*3)	sec	± 5				
Output shaft friction torque	$N \cdot m$	2.0		8.0		
Resolution	$\mathrm{P} / \mathrm{rev}$	540672				
Motor insulation class		Class F				
Motor withstand voltage		1500 VAC 1 min				
Motor insulation resistance		$10 \mathrm{M} \Omega$ or more 500 VDC				
Operating ambient temperature		0 to $45^{\circ} \mathrm{C}$ (0 to $40^{\circ} \mathrm{C}$: *4)				
Operating ambient humidity		20 to 85% RH, no condensation				
Storage ambient temperature		-20 to $80^{\circ} \mathrm{C}$				
Storage ambient humidity		20 to 90\% R H, no condensation				
Atmosphere		No corrosive gas, explosive gas, or dust				
Weight	kg	$8.9(10.8) * 2$	12.0 (13.9) *2	23.0 (27.1) *2	32.0 (36.1) *2	44.0 (48.1) *2
O utput shaft runout (*3)	mm	0.01				
Output shaft surface runout (*3)	mm	0.01				
Degree of protection		IP 20				

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: The values in () are the actuator weight with the mounting base option.
*3: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.
*4: When using as a UL certified product, the maximum temperature is $40^{\circ} \mathrm{C}$.

How to order

How to order

- Set model No. (actuator, driver, cable)

Code	Description
A Size (max. torque)	
$\mathbf{0 2 2}$	$22 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 4 5}$	$45 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 7 5}$	$75 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{1 5 0}$	$150 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{2 1 0}$	$210 \mathrm{~N} \cdot \mathrm{~m}$

B Driver type
TS \quad TS type with driver
TH TH driver

C Mounting base	
Blank	Standard (without mounting base)
BS	With mounting base
D Connector mounting direction	

| Blank | Standard (connector horizontal mounting) |
| :--- | :--- | C \quad Connector downward mounting

*1: Select the driver according to the compatibility table below.
Driver power voltage compatibility table

Drivers type	TS driver		TH driver
	Three-phase/ single-phase 200 to 230 VAC	Single phase 100 to 115 VAC	Three-phase/ single-phase 200 to 230 VAC
	Blank	J 1	
AX1045T	Blank	J 1	
AX1075T	Blank *2		
AX1150T			Blank *2
AX1210T			Blank *2

F Driver power voltage *1

E Cable length	
DM00	Without cable
DM02	2 m
DM04	4 m (standard length)
DM06	6 m
DM08	8 m
DM10	10 m
DM15	15 m
DM20	20 m
F Driver power voltage	
Refer to the driver power voltage compatibility table at left.	
G Interface specifications	
U0	Parallel I/O (NP N specifications)
U1	Parallel I/O (PNP specifications)
U2	CC-Link
U3	PR OFIBUS-DP
U4	DeviceNet
U5	EtherCAT
U6	EtherNet/IP

C When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available. The surface is treated with electroless nickel plating.
*5: Positioning pin holes may not be surface treated

- Actuator body discrete model No.

Driver discrete model No.

- 200 to 230 VAC

100 to 115 VAc

- Cable discrete model No.
- Motor cable

AX-CBLM5-DM04

- Resolver cable

AX-CBLR $5=-$ DM04
ECable length
(Note: "DM04" when cable length is 4 m)

AX1000T Series

Speed/maximum torque characteristics

- AX1022T
(rpm)

*Fig. This graph shows the characteristics for 3-phase 200 VAC.
- AX1075T
(rpm)

(N m)
*Fig. This graph shows the characteristics for 3-phase 200 VAC.

AX1210T
(rpm)

*Fig. This graph shows the characteristics for 3-phase 200 VAC.
(Note) Moment load (simple formula)

(Fig. a)

AX1045T
(rpm)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
- AX1022T

AX1045T

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

AX1000T Series

Dimensions

[^0]Dimensions

- AX1210T

6-M8 depth 12 (equipartition)

Dimensions (-C: Connector downward mounting)

- AX1022T/AX1045T-C

${ }^{*}$) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

ABSODEX

AX2000T Series

High-speed rotation (max. rotation speed 300 rpm), compact with small diameter, large hollow diameter (ø30)
Compatible function allows free combination of driver, actuator, and cable

- Max. torque: $6 / 12 / 18 \mathrm{~N} \cdot \mathrm{~m}$
- Supported driver: TS driver

Actuator specifications

Item	AX2006T	AX2012T	AX2018T
Max. output torque $\mathrm{N} \cdot \mathrm{m}$	6	12	18
Continuous output torque $\mathrm{N} \cdot \mathrm{m}$	2	4	6
Max. rotation speed rpm		300 (*1)	
Allowable axial load N		1000	
Allowable moment load $\mathrm{N} \cdot \mathrm{m}$		40	
Output shaft moment of inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.00575	0.00695	0.00910
Allowable moment of load inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.3	0.4	0.5
Index accuracy (*3) sec		± 30	
Repeatability (*3) sec		± 5	
Output shaft friction torque $\mathrm{N} \cdot \mathrm{m}$			0.7
Resolution $\mathrm{P} / \mathrm{rev}$		540672	
Motor insulation class		Class F	
Motor withstand voltage		, 00 VAC 1 m	
Motor insulation resistance		or more 500	
Operating ambient temperature		$5^{\circ} \mathrm{C}\left(0\right.$ to 40°	
Operating ambient humidity		RH, no cond	
Storage ambient temperature		-20 to $80^{\circ} \mathrm{C}$	
Storage ambient humidity		RH, no con	
Atmosphere		gas, explosiv	
Weight kg	$4.7(6.0) * 2$	5.8 (7.1) *2	$7.5(8.8) * 2$
Output shaft runout (*3) mm	0.03		
Output shaft surface runout (*3) mm	0.03		
Degree of protection	IP 20		

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: The values in () are the actuator weight with the mounting base option
*3: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.
*4: When using as a UL certified product, the maximum temperature is $40^{\circ} \mathrm{C}$.

Speed/maximum torque characteristics

-

*Fig. This graph shows the characteristics for 3-phase 200 VAC.
AX2018T

* Fig. This graph shows the characteristics for 3-phase 200 VAC

*Fig. This graph shows the characteristics for 3-phase 200 VAC
(Note) Moment load (simple formula)

(Fig. a)
$M(N \cdot m)=F(N) \times L(m)$
M:Moment load
F: Load
L: Distance from output shaft center

(Fig. b)
$M(N \mathrm{~m})=F(N) \times(L+0.02)(m)$ M:Moment load
F: Load
L: Distance from output shaft flange

Always read the safety precautions on pages 61 to 66 before use.

How to order

- Set model No. (actuator, driver, cable)

Body model No.
Option model No.
Precautions for model No. selection
*1: Select the driver according to the compatibility table below.
Driver power voltage compatibility table

	TS driver	
	Three-phase/ single-phase 200 to 230 VAC	Single phase 100 to 115 VAC
AX2006T	Blank	J 1
AX2012T	Blank	J 1
AX2018T	Blank	J 1

*2: Cable is a movable cable.
Refer to page 48 for dimensions of the cable. Body lead-out cable is not a movable cable.
*3: C When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is

Code	Description
A Size (max. torque)	
006	$6 \mathrm{~N} \cdot \mathrm{~m}$
012	$12 \mathrm{~N} \cdot \mathrm{~m}$
018	$18 \mathrm{~N} \cdot \mathrm{~m}$
B Driver type	
TS	TS driver
C Mounting base	
Blank	Standard (without mounting base)
BS	With mounting base
D Cable length	
DM00	Without cable
DM02	2 m
DM04	4 m (standard length)
DM06	6 m
DM08	8 m
DM10	10 m
DM15	15 m
DM20	20 m
E Driver power voltage	
Refer to the driver power voltage compatibility table at left.	
F Interface specifications	
U0	Parallel I/O (NPN specifications)
U1	P arallel I/O (PNP specifications)
U2	CC-Link
U3	PROFIBUS-DP
U4	DeviceNet
U5	E therCAT
U6	E therNet/IP

*4: Positioning pin holes may not be surface treated.
*5: The surface is treated with electroless nickel plating

- Actuator body discrete model No.

Driver discrete model No.

- 200 to 230 VAC

- Cable discrete model No.
- Motor cable

AX-CBLM6-DM04

- Resolver cable

AX-CBLR 6-DM04
(D Cable length
$\binom{$ Note: "DM04" when cable }{ length is 4 m}

Dimensions

[^1]The origin offset function allows you to set a desired origin position.

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position.

ABSODEX

AX4000T series

Supports large moments of inertia load Compatible function allows free combination of driver, actuator, and cable Large hollow diameter is convenient for cable wiring and piping, abundant options available
Max. torque: $9 / 22 / 45 / 75 \mathrm{~N} \cdot \mathrm{~m}$
Supported driver:TS driver - Supported driver: TS driver

Actuator specifications

Item	AX4009T	AX4022T	AX4045T	AX4075T
Max. output torque N.m	9	22	45	75
Continuous output torque $\mathrm{N} \cdot \mathrm{m}$	3	7	15	25
Max. rotation speed rpm	240 (*1)			140 (*1)
Allowable axial load N	800	3700		20000
Allowable moment load $\mathrm{N} \cdot \mathrm{m}$	40	60	80	200
Output shaft moment of inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.009	0.0206	0.0268	0.1490
Allowable moment of load inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.35 (1.75) (*2)	0.60 (3.00) (*2)	0.90 (5.00) (*2)	5.00 (25.00) (*2)
Index accuracy (*5) sec	± 30			
Repeatability (*5) sec	± 5			
Output shaft friction torque $\mathrm{N} \cdot \mathrm{m}$	0.8	3.5		10.0
Resolution $\mathrm{P} / \mathrm{rev}$	540672			
Motor insulation class	Class F			
Motor withstand voltage	1,500 VAC 1 min			
Motor insulation resistance	$10 \mathrm{M} \Omega$ or more 500 VDC			
Operating ambient temperature	0 to $45^{\circ} \mathrm{C}$ (0 to $40^{\circ} \mathrm{C}$: *6)			
Operating ambient humidity	20 to 85% RH, no condensation			
Storage ambient temperature	-20 to $80^{\circ} \mathrm{C}$			
Storage ambient humidity	20 to 90\% RH, no condensation			
Atmosphere	No corrosive gas, explosive gas, or dust			
Weight kg	5.5	12.3 (14.6) *3	15.0 (17.3) *3	36.0 (41.0) *3
Weight with brake kg	-	16.4 (18.7) *3	19.3 (21.6) *3	54.0 (59.0) *3
Output shaft runout (*5) mm	0.03			
Output shaft surface runout ($* 5$) mm	0.05			
Degree of protection	IP 20			

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: When using in load conditions up to those given in (), set parameter 72 (integral gain magnification) $=0.3$ (reference value).
*3: The values in () are the actuator weight with the mounting base option.
*4: Contact CKD whenever using continuous rotation operation in combination with parameter 72 (integral gain magnification).
*5: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.
*6: When using as a UL certified product, the maximum temperature is $40^{\circ} \mathrm{C}$.
Electromagnetic brake specifications (option)

Compatibility	AX4022T/AX4045T	AX4075T
Type	Non-backlash dry type non-excitation type	
Rated voltage V	24 VDC	
Power capacity W	30	55
Rated current A	1.25	2.30
Static friction torque $\mathrm{N} \cdot \mathrm{m}$	35	200
Armature release time (brake on) msec	50 (reference value)	50 (reference value)
Armature suction time (brake off) msec	150 (reference value)	250 (reference value)
Retention accuracy Minutes	45 (reference value)	
Max. operating frequency times/min	60	40

*1: During output shaft rotation, the electromagnetic brake disc and fixed part may cause a scraping sound.
Also, impact noise is generated when electromagnetic brakes operate.
*2: For travel after brake off, you must change the parameter delay time by the above-mentioned armature suction time.
*3: Though it is a non-backlash type, holding a constant position is difficult if load is applied in the rotation direction. It is not for maintaining braking/precision.
*4: Manual release of the electromagnetic brake is possible by evenly tightening the bolts in the manual release tap (3 locations).
*5: Use a non-magnetic material (SUS303, etc.) when putting a shaft through the hollow hole in the type with magnetic brakes. Peripheral devices may be affected due to magnetization.
Please read the technical data and user's manual for details on the precautions.
Always read the safety precautions on pages 61 to 66 before use.

How to order

How to order

S et model No. (actuator, driver, cable)

Code	Description
A Size (max. torque)	
$\mathbf{0 0 9}$	$9 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 2 2}$	$22 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 4 5}$	$45 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{0 7 5}$	$75 \mathrm{~N} \cdot \mathrm{~m}$
B Driver type	
TS	TS driver
C Mounting base	
Blank	Standard (without mounting base)
BS	W ith mounting base
D Cable length	
DM00	W ithout cable
DM02	2 m
DM04	4 m (standard length)
DM06	6 m
DM08	8 m
DM10	10 m
DM15	15 m
BM20	20 m
E B	Nake

Precautions for model No. selection

*1: Select the driver according to the compatibility table below.
Driver power voltage compatibility table

Drivers type	Three-phase/ single-phase 200 to 230 VAC	Single phase 100 to 115 VAC
	Blank	J 1
AX4009T	Blank	J1
AX4022T	Blank	J1
AX4045T	Blank *2	
AX4075T		

*2: For models with maximum torque $75 \mathrm{~N} \cdot \mathrm{~m}$, the calculation of torque limit region is different from the usual when used at single-phase 200 VAC. Contact CKD to determine usability.
*3: Cable is a movable cable.
Refer to page 48 for dimensions of the cable. Body lead-out cable is not a movable cable.
*4: C When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available. The surface is treated with electroless nickel plating.
*5: Positioning pin holes may not be surface treated.
*6: When selecting an electromagnetic brake, refer to the precautions (Page 65) for instructions on how to connect electromagnetic brakes.

For options, select according to the "Option compatibility table" below. Option compatibility table

	AX4009T	AX4022T	AX4045T	AX4075T
Mounting base (-BS)	\times	\bigcirc	\bigcirc	\bigcirc
Brake (-EB)	\times	\bigcirc	\bigcirc	\bigcirc

F Driver power voltage
Refer to the driver power voltage compatibility table at left.
G Interface specifications
$\mathbf{U 0}$
U1
Parallel I/O (NPN specifications)
U2
U3
CC-Link
U4
PR OFIBUS -DP
U5
U6
DeviceNet

F Driver power voltage
Refer to the driver power voltage compatibility table at left.
G Interface specifications
*7: The surface of the body is treated with electroless nickel plating.

- Actuator body discrete model No.

Driver discrete model No.

- 200 to 230 VAC

G Interface specifications

Cable discrete model No.

- Motor cable

AX-CBLM6-DM04

- Resolver cable

AX-CBLR 6-DM04
DCable length
Note: "DM 04" when cable length is 4 m

AK4000T Series

Speed/maximum torque characteristics

- AX4009T

*Fig. This graph shows the characteristics for 3-phase 200 VAC.

*Fig. This graph shows the characteristics for 3-phase 200 VAC.

Always read the safety precautions on pages 61 to 66 before use.

- AX4075T

*Fig. This graph shows the characteristics for 3-phase 200 VAC.
*Fig. This graph shows the characteristics for 3-phase 200 VAC.

(Fig. b)

AK4000T Series

Dimensions

- AX4009T

6-M5 depth 10 (equipartition)

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position.

AX4022T-EB
Electromagnetic brake
For other options, refer to the left figure on the left.

*1) The origin position of the actuator may differ from that shown in the dimensions.
The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4022T when an electromagnetic brake is mounted.

Dimensions

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4045T when an electromagnetic brake is mounted.

AX4075T-EB
Electromagnetic brake
For other options, refer to the left figure on the left.

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4045T when an electromagnetic brake is mounted.

ABSODEX

AX4000T series

Supports large moments of inertia load Compatible function allows free combination of driver, actuator, and cable Large hollow diameter is convenient for cable wiring and piping, abundant options available Supported driver: TH driver

Actuator specifications

Item	AX4150T	AX4300T	AX4500T	AX410WT
Max. output torque $\mathrm{N} \cdot \mathrm{m}$	150	300	500	1000
Continuous output torque $\mathrm{N} \cdot \mathrm{m}$	50	100	160	330
Max. rotation speed rpm	100 (*1)		70	30
Allowable axial load N	20000			
Allowable moment load $\mathrm{N} \cdot \mathrm{m}$	300	400	500	400
Output shaft moment of inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	0.2120	0.3260	0.7210	2.7200
Allowable moment of load inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	75.00 (*2)	180.00 (*2)	300.00 (*2)	600.00 (*2)
Index accuracy (*4) sec	± 30			
Repeatability (*4) sec	± 5			
Output shaft friction torque $\mathrm{N} \cdot \mathrm{m}$	10.0		15.0	20.0
Resolution P/rev	540672			
Motor insulation class	Class F			
Motor withstand voltage	1,500 VAC 1 min			
Motor insulation resistance	$10 \mathrm{M} \Omega$ or more 500 VDC			
Operating ambient temperature	0 to $45^{\circ} \mathrm{C}$ (0 to $40^{\circ} \mathrm{C}$: *5)			
Operating ambient humidity	20 to 85\% RH, no condensation			
Storage ambient temperature	-20 to $80^{\circ} \mathrm{C}$			
Storage ambient humidity	20 to 90\% RH, no condensation			
Atmosphere	No corrosive gas, explosive gas, or dust			
Weight $\quad \mathrm{kg}$	44.0 (49.0) *3	66.0 (74.0) *3	115.0 (123.0) *3	198.0 (217.0) *3
Weight with brake $\quad \mathrm{kg}$	63.0 (68.0) *3	86.0 (94.0) *3	-	-
Output shaft runout (*4) mm	0.03			
Output shaft surface runout (*4) mm	0.05			0.08
Degree of protection	IP 20			

*1: Use at a speed of 80 rpm or less during continuous rotation operation.
*2: Settings when shipped support large moment of inertia.
*3: The values in () are the actuator weight with the mounting base option.
*4: Refer to the "Glossary" on page 52 for index accuracy, repeatability, output shaft runout and output shaft surface runout.
*5: When using as a UL certified product, the maximum temperature is $40^{\circ} \mathrm{C}$.
Electromagnetic brake specifications (option)

Item	Compatibility	AX4150T/AX4300T
Type		Non-backlash dry type non-excitation type
Rated voltage	W	24 VDC
Power capacity	A	55
Rated current	$\mathrm{N} \cdot \mathrm{m}$	2.30
Static friction torque	msec	200
Armature release time (brake on)	50 (reference value)	
Armature suction time (brake off)	msec	250 (reference value)
Retention accuracy	Minutes	45 (reference value)
Max. operating frequency	times $/ \mathrm{min}$	40

*1: During output shaft rotation, the electromagnetic brake disc and fixed part may cause a scraping sound.
Also, impact noise is generated when electromagnetic brakes operate.
*2: For travel after brake off, you must change the parameter delay time by the above-mentioned armature suction time.
*3: Though it is a non-backlash type, holding a constant position is difficult if load is applied in the rotation direction. It is not for maintaining braking/precision.
*4: Manual release of the electromagnetic brake is possible by evenly tightening the bolts in the manual release tap (3 locations).
*5: Use a non-magnetic material (SUS 303, etc.) when putting a shaft through the hollow hole in the type with magnetic brakes.
Peripheral devices may be affected due to magnetization.
Please read the technical data and user's manual for details on the precautions.
Always read the safety precautions on pages 61 to 66 before use.

How to order

How to order

S et model No. (actuator, driver, cable)
Precautions for model No. selection
*1: Select the driver according to the compatibility table below.
Driver power voltage compatibility table

Drivers type	TH driver Model				
		$	$	Blank *2	
:---	:---				
AX4150T	Blank *2				
AX4300T	Blank *2				
AX4500T	Blank *2				
AX410WT					

*2: The calculation of torque limit region is different from the usual when used at single-phase 200 VAC. Contact CKD to determine usability.
*3: Cable is a movable cable.
Refer to page 48 for dimensions of the cable.
*4: C When the "BS" option with the mounting base is selected, the positioning pin hole on the bottom is not available. The surface is treated with electroless nickel plating.
*5: When selecting an electromagnetic brake, refer to the precautions (Page 65)

Code	
A Size (max. torque)	
$\mathbf{1 5 0}$	$150 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{3 0 0}$	$300 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{5 0 0}$	$500 \mathrm{~N} \cdot \mathrm{~m}$
10W	$1000 \mathrm{~N} \cdot \mathrm{~m}$
B Driver type	
TH	TH driver
C Mounting base	
Blank	Standard (without mounting base)
B S	With mounting base
D Cable length	
DM00	Without cable
DM02	2 m
DM04	4 m (standard length)
DM06	6 m
DM08	8 m
DM10	10 m
DM15	15 m
DM20	20 m
E B rake	
Blank	Standard (without electromagnetic brake)
E B	Negative-actuated electromagnetic brake
F Interface specifications	
U0	Parallel I/O (NP N specifications)
U1	Parallel I/O (P NP specifications)
U2	CC-Link
U3	PR OFIBUS-DP
U4	DeviceNet
U5	EtherCAT
U6	EtherNet/IP

For options, select according to the "Option compatibility table" below.
Option compatibility table

	AX4150T	AX4300T	AX4500T	AX410WT
Electromagnetic brake (-EB)	\bigcirc	\bigcirc	\times	\times

*6: Positioning pin holes may not be surface treated.
*7: The surface is treated with electroless nickel plating.

- Actuator body discrete model No.

- Driver discrete model No.
- 200 to 230 VAC

[^2]Cable discrete model No.

- Motor cable

AX-CBLM6-DM04

- Resolver cable

AX-CBLR6-DM04
(D) Cable length
(Note: "DM 04" when cable) length is 4 m

AK4000T Series

Speed/maximum torque characteristics

AX4150T

(rpm)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

AX4500T
(rpm)

* Fig. This graph shows the characteristics for 3-phase 200 VAC.
(Note) Moment load (simple formula)
(Fig. a)

- AX4300T

(rpm)

*Fig. This graph shows the characteristics for 3-phase 200 VAC.

* Fig. This graph shows the characteristics for 3-phase 200 VAC.

(Fig. b)

Dimensions

AX4150T-E B
Electromagnetic brake
For other options, refer to the left figure on the left.

Electromagnetic brake lead wire

300 from outlet 45°

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4150T when an electromagnetic brake is mounted.

AX4300T	AX4300T-EB Electromagnetic brake For other options, refer to the left figure on the left.

*1) The origin position of the actuator may differ from that shown in the dimensions. The origin offset function allows you to set a desired origin position. The position of the positioning pin hole is the same as that of AX4300T when an electromagnetic brake is mounted.

The origin offset function allows you to set a desired origin position.

- AX410WT

TS/TH driver

Interface specification: P arallel I/O (NP N), P arallel I/O (PNP) CC-Link, PROFIBUS-DP, DeviceNet E therCAT, E therNet/IP

Features			
Power supply is divided into main power supply and control power supply - Wiring method is changed from terminal block to connector - Smaller/lighter weight (resin body adopted) -7-segment LED 2-digit display - Compatible with encoder output (parallel I/O only) - Serial communication options available - Monitoring functions such as position information, alarm status, etc. (U2, U3, U4, U5, and U6 options only) General specifications			
Item		Model	
		TS driver AX9000TS	$\begin{aligned} & \hline \text { TH driver } \\ & \text { AX9000TH } \end{aligned}$
Power supply voltage	Main power supply	Three phase, Single phase 200 VAC $\pm 10 \%$ to 230 VAC $\pm 10 \%$ (*1) 100 VAC $\pm 10 \%$ to 115 VAC $\pm 10 \%$ (J 1 Option) (*2) (*3)	
	Control power	200 VAC $\pm 10 \%$ to 230 VAC $\pm 10 \%$ 100 VAC $\pm 10 \%$ to 115 VAC $\pm 10 \%$ (J 1 Option) (*2) (*3)	
Power frequency		$50 / 60 \mathrm{~Hz}$	
Rated input current		200 VAC: 1.8 A 100 VAC: 2.4 A	200 VAC: 5.0 A
Rated output current		1.9 A	5.0 A
Structure		Driver and controller integrated (open type)	
Operating ambientemperature		0 to $50^{\circ} \mathrm{C}$	
Operating ambient humidity		20 to 90\% RH (no condensation)	
Storage ambient temperature		-20 to $65^{\circ} \mathrm{C}$	
Storage ambient humidity		20 to 90\% RH (no condensation)	
Atmosphere		No corrosive gas or dust	
Anti-noise		$1,000 \mathrm{~V}(\mathrm{P}-\mathrm{P})$, pulse width $1 \mu \mathrm{sec}$, rising 1 nsec impulse noise test, induction noise (capacitive coupling)	
Vibration resistance		$4.9 \mathrm{~m} / \mathrm{s}^{2}$	
Weight		Approx. 1.6 kg	Approx. 2.1 kg
Degree of protection		IP2X (excluding CN4 and CN5)	

*1) For models with maximum torque $75 \mathrm{~N} \cdot \mathrm{~m}$ or more, the calculation of torque limit region is different from the usual when used at single-phase 200 VAC. Contact CKD to determine usability.
*2) If 200 to 230 VAC is connected by mistake, when using power voltage 100 to 115 VAC specifications (-J 1 option), the driver internal circuit will be damaged. *3) For models with maximum torque $75 \mathrm{~N} \cdot \mathrm{~m}$ or more, "-J 1" cannot be selected.
*4) If the main power is cut off while the actuator is rotating, the rotation may continue due to inertia.
*5) After the main power supply is cut OFF, the motor may rotate by the residual voltage of the driver.

How to order

- 200 to 230 VAC

Interface specifications
U0: Parallel I/O (NPN)
U1: Parallel I/O (PNP)
U2: CC-Link
U3: PROFIBUS-DP
U4: DeviceNet
U5: E therCAT
U6: E therNet/IP

Performance specifications

Item	Description
No. of control axes	1 axis, 540,672 pulses/1 rotation
Angle setting unit	${ }^{\circ}$ (degree), pulse, indexing No.
Angle min. setting unit	$0.001^{\circ}, 1$ pulse
Speed setting unit	sec, rpm
Speed setting range	0.01 to $100 \mathrm{sec} / 0.11$ to $300 \mathrm{rpm}(* 1)$
Equal divisions	1 to 255
Max. command value	7-digit numeric input $\pm 9,999,999$
Timer	0.01 sec to 99.99 sec
Programming language	NC
Programming method	Set the data through RS-232C port with an interactive terminal, PC, etc.
Operation mode	Auto, MDI, jog, single block, servo OFF, pulse train input mode
Coordinates	Absolute, incremental
Acceleration curve	```[5 types] Modified sine (MS), modified constant velocity (MC/ MC2), modified trapezoid (MT), trapecloid (TR)```
Status display	LED display CHARGE: Main power supply POWER: Control power
Operation display	Display with 7-segment LED (2 digits)
Communication interface	RS-232C compliant
I/O signal	Refer to interface specification pages.
Program capacity	Approx. 6,000 characters (256)
Electronic thermal	Overheating protection for actuator

*1) Maximum rotation speed differs depending on the actuator connected.

Breaker capacity

TS driver

Actuator model No.	Driver model No.	Rush current (A)		Breaker capacity
		Single phase 100 V	Single-phase/three-phase 200 V	Rated current (A)
AX2006T	AX9000TS	16 (*1)	56 (*1)	10
$\begin{aligned} & \text { AX1022T, AX2012T, AX2018T } \\ & \text { AX4009T, AX4022T } \\ & \hline \end{aligned}$				
AX1045T, AX4045T				
AX1075T, AX4075T		-		

*1) The value of the rush current is a representative value at 115 VAC and 230 VAC.
TH driver

Actuator model No.	Driver model No.	Rush current (A)	Breaker capacity
		Three-phase 200 V	Rated current (A)
AX1150T, AX4150T	AX9000TH	56 (*1)	20
AX1210T, AX4300T			
AX4500T			
AX410WT			

*1) The value of the rush current is a representative value at 230 VAC.

Parallel I/O (NPN)

CN3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input $+24 \mathrm{~V} \pm 10 \%$		
3 to 4	External power supply input GND		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
10	Program No. setting 1st digit input// Program No. selection input (Bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/ Program stop input	Positive	Level Edge
15	Ready return/Continuous rotation stop input	Positive	Edge
16	Answer input/Positiondeviation counter resetinput	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 pulse train input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

Input/output circuit specifications

| Description | 1 circuit current
 (mA) | Max. points
 (Circuit) | Max. current
 (mA) | Max. power
 consumption (mA) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input circuit | 4 | 14 | 56 | 1106 |
| Output circuit | 50 | 18 | 900 | |
| Brake output (BK+, BK-) | 75 | 2 | 150 | |

* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (B it 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/S ervo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (Incremental)

Pin No.	Signal name
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	$-Z$ phase (Line driver output)

CN3 input/output circuit specifications

- Input circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$ Rated current 4 mA (at 24 VDC)

Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 50 mA (MAX)

Pulse string Input circuit

Max. input frequency
Line driver 1 Mpps
Open collector 250 Kpps
Rated voltage $5 \mathrm{~V} \pm 10 \%$

- Encoder Output circuit

Output: line driver
Use line driver: DS26C31

TS/TH driver

Parallel I/O (PNP)

CN 3 Input signal

Pin No.	Signal name	Logic	Determination
1 to 2	External power supply input GND (*1)		
3 to 4	External power supply input $+24 \mathrm{~V} \pm 10 \%$ (${ }^{\text {(1) }}$		
5	Program No. selection input (Bit 0)	Positive	Level
6	Program No. selection input (Bit 1)	Positive	Level
7	Program No. selection input (Bit 2)	Positive	Level
8	Program No. selection input (Bit 3)	Positive	Level
9	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
10	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Origin return directive input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/ Program stop input	Positive	Level Edge
15	Ready return/Continuous rotation stop input	Positive	Edge
16	Answer inputPosition deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 Output signal

Pin No.	Signal name	Logic
33	M code output (Bit 0)	Positive
34	M code output (Bit 1)	Positive
35	M code output (Bit 2)	Positive
36	M code output (Bit 3)	Positive
37	M code output (Bit 4)	Positive
38	M code output (Bit 5)	Positive
39	M code output (Bit 6)	Positive
40	M code output (Bit 7)	Positive
41	Imposition output	Positive
42	Positioning completion output	Positive
43	Start input wait output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output 1 during indexing/Origin position output	Positive
47	Output 2 during indexing/Servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

*1) The wiring differs from that under the PNP specification of AX9000GS/AX9000GH.
CN3 pulse train input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	- PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	- DIR/-DOWN/-B phase

CN3 encoder output signal (Incremental)

Pin No.	Signal name
23	A phase (Line driver output)
24	-A phase (Line driver output)
25	B phase (Line driver output)
26	-B phase (Line driver output)
27	Z phase (Line driver output)
28	-Z phase (Line driver output)

Input/output circuit specifications

Description	1 circuit current (mA)	Max. points (Circuit)	Max. current (mA)	Max, power consumption (mA)
Input circuit	4	14	56	
Output circuit	50	18	900	1106
Brake output (BK+, BK-)	75	2	150	

* The maximum simultaneous output points of the output circuit are 14 points out of 18 points.

CN3 input/output circuit specifications

- Input circuit

- Pulse string Input circuit
 Max. input frequency Line driver 1 Mpps Open collector 250 Kpps
Encoder Output circuit

Output: line driver
Use line driver: DS26C31

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 50 mA (MAX)

CC-Link

Communication specifications

Item	Specifications
Power supply	5 VDC is supplied from the servo amplifier.
CC-Link version	Ver 1.10
Number of occupied stations (Station type)	2 stations (Remote device station)
Remote input points	64 points (including unusable)
Remote output points	64 points (including unusable)
Remote register input/output	Input 8 words/Output 8 words
Communication speed	$10 \mathrm{M} / 5 \mathrm{M} / 2.5 \mathrm{M} / 625 \mathrm{k} / 156 \mathrm{kbps}$ (Selected by parameter setting)
Connection cable	CC-Link Ver. 1.10 compliant cable (3 core cable with shield)
Transmission format	HDLC compliant
Remote station No.	1 to 63 (Set by a parameter)
Number of connected units	For remote device station only, Max. 32 units/2 stations occupied
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal

Device No.	Signal name	Logic	Datemination
RYn0	Program No. selection input (Bit 0)	Positive	Level
RYn1	Program No. selection input (Bit 1)	Positive	Level
RYn2	Program No. selection input (Bit 2)	Positive	Level
RYn3	Program No. selection input (Bit 3)	Positive	Level
RYn4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
RYn5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
RYn6	Reset input	Positive	Edge
RYn7	Origin return directive input	Positive	Edge
RYn8	Start input	Positive	Edge
RYn9	Servo on input/ Program stop input	Positive	Level Edge
RYnA	Ready return input/C ontinuous rotation stop input	Positive	Edge
RYnB	Answer input/P osition deviation counter reset input	Positive	Edge
RYnC	Emergency stop input	Negative	Level
RYnD	Brake release input	Positive	Level
RYnE	J ob operation input (CW direction)	Positive	Edge
RYnF	J ob operation input (CCW direction)	Positive	Edge
RY ($\mathrm{n}+1$)0	Unusable/Travel unit selection input (Bit 0)	Positive	Level
RY ($\mathrm{n}+1$)1	Unusable/Travel unit selection input (Bit 1)	Positive	Level
RY ($\mathrm{n}+1$)2	Unusable/Travel speed unit selection input	Positive	Level
RY ($\mathrm{n}+1$) 3	Operation by table, Operation by data input switching input	Positive	Level
$\begin{array}{\|c} \hline \operatorname{RY}(\mathrm{n}+1) 4 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+1) \mathrm{F} \end{array}$	Unusable		
RY $(n+2) 0$	Monitor output execution request	Positive	Level
RY ($n+2$)1	Command code execution request	Positive	Edge
$\begin{gathered} \hline \operatorname{RY}(n+2) 2 \\ \text { to } \\ \operatorname{RY}(n+2) F \\ \hline \end{gathered}$	Unusable)
$\begin{gathered} \operatorname{RY}(n+3) 0 \\ \text { to } \\ \operatorname{RY}(n+3) F \end{gathered}$	Unusable		

* n is determined by the setting of the station No.

TB3 Input circuit specifications (Machine stops)

AX (Output) \rightarrow PLC

Device No.	Signal name	Logic
RXn0	M code output (Bit 0)	Positive
RXn1	M code output (Bit 1)	Positive
RXn2	M code output (Bit 2)	Positive
RXn3	M code output (Bit 3)	Positive
RXn4	M code output (Bit 4)	Positive
RXn5	M code output (Bit 5)	Positive
RXn6	M code output (Bit 6)	Positive
RXn7	M code output (Bit 7)	Positive
RXn8	Imposition output	Positive
RXn9	Positioning completion output	Positive
RXnA	Start input wait output	Positive
RXnB	Alarm output 1	Negative
RXnC	Alarm output 2	Negative
RXnD	Output 1 during indexing/ Origin position output	Positive
RXnE	Output 2 during indexing/ Servo state output	Positive
RXnF	Ready output	Positive
RX($\mathrm{n}+1) 0$	Segment position strobe output	Positive
RX($n+1) 1$	M code strobe output	Positive
$\left\|\begin{array}{c} R X(n+1) 2 \\ \text { to } \\ R X(n+1) F \end{array}\right\|$	Unusable	
RX($\mathrm{n}+2)^{0}$	Monitoring	
RX($\mathrm{n}+2) 1$	Command code execution completed	Positive
$\left\|\begin{array}{c} R X(n+2) 2 \\ t o \\ R X(n+2) F \end{array}\right\|$	Unusable	
$\left.\begin{gathered} R X(n+3) 0 \\ t o \\ R X(n+3) A \end{gathered} \right\rvert\,$	Unusable	
RX($\mathrm{n}+3$) B	Remote READY	Positive
$\left.\begin{gathered} R X(n+3) C \\ \text { to } \\ R X(n+3) F \end{gathered} \right\rvert\,$	Unusable	

R ated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.). Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
For details on the installation of the communication cable, refer to the CC-Link installation manuals.

TS/TH driver

PROFIBUS-DP

Communication specifications

Item	Specifications
Communication protocol	PROFIBUS DP-V0 compliant
I/O data	Input 8 bytes/Output 8 bytes
Communication speed	$12 \mathrm{M} / 6 \mathrm{M} / 3 \mathrm{M} / 1.5 \mathrm{M} / 500 \mathrm{k}$ $/ 187.5 \mathrm{k} / 93.55 \mathrm{k} / 45.45 \mathrm{k}$ $19.2 \mathrm{k} / 9.6 \mathrm{kbps}$ (Autobaud rate function)
Connection cable	PROF IBUS compliant cable (2-wire twisted pair cable with shield)
Node address	2 to 125 (Set by a parameter)
Number of connected units	Without repeater: Up to 32 stations for each segment With repeater: Up to 126 stations for each segment
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal

Byte No.	Signal name	Logic	Daterinition
0.0	Program No. selection input (Bit 0)	Positive	Level
0.1	Program No. selection input (Bit 1)	Positive	Level
0.2	Program No. selection input (Bit 2)	Positive	Level
0.3	Program No. selection input (Bit 3)	Positive	Level
0.4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
0.5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
0.6	Reset input	Positive	Edge
0.7	Origin return directive input	Positive	Edge
1.0	Start input	Positive	Edge
1.1	Servo on input/ Program stop input	Positive	Level Edge
1.2	Ready return input/Continuous rotation stop input	Positive	Edge
1.3	Answer input/Position deviation counter reset input	Positive	Edge
1.4	Emergency stop input	Negative	Level
1.5	Brake release input	Positive	Level
1.6	J ob operation input (CW direction)	Positive	Edge
1.7	J ob operation input (CCW direction)	Positive	Edge
2.0	Parameter No. (Bit 8)/Travel unit selection input (Bit 0)	Positive	Level
2.1	Parameter No. (Bit 9)/Travel unit selection input (Bit 1)	Positive	Level
2.2	Parameter No. (Bit 10)/Travel speed unit selection input	Positive	Level
2.3	Operation by table, Operation by data input switching input	Positive	Level
$\begin{aligned} & 2.4 \\ & 2.5 \end{aligned}$	Unusable		
2.6	Monitor output execution request	Positive	Level
2.7	Command code execution request	Positive	Edge
3.0	Parameter No. (Bit 0)/Unusable	Positive	Level
3.1	Parameter No. (Bit 1)/Unusable	Positive	Level
3.2	Parameter No. (Bit 2)/Unusable	Positive	Level
3.3	P arameter No. (Bit 3)/Unusable	Positive	Level
3.4	Parameter No. (Bit 4)/Unusable	Positive	Level
3.5	Parameter No. (Bit 5)/Unusable	Positive	Level
3.6	Parameter No. (Bit 6)/Unusable	Positive	Level
3.7	Parameter No. (Bit 7)/Unusable	Positive	Level

AX (Output) \rightarrow PLC

Byte No.	Signal name	Logic
0.0	M code output (Bit 0)	Positive
0.1	M code output (Bit 1)	Positive
0.2	M code output (Bit 2)	Positive
0.3	M code output (Bit 3)	Positive
0.4	M code output (Bit 4)	Positive
0.5	M code output (Bit 5)	Positive
0.6	M code output (Bit 6)	Positive
0.7	M code output (B it 7)	Positive
1.0	Imposition output	Positive
1.1	Positioning completion output	Positive
1.2	Start input wait output	Positive
1.3	Alarm output 1	Negative
1.4	Alarm output 2	Negative
1.5	Output 1 during indexing/ Origin position output	Positive
1.6	Output 2 during indexing/ Servo state output	Positive
1.7	Ready output	Positive
2.0	Segment position strobe output	Positive
2.1	M code strobe output	Positive
2.7	Unusable	
2.7	Command code execution completed	Positive
2.2	Unusable	
2.5	Mositive	
to		
2		

TB3 Input circuit specifications (Machine stops)

R ated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

For details on the installation of a communication cable, refer to "Installation Guideline for PROFIBUS DP/FMS" issued by the PROFIBUS Organization or the PROFIBUS wiring guide.

Communication specifications

Item	Specifications
Power supply for communication	11 to 25 VDC
Current consumption of power supply for communication	50 mA or less
Communication protocol	DeviceNet compliant: Remote I/O
Number of occupied nodes	Input 8 bytes/Output 8 bytes
Communication speed	$500 \mathrm{k} / 250 \mathrm{k} / 125$ kbps (Selected by parameter setting)
Connection cable	DeviceNet compliant cable (5-wire cable with shield, 2 signal lines, 2 power cables, 1 shield)
Node address	0 to 63 (Set by a parameter)
Number of connected units	Max. 64 units (including the master)
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal

Byte No.	Signal name	Logic	Datuminirion
0.0	Program No. selection input (Bit 0)	Positive	Level
0.1	Program No. selection input (Bit 1)	Positive	Level
0.2	Program No. selection input (Bit 2)	Positive	Level
0.3	Program No. selection input (Bit 3)	Positive	Level
0.4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
0.5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
0.6	Reset input	Positive	Edge
0.7	Origin return directive input	Positive	Edge
1.0	Start input	Positive	Edge
1.1	Servo on input/ Program stop input	Positive	Level Edge
1.2	Ready return input/Continuous rotation stop input	Positive	Edge
1.3	Answer input/P osition deviation counter reset input	Positive	Edge
1.4	E mergency stop input	Negative	Level
1.5	Brake release input	Positive	Level
1.6	J ob operation input (CW direction)	Positive	Edge
1.7	J ob operation input (CCW direction)	Positive	Edge
2.0	Parameter No. (Bit 8)/Travel unit selection input (Bit 0)	Positive	Level
2.1	Parameter No. (Bit 9)/Travel unit selection input (Bit 1)	Positive	Level
2.2	Parameter No. (Bit 10)/Travel speed unit selection input	Positive	Level
2.3	Operation by table, Operation by data input switching input	Positive	Level
$\begin{aligned} & 2.4 \\ & 2.5 \\ & \hline \end{aligned}$	Unusable		-
2.6	Monitor output execution request	Positive	Level
2.7	Command code execution request	Positive	Edge
3.0	P arameter No. (Bit 0)/Unusable	Positive	Level
3.1	P arameter No. (Bit 1)/Unusable	Positive	Level
3.2	Parameter No. (Bit 2)/Unusable	Positive	Level
3.3	Parameter No. (Bit 3)/Unusable	Positive	Level
3.4	Parameter No. (Bit 4)/Unusable	Positive	Level
3.5	Parameter No. (Bit 5)/Unusable	Positive	Level
3.6	Parameter No. (Bit 6)/Unusable	Positive	Level
3.7	Parameter No. (Bit 7)/Unusable	Positive	Level

AX (Output) \rightarrow PLC

Byte No.	Signal name	Logic
0.0	M code output (Bit 0)	Positive
0.1	M code output (Bit 1)	Positive
0.2	M code output (Bit 2)	Positive
0.3	M code output (Bit 3)	Positive
0.4	M code output (Bit 4)	Positive
0.5	M code output (Bit 5)	Positive
0.6	M code output (Bit 6)	Positive
0.7	M code output (Bit 7)	Positive
1.0	Imposition output	Positive
1.1	Positioning completion output	Positive
1.2	Start input wait output	Positive
1.3	Alarm output 1	Negative
1.4	Alarm output 2	Negative
1.5	Output 1 during indexing/ Origin position output	Positive
1.6	Output 2 during indexing/ Servo state output	Positive
1.7	Ready output	Positive
2.0	Segment position strobe output	Positive
2.1	M code strobe output	Positive
$\begin{array}{r} 2.2 \\ \text { to } \\ 2.5 \end{array}$	Unusable	
2.6	Monitoring	Positive
2.7	Command code execution completed	Positive
$\begin{array}{r} 3.0 \\ \text { to } \\ 3.7 \end{array}$	Unusable	

TB3 Input circuit specifications (Machine stops)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
For details on the installation of the communication cable, refer to the DeviceNet installation manuals.

Communication specifications

| Related parts | Dialog terminal | Drivers | Actuator | Actuator | Actuator | Drivers |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Actuator

Item	Specifications
Communication protocol	EtherCAT
Communication speed	100 Mbps (fast Ethernet, full duplex)
Process data	Fixed PDO mapping
Max. PDO data length	RxPDO: 40 bytes/TxPDO: 40 bytes
Station arias	0 to 65535 (Set by a parameter)
Connection cable	EtherCAT compliant cable (CAT5e or higher twisted pair cable (double shield with aluminum tape and braid) is recommended.)
Node address	Automatic indexing the master
Monitor function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic (Output Data) thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signal

PLC \rightarrow AX (Input)

Index	Sub Index	Display name	bit	Signal name	Logic	Detaminition
0×2001	0x01	Input signal 1	0	Program No. selection input (Bit 0)	Positive	Level
			1	Program No. selection input (Bit 1)	Positive	Level
			2	Program No. selection input (Bit 2)	Positive	Level
			3	Program No. selection input (Bit 3)	Positive	Level
			4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level
			5	Program No. setting 1st digit input/ Program No. selection input (Bit 5)	Positive	Edge Level
			6	Reset input	Positive	Edge
			7	Origin return directive input	Positive	Edge
			8	Start input	Positive	Edge
			9	Servo on input/ Program stop input	Positive	Level Edge
			10	Ready return input/Continuous rotation stop input	Positive	Edge
			11	Answer input/P osition deviation counter reset input	Positive	Edge
			12	Emergency stop input	Negative	Level
			13	Brake release input	Positive	Level
			14	J ob operation input (CW direction)	Positive	Edge
			15	J ob operation input (CCW direction)	Positive	Edge
			16	Unusable/Travel unit selection input (Bit 0)	Positive	Level
			17	Unusable/Travel unit selection input (Bit 1)	Positive	Level
			18	Unusable/Travel speed unit selection input	Positive	Level
			19	Operation by table, Operation by data input switching input	Positive	Level
			$\begin{array}{\|l\|l\|} \hline 20 \\ \text { to } \\ 31 \end{array}$	Unusable		
	0x02	Input signal 2	0	Monitor output execution request	Positive	Level
			1	Command code execution request	Positive	Edge
			$\begin{array}{\|l\|} \hline 2 \\ \text { to } \\ 31 \\ \hline \end{array}$	Unusable		

TB3 Input circuit specifications (Machine stops)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

PDO mapping
 RxPDO

Index	Sub Index	Display name	Description
0x1600	0x00	Number of PDO objects	10
	0×01	Input signal 1	0x2001-0x01
	0x02	Input signal 2	0x2001-0x02
	0x03	Input data 1	0x2003-0x01
	0×04	Input data 2	0x2003-0x02
	0×05	Input data 3	0x2003-0x03
	0×06	Input data 4	0x2003-0x04
	0x07	Input data 5	0x2003-0x05
	0×08	Input command 1	0x2003-0x06
	0x09	Input command 2	0x2003-0x07
	$0 \times 0 \mathrm{~A}$	Input command 3	0x2003-0x08

TxPDO

Index	Sub Index	Display name	Description
0x1A00	0x00	Number of PDO objects	10
	0x01	Output signal 1	0x2005-0x01
	0x02	Output signal 2	0x2005-0x02
	0x03	Output data 1	0x2007-0x01
	0x04	Output data 2	0x2007-0x02
	0x05	Output data 3	0x2007-0x03
	0x06	Output data 4	0x2007-0x04
	0x07	Output data 5	0x2007-0x05
	0x08	Output command 1	0x2007-0x06
	0x09	Output command 2	0x2007-0x07
	$0 \times 0 \mathrm{~A}$	Output command 3	0x2007-0x08

I/O signal
AX (Output) \rightarrow PLC

Index	Sub Index	Display name	bit	Signal name	Logic
0x2005	0x01	Output signal 1	0	M code output (Bit 0)	Positive
			1	M code output (Bit 1)	Positive
			2	M code output (Bit 2)	Positive
			3	M code output (Bit 3)	Positive
			4	M code output (Bit 4)	Positive
			5	M code output (Bit 5)	Positive
			6	M code output (Bit 6)	Positive
			7	M code output (Bit 7)	Positive
			8	Imposition output	Positive
			9	Positioning completion output	Positive
			10	Start input wait output	Positive
			11	Alarm output 1	Negative
			12	Alarm output 2	Negative
			13	Output 1 during indexing/Origin position output	Positive
			14	Output 2 during indexing/Servo state output	Positive
			15	Ready output	Positive
			16	Segment position strobe output	Positive
			17	M code strobe output	Positive
			$\begin{aligned} & 18 \\ & \text { to } \\ & 31 \end{aligned}$	Unusable	
	0x02	Output signal 2	0	Monitoring	Positive
			1	Command code execution completed	Positive
			$\begin{array}{\|l\|l} \hline 2 \\ \text { to } \\ 31 \\ \hline \end{array}$	Unusable	

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).
\square Placing the communication cable and power cable close to each other or bundling these cables makes
communication unstable due to noise, possibly resulting in a communication error or retry.
\square For details on the installation of the communication cable, refer to ETG. 1600 EtherCAT installation guidelines.

EtherNet/IP

Communication specifications

Item	Specifications
Communication protocol	EtherNet/IP
Communication speed	Automatic setting (100 Mbps/10 Mbps, full duplex/half duplex)
Occupied bytes	Input: 32 bytes/Output: 32 bytes
IP address	0.0 .0 .0 to 255.255.255.255 (Set by a parameter)
Subnet mask	0.0.0.0 to 255.255 .255 .255 (Set by a parameter)
Default gateway	0.0 .0 .0 to 255.255 .255 .255 (Set by a parameter)
RPI (Packet interval)	10 msec to 1,000 msec
Connection	EtherNet/IP compliant cable (Cable cable (double shigher twisted pair with aluminum tape and braid) is recommended.)
Monitor	
function	Present position within 1 rotation (degree, pulse), position deviation amount, program No., electronic thermal, rotation speed, point table No., torque load factor, acceleration, alarm, parameter, operation mode

I/O signa PLC \rightarrow AX (Input)					I/O signal AX (Output) \rightarrow PLC			
Byte	bit	Signal name	Logic	Datamination	Byte	bit	Signal name	Logic
0	0	Program No. selection input (Bit 0)	Positive	Level	0	0	M code output (Bit 0)	Positive
	1	Program No. selection input (Bit 1)	Positive	Level		1	M code output (Bit 1)	Positive
	2	Program No. selection input (Bit 2)	Positive	Level		2	M code output (Bit 2)	Positive
	3	Program No. selection input (Bit 3)	Positive	Level		3	M code output (Bit 3)	Positive
	4	Program No. setting 2nd digit input/ Program No. selection input (Bit 4)	Positive	Edge Level		4	M code output (Bit 4)	Positive
						5	M code output (Bit 5)	Positive
	5	Program No. setting 1st digit input/	Positive	Edge Level		6	M code output (Bit 6)	Positive
		Program No. selection input (Bit 5)				7	M code output (Bit 7)	Positive
	6	Reset input	Positive	Edge	1	0	Imposition output	Positive
	7	Origin return directive input	Positive	Edge		1	Positioning completion output	Positive
1	0	Start input	Positive	Edge		2	Start input wait output	Positive
	1	Servo on input/ Program stop input	Positive	Level Edge		3	Alarm output 1	Negative
						4	Alarm output 2	Negative
	2	Ready return input/Continuous rotation stop input	Positive	Edge		5	Output 1 during indexing/Origin	
	3	Answer input/P osition deviation counter reset input	Positive	Edge			position output	Positive
	4	Emergency stop input	Negative	Level		6	Output 2 during indexing/Servo state output	Positive
	5	Brake release input	Positive	Level		7	Ready output	Positive
	6	J ob operation input (CW direction)	Positive	Edge	2	0	Segment position strobe output	Positive
	7	J ob operation input (CCW direction)	Positive	Edge		1	M code strobe output	Positive
2	0	Unusable/Travel unit selection input (Bit 0)	Positive	Level		2 to 7	Unusable	\checkmark
					3	-	Unusable	
	1	Unusable/Travel unit selection input (Bit 1)	Positive	Level	4	0	Monitoring	Positive
	2	Unusable/Travel speed unit selection input	Positive	Level		1	Command code execution completed	Positive
						2 to 7	Unusable	\checkmark
	3	switching input	Positive	Level	5	-	Unusable	
	4 to 7	Unusable			6	-	Unusable	
3	-	Unusable			7	-	Unusable	
4	0	Monitor output execution request	Positive	Level	8	-	Monitor data 1	
	1	Command code execution request	Positive	Edge	9	-		
	2 to 7	Unusable			10	-		
5	-	Unusable			11	-		
6	-	Unusable			12	-		
7	-	Unusable			13	-	Monitor data 2	
8	-	Monitor code 1			14	-	俍itor data 2	
9	-				15	-		
10	-				16	-	Monitor data 3	
11	-				17	-		
12	-	Monitor code 2			18	-		
13	-				19	-		
14	-				20	-	Response code	
15	-				21	-		
16	-	Monitor code 3			22	-		
17	-				23	-		
18	-				24	-	Read data	
19	-				25	-		
20	-	Command code			26	-		
21	-				27	-		
22	-				28	-	Unusable	
23	-				29	-		
24	-	Write data/A code or P code			30	-		
25	-				31	-		
26	-							
27	-							
28	-	Data setting/F code						
29	-							
30	-							
31	-							

TB3 Input circuit specifications (Machine stops)
24 VDC external power (not included)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Reserve a sufficient distance between the communication cable and power cable (motor cable, power supply cable, etc.).
Placing the communication cable and power cable close to each other or bundling these cables makes communication unstable due to noise, possibly resulting in a communication error or retry.
For details on the installation of the communication cable, refer to the EtherNet/IP installation manuals.

TS/TH driver

Dimensions

Accessories supplied with the driver

Model No.	Specifications	CN3 Connector	Power supply connector (CN4)	Motor cable connector (CN5)
$\begin{array}{\|l} \text { AX9000TS-U0 } \\ \text { AX9000TH-U0 } \end{array}$	Parallel I/O (NPN)	10150-3000PE (Plug) 10350-52A0-008 (Shell) Sumitomo 3M Ltd.	PC4/5-ST-7.62 Phoenix Contact	PC4/3-ST-7. 62 Phoenix Contact
$\begin{aligned} & \text { AX9000TS-U1 } \\ & \text { AX9000TH-U1 } \end{aligned}$	Parallel I/O (PNP)			
$\begin{array}{\|l\|} \hline \text { AX9000TS-U2 } \\ \text { AX9000TH-U2 } \\ \hline \end{array}$	CC-Link	$\begin{aligned} & \hline \text { BLZP } 5.08 \mathrm{HC} / 05 / 180 \mathrm{~F} \mathrm{AU} \text { OR BX } \\ & \text { Weidmüller } \\ & \hline \end{aligned}$		
$\begin{array}{\|l\|} \hline \text { AX9000TS-U3 } \\ \text { AX9000TH-U3 } \\ \hline \end{array}$	PROFIBUS-DP	Not attached		
$\begin{aligned} & \text { AX9000TS-U4 } \\ & \text { AX9000TH-U4 } \\ & \hline \end{aligned}$	DeviceNet	MSTB2.5/5-STF-5.08AUM Phoenix Contact		
$\begin{array}{\|l\|} \hline \text { AX9000TS-U5 } \\ \text { AX9000TH-U5 } \end{array}$	EtherCAT	Not attached		
$\begin{array}{\|l\|} \hline \text { AX9000TS-U6 } \\ \text { AX9000TH-U6 } \end{array}$	EtherNet/IP	Not attached		

For additional orders of parts, refer to the parts model No. table.

Installation Dimension

Installation Dimension

- TS driver

- TH driver

*1) Determine the dimension with extra allowance according to a cable you want to use.

A Safety precautions

- The ABSODEX driver does not have a dust-proof/waterproof structure.

To prevent dust, water, oil or other substances from entering the driver, provide protection according to the working environment.

- Install the ABSODEX driver away from other devices, walls or other structures by 50 mm or more from the top, bottom and sides. When heat is generated from other drivers or devices, check that the ambient temperature does not exceed $50^{\circ} \mathrm{C}$.
- Parallel I/O (NPN, PNP)
- For 200 VAC

Related parts model No. table	Dialog terminal AX0180	Drivers AX9000TS/TH	Actuator AX4000T	Actuator AX2000T	Actuator AX1000T	Drivers AX9000MU	Actuator AX6000M

- CC-Link

- For 100 VAC

- PROFIBUS-DP

- EtherCAT

CKD

Panel Details

*1) \square represents the cable length.

ASafety precautions

- Connect the correct motor cable and driver by checking the mark tube of the cable and the display of the driver.
- For uses where the cable is repeatedly bent, fix the cable sheath part near the connector of the actuator body.
- For the AX4009T and AX2000T Series, the lead-out cable of the actuator section is not movable. Make sure to fix the cable in the connector section to prevent the cable from moving. Do not pull the lead-out cable to lift the unit or do not apply an excessive force to the cable. Otherwise, malfunction, an alarm, damage of the connector part, or disconnection may result.
- When connecting the cable, fully insert the connector. Also, tighten the connector mounting screws and fix screws securely.
- Do not disconnect, extend, or make other modifications to the cable. Such modifications may cause failure or malfunction.
- For the cable length L, refer to the cable length shown in the How to order.

ABSODEX Handy Terminal AX0180

TS/TH driver

Features

(1) Programming is easy.

For an equal segment program, you can easily write a program by answering the questions interactively from the handy terminal.
(2) No dedicated power supply is required

The power is supplied from ABSODEX.
(3) Backup is available.

The programs and parameters can be stored, and programs can be copied.
(4) Available also for conventional models. With the S/GS/H/GH/WGH type drivers, this product operates in the same way as the conventional handy terminal (AX0170H).

Specifications

Item	AX0180
Operation mode	Edit, Display, Parameter, Operation, and Copy modes
Program capacity	Equal segment or NC program 2,000 characters (One)
Program No.	E qual segment program: Program No. 0 to 999
Display	16 characters $\times 2$ digits (LCD display)
Input keys	17 keys
Backup	(Stop key: 1, Control key: 5 characters, Number key: 11)
Power supply	Super capacitor (about 3 hours)
Cable length	Supplied by the ABSODEX driver
Operating ambient temperature	2 m
Operating ambient humidity	0 to $50^{\circ} \mathrm{C}$
Storage ambient temperature	20 to 90% (no condensation)
Storage ambient humidity	-20 to $80^{\circ} \mathrm{C}$
Atmosphere	20 to 90% (no condensation)
Weight	No corrosive gas or dust

*For the English version, messages are displayed in English. The characters on the operation panel are the same as those of the J apanese version.

Dimensions

Handy terminal

How to order

Interactive programming

You can easily write a program by inputting values for items as follows:
[Example of input values for a program]

New	Program No. [0 to 999]
Origin return position	1. Origin
	2. Indexing
Return direction	1. CW
	2. CCW
Return speed	3. Shortcut
[1.0 to 20.0] rpm	
Number of segments	$[1$ to 255]
Travel time	[0.01 to 100] seconds
Rotation direction	1. CW
	2. CCW
Stop processing	1. Wait for start
	2. Dwell
Brake	1. Using the product
	2. Vacant
Delay timer	[0.01 to 99.99] seconds
M Cord	1. M Cord
	2. Segmentation position

When you want to...

Make a trial run of

ABSODEX! \quad| Edit mode |
| :---: |
| 12 sample programs are provided. You |

Write an ABSODEX program and store it into ABSODEX!
You can input programming values and store the program by a simple procedure.

Run a program stored in ABSODEX!	Operation mode You can easily start a program by specifying the program No.

Make use of the characteristics of the cam curve!
\Rightarrow Parameter mode
5 types of cam curves are provided. Driving operation taking advantages of the properties is one touch away.

Check the ON/OFF
of I / O !

How to order ABSODEX related parts

- Related parts

Part name	Compatible model No.	Model No.
PC communication cable	AX Series	AX-RS232C-9P

*1) The PC communication cable is 2 meters long.
*2) The "AX Tools" configuration tool is available (free of charge). The latest version can be downloaded from the following URL. https://www.ckd.co.jp/kiki/en/

- Mounting base

Compatible model No.	Model No.
AX1022T	AX-AX1022-BASE-BS
AX1045T	AX-AX1045-BASE-BS
AX1075T	AX-AX1075-BASE-BS
AX1150T	AX-AX1150-BASE-BS
AX1210T	AX-AX1210-BASE-BS
AX2006T	AX-AX2006-BASE-BS
AX2012T	AX-AX2012-BASE-BS
AX2018T	AX-AX2018-BASE-BS

Compatible model No.	Model No.
AX4022T	AX-AX4022-BASE-BS
AX4045T	AX-AX4045-BASE-BS
AX4075T	AX-AX4075-BASE-BS
AX4150T	AX-AX4150-BASE-BS
AX4300T	AX-AX4300-BASE-BS
AX4500T	AX-AX4500-BASE-BS
AX6001M, AX6003M	AX-AX6000-BASE-BS

O oise filter

Part name	Compatible model No.	Model No.
Noise filter for power supply (Three phase/Single phase 200-230 VAC)	AX Series	AX-NSF-3SUP-EF10-ER-6
Noise filter for power supply (single phase $250 \mathrm{VAC} / 15 \mathrm{~A} * 3$)	AX Series	AX-NSF-NF 2015A-OD
Ferrite core for motor cable	AX Series	AX-NSF-RC5060ZZ
Clamp filter for power cable (small 2-piece set)	AX6000M Series	AX-NSF-ZCAT2035-0930A
Clamp filter for resolver cable (1 piece each for large and small size)	AX6000M Series	AX-NSF-FC01-SET

(*3) With 250 VAC It can also be used with 24 VDC.
(*4) To make these products compliant with EU standards and CE marking or UL standards, the user is required to provide accessories such as a circuit breaker and FG clamp. For details, refer to the instruction manual or (technical data).

Other components

Part name	Compatible model No.	Model No.
Power supply connector (CN4)	TS/TH Series	AX-CONNECTOR-PC45
Motor cable connector (CN5)	TS/TH Series	AX-CONNECTOR-PC43
Power supply connector protective cover (CN4)	TS/TH Series	AX-COVER-KGG-PC45
Motor cable connector protective cover (CN5)	TS/TH Series	AX-COVER-KGG-PC43
I/O connector (CN3: For Parallel I/O)	AX Series (-U0, U1)	AX-CONNECTOR-MDR
I/O connector (CN3: For CC-Link)	AX Series (-U2)	AX-CONNECTOR-BLZ5
I/O connector (CN3: For DeviceNet)	AX Series (-U4)	AX-CONNECTOR-MSTB
Protection element for electromagnetic brake	AX Series (-EB)	AX-PARTS-TNR20V121K
Power supply connector set (with open tool)	AX9000MU Series	AX-CONNECTOR-04J FAT-KIT

[^3]Glossary

Glossary

Index accuracy

The index accuracy of ABSODEX is the difference between the target position set by an NC program and the actual stop position.
This target position is the angle (seconds) from the reference station (origin return position).
As shown in the right figure, the index accuracy is calculated using the maximum value and minimum value of the differences between the target positions and actual stop positions. These positions are expressed with $\pm x$ seconds and the width as shown in the figure. For angle measurement, a high-precision encoder is used.

Repeatability

The repeatability expressed by angle (seconds) is the maximum value of angle irregularities of the repeat stop positions when reciprocating operation is performed for a certain target position under the same conditions.
Depending on the accuracy characteristics required by the equipment, it is necessary to differentiate repeat accuracy and index accuracy.
*S econd: A unit (degree/minute/second) for expressing an angle.
1 degree $=60$ minutes $=3600$ seconds

Index accuracy measurement example

Output shaft runout

This the runout accuracy of the inlay side on the table mounting side.

Output shaft surface runout

This the runout accuracy of the table mounting side.

* Measured at the periphery of the screw hole for mounting the table.

Selection guide

U nits and symbols of operation conditions		
Load moment of inertia	$\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$	J
Travel angle	$\left({ }^{\circ}\right)$	Ψ
Travel time	(s)	t_{1}
Cycle time	(s)	t_{0}
Load friction torque	$(\mathrm{N} \cdot \mathrm{m})$	TF_{F}
Work torque	$(\mathrm{N} \cdot \mathrm{m})$	Tw
Cam curve		Select from (MS, MC, MT, TR)

1. Moment of inertia of load

Calculate the moment of inertia of load and temporarily select an actuator that can allow the moment of inertia.

2. Rotation speed

The max. rotation speed N max is obtained by the formula:

$$
\begin{equation*}
N_{\max }=\mathrm{V}_{\mathrm{m}} \cdot \frac{\psi}{6 \cdot \mathrm{t}_{1}} \tag{rpm}
\end{equation*}
$$

Where ψ and t_{1} represent travel angle (${ }^{\circ}$) and travel time (s), respectively. V_{m} is a constant determined by the cam curve.

Check that the value of N max dose not exceed the max. rotation speed defined in the actuator specifications.
[Precautions]
The actual travel time is the directive travel time of the ABSODEX plus the stabilization time.

Though the stabilization time depends on working conditions, it is approximately between 0.025 and 0.2 seconds. For the travel time t_{1} in model selection, use the directive travel time of ABSODEX. Also, for setting the travel time with an NC program, use the directive travel time of ABSODEX.
(Note) The friction torque works on the output shaft by the bearing, sliding surface, and other friction. The friction torque can be obtained by the following relational expression:
$\mathrm{Tf}=\mu \cdot \mathrm{Ff} \cdot \mathrm{Rf}(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{Ff}=\mathrm{m} \cdot \mathrm{g}$
where μ : C oefficient of friction

Rolling friction	Sliding friction
$\mu=0.03$ to 0.05	$\mu=0.1$ to 0.3

Ff: Force working on the sliding surface, bearing, etc. (N)
Rf: Average friction radius (m)
m : Weight (kg)
g : Gravity acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

3. Load torque

a) The maximum load torque is obtained with the following formula.
$T_{m}=\left[A_{m} \cdot\left(J+J_{M}\right) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}{ }^{2}}+T_{F}+T_{w}\right] \cdot f c+T_{m F}$
b) The effective value of the load torque is obtained with the following formula.
$T_{\text {rms }}=\sqrt{\frac{t_{1}}{t_{0}} \cdot\left[r \cdot A_{m} \cdot\left(J+J_{M}\right) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}{ }^{2}} \cdot f c\right]^{2}+\left(T_{F} \cdot f C+T_{w} \cdot f C+T_{M F}\right)^{2}}$
The values in the following table are applied to Vm, Am and r .

Cam curve	Vm	Am	r
MS		5.53	0.707
MC	1.28	8.01	0.500
MT	2.00	4.89	0.866
TR	2.18	6.17	0.773

$\mathrm{Jm}, \mathrm{Tmf}, \mathrm{fc}$ are as follows:
J м : Output shaft moment of inertia ($\mathrm{kg} \cdot \mathrm{m}^{2}$)
Tmf : Output shaft friction torque ($\mathrm{N} \cdot \mathrm{m}$)
fc : Used factor (F or normal use: fc $=1.5$)

For the temporarily selected actuator,
Max. load torque < Max. output torque
Effective value of load torque < Continuous output torque If either of the above conditions is not met, re-calculate the load torque with a larger actuator.

Note) There is a torque limit region where the max. torque decreases at the time of high-speed rotation.
For use in the torque limit region, use the mode selection software to determine the availability of the device.
(Note) The work torque indicates an exterior load, expressed as torque, working as the load on the ABSODEX output shaft.

The work torque Tw is calculated by the following formula:
$\mathrm{T} w=\mathrm{F} w \times \mathrm{Rw}(\mathrm{N} \cdot \mathrm{m})$
Fw (N) : Necessary force for work
Rw (m): Working radius
(Example)
For the body on its side (the output shaft in the horizontal direction), the table, workpiece, jigs and so forth are work torques.

4. Regenerative power

For the AX9000TS/AX9000TH driver, calculate the regenerative power using the following simple formula and determine the availability.

- For AX9000TS drivers

The AX9000TS driver does not have a built-in regenerative resistor. Therefore, check that the value of the regenerative energy calculated by the simple formula below does not exceed energy chargeable with a capacitor (table below).

$$
\mathrm{E}=\left(\frac{\mathrm{V}_{\mathrm{m}} \cdot \psi \cdot \pi}{\mathrm{t}_{1} \cdot 180}\right)^{2} \cdot \frac{\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right)}{2}(\mathrm{~J})
$$

Power supply specification	Processable regenerative energy (J)	R emarks
200 VAC	17.2	Value when the input voltage of the main power is 200 VAC
$100 \mathrm{VAC}(-\mathrm{J} 1)$	17.2	Value when the input voltage of the main power is 100 VAC

For AX9000TH drivers
AX9000TH drivers have limitation on the consumption capability of the regenerative power in the driver.
The value is obtained by the following simple formula:
$W=\left(\frac{\mathrm{V}_{\mathrm{m}} \cdot \psi \cdot \pi}{\mathrm{t}_{1} \cdot 180}\right)^{2} \cdot \frac{\left(\mathrm{~J}+\mathrm{J}_{\mathrm{m}}\right)}{2 \cdot \mathrm{t}_{0}}(\mathrm{~W})$
$W \leq 40$
If this condition is met, re-consider the operation conditions and load conditions.

Selection guide (1)
[Working conditions]
Table radius

$$
: R=0.4(\mathrm{~m})
$$

Table weight
Radius of jig rotation :
J ig weight
Number of jigs
: $\mathrm{Wt}=79(\mathrm{~kg})$
$: \operatorname{Re}=0.325(\mathrm{~m})$
: $\mathrm{Wj}=10(\mathrm{~kg} /$ piece $)$
: $N=4$ (Including the workpiece weight)
[Operating conditions]
Travel angle : $\psi=90\left({ }^{\circ}\right)$
Travel time $\quad: \mathrm{t}_{1}=0.8(\mathrm{~s})$
Cycle time $\quad: \mathrm{t} 0=4$ (s)
Load friction torque : $\mathrm{T}_{\mathrm{F}}=0(\mathrm{~N} \cdot \mathrm{~m})$
Work torque : Tw =0 ($\mathrm{N} \cdot \mathrm{m}$)
Output shaft friction : TmF ($\mathrm{N} \cdot \mathrm{m}$)
torque
According to the actuator specifications
Cam curve : MS (modified sine)

STEP 1

Calculating momentof inetia

STEP 2

Max. rotation speed

STEP 3

Load torque

STEP 4

Regenerative power

STEP 5
Selection guide

a) Table	$\mathrm{J}=\frac{\mathrm{Wt} \times \mathrm{R}^{2}}{2}=\frac{79 \times 0.4^{2}}{2}=6.32$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
b) Jig, workpiece	$\mathrm{J} 2=\mathrm{N} \times \mathrm{W}_{\mathrm{j}} \times \mathrm{Re}^{2}=4 \times 10 \times 0.325^{2}=4.225$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
c) Sum of moment of	$\mathrm{J}=\mathrm{J}_{1}+\mathrm{J}_{2}=6.32+4.225=10.545$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$

$$
\begin{array}{ll}
\mathrm{J}_{1}=\frac{\mathrm{W} t \times R^{2}}{2}=\frac{79 \times 0.4^{2}}{2}=6.32 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \\
\mathrm{J} 2=\mathrm{N} \times \mathrm{W}, \\
\times R \mathrm{e}^{2}=4 \times 10 \times 0.325^{2}=4.225 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \\
\mathrm{J}=\mathrm{J}_{1}+\mathrm{J}_{2}=6.32+4.225=10.545 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
\end{array}
$$

$\mathrm{N}_{\text {max }}=\mathrm{V}_{\mathrm{m}} \cdot \frac{\psi}{6 \cdot \mathrm{t}_{1}}=1.76 \times \frac{90}{6 \times 0.8}=33(\mathrm{rpm})$
Check that $\mathrm{N}_{\text {max }}$ does not exceed the maximum rotation speed of $A B S O D E X$.

At first, perform calculation for the smallest model that allows the moment of inertia of load.
The allowed moment of inertia of AX4300T is $180\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$, which means that this load is allowed.
Max. load torque
$T_{m}=\left[A_{m} \cdot(J+J M) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}{ }^{2}}+T_{F}+T w\right] \cdot f c+T_{M F}$

$$
=\left[5.53 \times(10.545+0.326) \times \frac{90 \times \pi}{180 \cdot 0.8^{2}}+0+0\right] \times 1.5+10
$$

$$
=231.3(\mathrm{~N} \cdot \mathrm{~m})
$$

Effective value of load torque
$T_{r m s}=\sqrt{\frac{t_{1}}{t_{0}} \cdot\left[r \cdot A_{m} \cdot\left(J+J_{M}\right) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}{ }^{2}} \cdot f c\right]^{2}+\left(T_{F} \cdot f c+T_{w} \cdot f c+T_{M F}\right)^{2}}$
Trms $=\sqrt{\frac{0.8}{4} \times\left[0.707 \times 5.53 \times 10.871 \times \frac{90 \times \pi}{180 \cdot 0.8^{2}} \times 1.5\right]^{2}+(0 \times 1.5+0 \times 1.5+10)^{2}}$

$$
=70.7(\mathrm{~N} \cdot \mathrm{~m})
$$

$$
\begin{aligned}
\mathrm{W} & =\left(\frac{\mathrm{Vm}_{\mathrm{m}} \cdot \psi \cdot \pi}{\mathrm{t}_{1} \cdot 180}\right)^{2} \cdot \frac{(\mathrm{~J}+\mathrm{J} \mathrm{~m})}{2 \cdot \mathrm{t}_{0}} \\
& =\left(\frac{1.76 \times 90 \times \pi}{0.8 \times 180}\right)^{2} \times \frac{10.871}{2 \times 4}=16.23(\mathrm{~W})
\end{aligned}
$$

$\mathrm{W} \leq 40(\mathrm{~W})$

Consider whether the temporarily selected AX4300T is available.
Sum of the moment of inertia of load $10.545 \leq 180\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Max. rotation speed $\quad 33 \leq 100$ (rpm)

Max. load torque $\quad 231.3 \leq 300(\mathrm{~N} \cdot \mathrm{~m})$
Effective value of load torque $\quad 70.7 \leq 100(\mathrm{~N} \cdot \mathrm{~m})$
Regenerative power $\quad 16.23 \leq 40$ (J)
Under these conditions, AX4300T is available.
[Working conditions]

Table radius	$: \mathrm{R}=0.25(\mathrm{~m})$
Table weight	$: \mathrm{Wt}=10.6(\mathrm{~kg})$
Radius of jig rotation $:$	$\mathrm{Re}=0.2(\mathrm{~m})$
J ig weight	$:$
	$\mathrm{Wj}=2(\mathrm{~kg} / \mathrm{piece})$
(Including the workpiece weight)	
Number of jigs	$:$
	$\mathrm{N}=4$

[Operating conditions]

Travel angle	$: \psi=90\left({ }^{\circ}\right)$
Travel time	$: \mathrm{t}_{1}=0.5(\mathrm{~s})$
Cycle time	$: \mathrm{t}_{0}=4(\mathrm{~s})$

Cycle time : to $=4$ (s)
Load friction torque : $\mathrm{T}_{\mathrm{F}}=0(\mathrm{~N} \cdot \mathrm{~m})$
Work torque : Tw $=0(\mathrm{~N} \cdot \mathrm{~m})$
Output shaft : Tmf ($\mathrm{N} \cdot \mathrm{m}$)
friction torque According to the actuator specifications
Cam curve : MS (modified sine)

STEP 1

Calulabing monentotifietia

STEP 3
Load torque

STEP 4

a) Table	$J_{1}=\frac{W_{t} \times R^{2}}{2}=\frac{10.6 \times 0.25^{2}}{2}=0.331$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
b) Jig, workpiece	$\mathrm{J}_{2}=\mathrm{N} \times \mathrm{W}_{\mathrm{j}} \times \mathrm{Re}^{2}=4 \times 2 \times 0.2^{2}=0.32$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
c) Sum of moment of inertia	$\mathrm{J}=\mathrm{J}_{1}+\mathrm{J}_{2}=0.331+0.32=0.651$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$

$$
\begin{array}{ll}
\mathrm{J}_{1}=\frac{\mathrm{W} t \times \mathrm{R}^{2}}{2}=\frac{10.6 \times 0.25^{2}}{2}=0.331 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \\
\mathrm{J}_{2}=\mathrm{N} \times \mathrm{W}_{\mathrm{j}} \times \mathrm{Re}^{2}=4 \times 2 \times 0.2^{2}=0.32 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \\
\mathrm{J}=\mathrm{J}_{1}+\mathrm{J}_{2}=0.331+0.32=0.651 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
\end{array}
$$

$$
\mathrm{N}_{\max }=\mathrm{V}_{\mathrm{m}} \cdot \frac{\psi}{6 \cdot \mathrm{t} 1}=1.76 \times \frac{90}{6 \times 0.5}=52.8 \quad(\mathrm{rpm})
$$

Check that $\mathrm{N}_{\max }$ does not exceed the maximum rotation speed of ABSODEX.

At first, perform calculation for the smallest model that allows the moment of inertia of load.
The allowed moment of inertia of AX7045X is $0.90\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$, which means that this load is allowed.
Max. load torque

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =\left[\mathrm{Am} \cdot(\mathrm{~J}+\mathrm{J}) \cdot \frac{\psi \cdot \pi}{180 \cdot \mathrm{t}_{1}{ }^{2}}+\mathrm{T}_{\mathrm{F}}+\mathrm{Tw}\right] \cdot \mathrm{fc}+\mathrm{TMF} \\
& =\left[5.53 \times(0.651+0.0254) \times \frac{90 \times \pi}{180 \cdot 0.5^{2}}+0+0\right] \times 1.5+2.5 \\
& =37.8(\mathrm{~N} \cdot \mathrm{~m})
\end{aligned}
$$

Effective value of load torque
$T_{r m s}=\sqrt{\frac{\mathrm{t}_{1}}{\mathrm{t}_{0}} \cdot\left[\mathrm{r} \cdot \mathrm{Am}_{\mathrm{m}} \cdot(\mathrm{J}+\mathrm{J} \mathrm{M}) \cdot \frac{\psi \cdot \pi}{180 \cdot \mathrm{tr}^{2}} \cdot \mathrm{fc}\right]^{2}+\left(\mathrm{T}_{\mathrm{F}} \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{w}} \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}}\right)^{2}}$
$T_{\text {rms }}=\sqrt{\frac{0.5}{4} \times\left[0.707 \times 5.53 \times 0.6764 \times \frac{90 \times \pi}{180 \cdot 0.5^{2}} \times 1.5\right]^{2}+(0 \times 1.5+0 \times 1.5+2.5)^{2}}$

$$
=9.2(\mathrm{~N} \cdot \mathrm{~m})
$$

$$
\begin{aligned}
\mathrm{E} & =\left(\frac{\mathrm{Vm}_{\mathrm{m}} \cdot \psi \cdot \pi}{\mathrm{t}_{1} \cdot 180}\right)^{2} \cdot \frac{(\mathrm{~J}+\mathrm{J} \mathrm{M})}{2}(\mathrm{~J}) \\
& =\left(\frac{1.76 \times 90 \times \pi}{0.5 \times 180}\right)^{2} \times \frac{0.6764}{2}=10.3(\mathrm{~J})
\end{aligned}
$$

$$
\mathrm{E} \leq 17.2(\mathrm{~J})
$$

Consider whether the temporarily selected AX7045X is available.
Sum of the moment of inertia of load $\quad 0.651 \leq 0.90\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Max. rotation speed $\quad 52.8 \leq 240(\mathrm{rpm})$
Max. load torque $\quad 37.8 \leq 45$ (N.m)
Effective value of load torque $\quad 9.2 \leq 15(\mathrm{~N} \cdot \mathrm{~m})$
Regenerative power $\quad 10.3 \leq 17.2$ (J)
With these conditions, AX7045X is available.

For model selection for "MC2 curve"

What is MC2 curve?

The MC2 curve is a cam curve for which the constant velocity interval can be freely set by setting the acceleration/deceleration time while there is a constant velocity interval during travel, as is the case with an MC (modified constant) curve.
For an MC (generic term: MCV50) curve, the percentage of the constant velocity interval is 50%.
Note: The setting of the acceleration/deceleration time is $1 / 2$ or less of the travel time. When the setting of the acceleration/deceleration time exceeds $1 / 2$ of the travel time, the cam curve is automatically changed to the MS (modified sine) curve.
The example diagram shows the velocity pattern when the percentage of the constant velocity interval is 75% by setting the acceleration/deceleration time (ta) to 0.5 seconds for the 4 seconds of the travel time (t_{1}).

Selection method

For the MC2 curve, the formula below is used to select a model.

Travel angle	$: \psi\left({ }^{\circ}\right)$
Cycle time	$:$ to (s)
Travel time	$: \mathrm{t}_{1}(\mathrm{~s})$
Acceleration/deceleration time	$: \mathrm{ta}(\mathrm{s})$
Load moment of inertia	$: \mathrm{J}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Output shaft moment of inertia	$: \mathrm{Jm}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Friction torque	$: \mathrm{Tf}(\mathrm{N} \cdot \mathrm{m})$
Work torque	$: \mathrm{Tw}(\mathrm{N} \cdot \mathrm{m})$
Output shaft friction torque	$: \mathrm{TmF}(\mathrm{N} \cdot \mathrm{m})$

Max. rotation speed: $N \max$ (rpm)
$N \max =\frac{\psi}{6\left(\mathrm{t}_{1}-0.863 \mathrm{ta}\right)}$
Load torque (max. value): $\mathrm{Tm}(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{Tm}=\left[5.53\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right) \cdot \frac{\psi \cdot\left(1-\frac{\mathrm{t}_{1}-2 \mathrm{ta}}{\mathrm{t}_{1}-0.863 \mathrm{ta}}\right) \cdot \pi}{720 \cdot \mathrm{ta}^{2}}+\mathrm{Tf}+\mathrm{T}_{\mathrm{w}}\right] \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}}$
Load torque (effective value): Trms (N•m)
Trms $=\sqrt{\frac{2 \mathrm{ta}}{\mathrm{t}_{0}} \cdot\left[3.91\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right) \cdot \frac{\psi \cdot\left(1-\frac{\mathrm{t}_{1}-2 \mathrm{ta}}{\mathrm{t}_{1}-0.863 \mathrm{ta}^{2}}\right) \cdot \pi}{720 \cdot \mathrm{ta}^{2}} \cdot \mathrm{fc}\right]^{2}+\left[\left(\mathrm{Tf}+\mathrm{T}_{\mathrm{w}}\right) \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}}\right]^{2}}$

For model selection for "Continuous rotation"

What is continuous rotation?

The continuous rotation has the following functions.

1. Continuous rotation
: Rotation continues at a constant rotation speed until the continuous rotation stop input is input.
2. Stop at equal
segment position
With the equal segment specified, the device stops at the equal segment position by a continuous rotation stop input.

The example diagram shows the velocity pattern where the motor is accelerated at the acceleration time: ta up to the set rotation speed: N , and then stopped, by a continuous rotation stop input, at the deceleration time: td.

Selection method

For the continuous rotation, the formula below is used to select a model.
Rotation speed : N (rpm)
Cycle time : to (s)
Acceleration time $\quad:$ ta (s)
Deceleration time : td (s)
Load moment of inertia : J (kg•m²)
Output shaft moment of inertia : Jm $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Friction torque : Tf $(\mathrm{N} \cdot \mathrm{m})$
Work torque : $\mathrm{T}_{\mathrm{w}}(\mathrm{N} \cdot \mathrm{m})$
Output shaft friction torque: TMF (N•m)
Max. rotation speed: $N \max (r p m)(* 1)$
$N \max =\mathrm{N}$

Load torque (max. value): $\operatorname{Tm}(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{Tm}=\left[5.53\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right) \cdot \frac{6.82 \mathrm{~N} \cdot \mathrm{ta} \cdot \pi}{720 \cdot \mathrm{ta}^{2}}+\mathrm{Tf}+\mathrm{T}_{\mathrm{w}}\right] \cdot \mathrm{fc}+\mathrm{T}_{\text {MF }}$
Load torque (effective value): Trms ($\mathrm{N} \cdot \mathrm{m}$)
Trms $=\sqrt{\frac{2 \mathrm{ta}}{\mathrm{t}_{0}} \cdot\left[3.91\left(\mathrm{~J}+\mathrm{Jm}_{\mathrm{m}}\right) \cdot \frac{6.82 \mathrm{~N} \cdot \mathrm{ta} \cdot \pi}{720 \cdot \mathrm{ta}^{2}} \cdot \mathrm{fc}\right]^{2}+\left[\left(\mathrm{Tf}+\mathrm{T}_{\mathrm{w}}\right) \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{mF}}\right]^{2}}$
The formula above is applicable when ta $\leq t d$. When ta $>\mathrm{td}$, replace ta with td for perform selection.
*1) At the time of continuous rotation, the maximum rotation speed is limited. Use the device according to the actuator specifications.

A When rotation center is the same shaft

1. Circular plate (cylinder)

2. Hollow circular plate (hollow cylinder)
3. Cuboid

$$
J=\frac{m\left(R^{2}+r^{2}\right)}{2}
$$

4. Ring

5. Cylinder
6. Hollow cylinder

$$
J=\frac{m\left(4 R^{2}+3 r^{2}\right)}{4}
$$

$$
J=\frac{m\left(3 R^{2}+l^{2}\right)}{12}
$$

$J=\frac{m\left(R^{2}+r^{2}+l^{2} / 3\right)}{4}$

B When rotation center shafts differ

1. Any shape (if sufficiently small) Center of rotation

2. Circular plate (cylinder)

3. Hollow circular plate (hollow cylinder)

For conveyor

$m_{1}:$ Chain weight
$m_{2}:$ Workpiece total weight

W
m_{3} : Jig (pallet) total weight
m_{4} : Sprocket A (drive) + B total weight
R : Drive side sprocket radius

Selection guide

ABSODEX selection guide specifications check sheet Table direct drive			(Note) Contact CKD for chain drives and gear drives.	
Company name				
Division	Your name			
TEL				

(Note) Index time is movement time + settling time.
The settling time differs according to the working condition, but generally is between 0.025 and 0.20 s .

- Other load conditions

Installation position

1. Horizontal (Fig.2) 2. Vertical (Fig. 3)

Extemal job

1. None
2. Available

Note) Eccentric load caused by gravity from vertical installation, extemal load caused by caulking work Dial plate support form bottom

1. None	2. Available
Coefficient of friction μ	\square
Work radius \quad Rf (mm)	\square

Device rigidity

1. High 2. Low (Note)
(Note) When using a spline, when unit cannot be fixed directly onto the device (Fig. 4), when there is a mechanism such as a chuck on the table.

Extension with table shaft

Actuator movement

1. None 2. Available

(Note) When actuator is mounted on $X-Y$ table or vers mechanism, etc., and mounted actuator moves
(Note) If 2 is selected for any item, contact CKD.

(Fig. 1) Load conditions

(Fig. 3) Installation position: Vertical

(Fig. 4) Installation rigidity: Low

Note) Attach system outline and reference drawings so that the optimal model can be selected

Check below when selecting AX6001MU/AX6003MU.

- Use conditions, environmental conditions (Optional)

Actuator ambient temperature (${ }^{\circ} \mathrm{C}$)
Motor cable length (m)

Driver ambient temperature (${ }^{\circ} \mathrm{C}$)
24 VDC power supply cable length (m) 24 VDC power supply coil diameter (mm^{2}) 24 VDC power supply voltage accuracy (\%) 24 VDC line point of contact quantity (pc.) 24 VDC line point of contact resistance ($\mathrm{m} \Omega / \mathrm{pc}$.)

* You can do a more rigorous selection by filling in this field.
* With a power supply cable $1.25 \mathrm{~mm}^{2}$ or more, please use one as short (recommended length 1 m or less) as possible.
* If the output voltage is low in a power supply with voltage adjustment, please adjust it to 24 V and use it.

Safety Precautions

Always read this section before use.

Abstract

When designing equipment using ABSODEX, the manufacturer is obligated to ensure that the safety of the mechanism and the system that runs by the electrical controls are secured. It is important to select, use, handle and maintain the product appropriately to ensure that the CKD product is used safely. Observe warnings and precautions to ensure device safety. Check that device safety is ensured, and manufacture a safe device.

A WARNING

1 This product is designed and manufactured as a general industrial machine part. It must be handled by an operator having sufficient knowledge and experience.
2 Use the product within specifications range.
This product must be used within its stated specifications. In addition, never modify or additionally machine this product. This product is intended for use as a device or part for general-purpose industrial machinery. It is not intended for use outdoors or for use under the following conditions or environment.
(Note that this product can be used when CKD is consulted prior to use and the customer consents to CKD product specifications. The customer must provide safety measures to avoid risks in the event of problems.)
(1) Use for applications requiring safety, including nuclear energy, railways, aircraft, marine vessels, vehicles, medical devices, devices or applications in contact with beverages or foodstuffs, amusement devices, emergency operation (cutoff, release, etc.) circuits, press machines, brake circuits, or safety devices or applications.
(2) Use for applications where life or assets could be adversely affected, and special safety measures are required.

3 Observe organization standards and regulations, etc., related to the safety of the device design.

4 Do not remove devices before confirming safety.

(1) Inspect and service the machine and devices after confirming the safety of the system by for instance turning off the nearby devices and connected devices.
(2) Note that there may be hot or charged sections even after operation is stopped. Be careful when handling devices at the time of inspection and servicing.
(3) When inspecting or servicing the device, turn off the device and the power to the facility. Discharge any compressed air from the system, and pay close attention to possible water leakage and leakage of electricity during inspection and servicing.

5 Observe the instructions and cautions of each product to prevent accidents.
(1) When the device is off, do not turn the output shaft of the actuator to a speed exceeding 30 rpm . The power generation of the actuator may damage the driver or may cause electrical shock.
(2) Servo off (including emergency stop and alarm) or brake off with rotational force being applied, e.g. by gravity, may cause the output shaft to rotate due to turning force. Operate the actuator in the balanced condition so that no rotational force is applied for these operations or after safety is confirmed.
(3) Keep hands away from the output shaft, as sudden motion may take place during gain adjustments or trial run. When operating the actuator from a position in which motion cannot be confirmed, make sure that safety is assured when the output shift is rotated beforehand.
(4) The brake built-in actuators do not completely clamp the output shaft in all cases.

The built-in brake alone is not enough to secure safety when performing maintenance in applications in which the output axis may rotate due to an unbalanced load, or when the machine is stopped for an extended period of time. Be sure that the equipment is in a balanced state or provide a mechanical locking mechanism.
5 It may take several seconds to stop in an emergency depending on rotation speed and load.
6 Observe the following precautions to prevent electric shock.
(1) The power terminals on the front side of the driver and the motor cable connection terminals are high voltage parts. For the terminal blocks, make sure to install the attached terminal cover. Do not touch the actuator and the driver while the power supply is on.
Immediately after the power is turned off, high voltage is applied, so also do not touch them for 5 minutes or more, until the electrical charge accumulated in the capacitor inside the driver is released.
(2) For operations with the side cover removed, such as maintenance and inspection or change of the switch inside the driver, make sure to turn off the actuator and release the electrical charge for 5 minutes or more before work; otherwise, an electric shock may occur from the high-voltage device.
(3) Do not attach or remove any connectors with the power supply on. Doing so may cause malfunction, failure, or electric shock.

7 Before restarting the machine and devices, confirm that measures are taken to prevent the loaded objects from being removed.

8 Install an overcurrent protective device.
The wiring to the driver should be in accordance with JIS B 9960-1:2019 (IEC 60204-1:2016) Safety of Machinery - Electrical Equipment of Machines - Part 1: General Requirements. Install an overcurrent protector (a circuit breaker or circuit protector for wiring) on the main power, control power, and I/O power.
(Reference: JIS B 9960-1 7.2.1 General description)
If there is a possibility the circuit current may exceed the rated value of the component or the allowable current of the conductor, an overcurrent protection must be provided. The details of the ratings or set values to be selected shall be provided in 7.2.10.
9 Observe the precautions on the following pages to prevent accidents.
The precautions are ranked as "DANGER", "WARNING" and "CAUTION" in this section.
A DANGER: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries, and when there is a high degree of emergency to a warning.
A. WARNING: If handled incorrectly, a dangerous situation may occur, resulting in death or serious injury.
A. CAUTION: When a dangerous situation may occur if handling is mistaken leading to minor injuries or physical damage.

Note that some items described as "CAUTION" may lead to serious results depending on the situation. Every item provides important information and must be observed.

Warranty

1 Warranty period
The product specified herein is warranted for one (1) year from the date of delivery to the location specified by the customer.

2 Warranty coverage
If the product specified herein fails for reasons attributable to CKD within the warranty period specified above, CKD will promptly provide a replacement for the faulty product or a part thereof or repair the faulty product at one of CKD's facilities free of charge.
However, following failures are excluded from this warranty:

1) Failure caused by handling or use of the product under conditions and in environments not conforming to those stated in the catalog, the Specifications, or the Instruction Manual.
2) Failure caused by use of the product exceeding its durability (cycles, distance, time, etc.) or caused by consumable parts.
3) Failure not caused by the product.
4) Failure caused by use not intended for the product.
5) Failure caused by modifications/alterations or repairs not carried out by CKD.
6) Failure caused by reasons unforeseen at the level of technology available at the time of delivery.
7) Failure caused by acts of nature and disasters beyond control of CKD.

The warranty stated herein covers only the delivered product itself. Any loss or damage induced by failure of the delivered product is excluded from this warranty.
Note: For details on the durability and consumable parts, contact your nearest CKD sales office.
3 Compatibility confirmation
The customer is responsible for confirming the compatibility of CKD products with the customer's systems, machines and equipment.

ACAUTION

Design/selection

1 The actuators and drivers are not waterproof. Provide waterproofing when using them where they may come in contact with water or oil.
2 If chips or dusts adhere to the actuator or driver, it may cause leakage of electricity or failure. Check that these do not come in contact with the product.
3 Repeatedly turning power ON and OFF may cause damage to the elements inside the driver.
4 From the servo-ON state (holding state), when power is turned OFF or servo-OFF, the output axis may move from the holding position without external force being applied.
5 The optional electromagnetic brake is provided to increase the holding rigidity when stopping the output shaft. Do not use it to brake or stop the rotating output shaft.
Actuators and drivers do not guarantee rustproofing. Give careful consideration to storage, installation, and environment.
7 Equipment with ABSODEX products installed should have sufficient rigidity to realize full $A B S O D E X$ performance. If the load equipment or frame's mechanical unique vibration is relatively low (approx. 200 to 300 Hz or less depending on the equipment), resonance could occur in the ABSODEX product and load equipment or frame. Secure the rotary table and main unit installation bolts, and ensure sufficient rigidity without loosening, etc. [Fig. 1]
[Fig. 1] Actuator installation

Gain must be adjusted based on load table size, etc. Even when the ABSODEX product is not directly installed, it should be installed on a frame having the highest rigidity possible. [Fig. 2]

8 When extending the output shaft, refer to the references given in Table 1 for the extended shaft's diameter and length. In addition, add dummy inertia by using Fig. 3 as a reference.
[Table 1] Extended output shaft's diameter guideline

Max. torque $[\mathrm{N} \cdot \mathrm{m}]$	Shaft extension (mm)			TS/TH/XS	
	50	100	200	300	500
6	$\varnothing 35$	$\varnothing 40$	$\varnothing 46$	$\varnothing 50$	$\varnothing 60$
9,12	$\varnothing 40$	$\varnothing 46$	$\varnothing 55$	$\varnothing 60$	$\varnothing 70$
18,22	$\varnothing 45$	$\varnothing 55$	$\varnothing 65$	$\varnothing 70$	$\varnothing 80$
45	$\varnothing 55$	$\varnothing 65$	$\varnothing 75$	$\varnothing 85$	$\varnothing 95$
75	$\varnothing 62$	$\varnothing 75$	$\varnothing 90$	$\varnothing 95$	$\varnothing 110$
150	$\varnothing 75$	$\varnothing 90$	$\varnothing 110$	$\varnothing 115$	$\varnothing 130$
210	$\varnothing 80$	$\varnothing 95$	$\varnothing 115$	$\varnothing 125$	$\varnothing 140$
300	$\varnothing 90$	$\varnothing 105$	$\varnothing 125$	$\varnothing 140$	$\varnothing 155$
500	$\varnothing 100$	$\varnothing 120$	$\varnothing 145$	$\varnothing 160$	$\varnothing 180$
1000	$\varnothing 120$	$\varnothing 140$	$\varnothing 170$	$\varnothing 185$	$\varnothing 210$

| Max. torque
 $[\mathrm{N} \cdot \mathrm{m}]$ | Shaft extension (mm) | |
| :---: | :---: | :---: | MU

Note) The figures in the above table are extended output shaft's diameter references for steel materials (solid shafts).
C ontact CKD for references for other materials and hollow shafts.
[Fig. 2] Actuator attachment

9 If sufficient rigidity cannot be attained, machine resonance is suppressed to some degree by installing dummy inertia as close to the actuator as possible.
Examples of adding dummy inertia are shown below.
As a reference, dummy inertia is [load inertia] $\times(0.2$ to 1). [Fig. 3]
[Fig. 3] Dummy inertia installation example 1

When coupling with a belt, gears, or spline, or when joining with a key, dummy inertia should be [load inertia] $\times(0.5$ to 2$)$.
If speed changes with belts or gears, use load inertia as the actuator output shaft conversion value, and install dummy inertia on the actuator. [Fig. 4] [Fig. 5]
(CAUTION) Install dummy inertia as large as possible within the actuator's capacity. (Use steel that has a large specific gravity.)
[Fig. 4] Dummy inertia installation example 2

[Fig. 5] Dummy inertia installation example 3

10 A resolver (magnetic position detector) is built into the ABSODEX product.
Do not place strong magnetic fields such as rare earth magnets near the actuator. Do not pass highcurrent wiring through the hollow hole. If you do, the full performance may not be achieved, and malfunction or fault may result.

11 We recommend that you install a surge protector if there is a possibility that the device may fail due to lightninginduced surges.

For other precautions, check the materials below.

1. On the Internet

CKD Component Products Website
https://www.ckd.co.jp/kiki/en/

- Instruction manuals

2. Please request the following materials: ABSODEX AX Series TS/TH Type Technical Data ABSODEX AX Series MU Type Technical Data

ACAUTION

Design/selection

12 Electromagnetic brake connection
AX4000T-EB

1) Do not use the electromagnetic brake to brake or stop the rotating output shaft.
2) Connecting the $B K+$ or $B K$ - of the driver directly with the electromagnetic brake damages the driver.
3) To connect induction loads such as the relay shown below to the external contact, use ones with a rated coil voltage of 24 VDC and a rated current within 100 mA , and take a surge suppression measure.

Recommended circuit for electromagnetic brake

- Operating method

1. Control by the NC program (M68/M69) When the "M68" code is executed, the current is stopped (brake activated) across BK + and BK-, and when the "M69" code is executed, the current flows (brake released).
2. Control by brake release input (I/O connector, 18 pin) With the brake activated, when brake release is input, the current flows (brake released) across BK+ and BK-
When the electromagnetic brake is operated frequently (number times turned ON/OFF), use a solid state relays (SSR) for the external contact.
Recommended model G3NA-D210B-UTU DC5-24 (OMRON) Read the instruction manual of SSR before use

13 To pass a shaft through the hollow of the model equipped with an electromagnetic brake, use a non-magnetic material (such as SUS 303). If a magnetic material (such as S45C) is used, the shaft will be magnetized, causing stuck iron powder on the equipment or giving magnetic effects on peripheral devices.

14 Note that the magnetic force of the electromagnetic brake may cause stuck iron powder or effects on measuring instruments, sensors or other devices.
15 For other precautions, refer to the instruction manual (technical data).

Be sure to read this section before use.

A CAUTION

Mounting, installation and adjustment

1 Make sure to use the dedicated cable for connecting between the actuator and driver. Do not modify the length or material of the dedicated cable, as it could cause malfunction or failure.
2 Make sure to connect the proper power supply. Connecting a non-designated power supply could cause failure. When turning $O N$ the power supply after it has been turned OFF, check that the actuator output shaft has stopped. Wait at least 10 seconds after turning OFF the power supply.
3 Before adjusting the gain, securely install the ABSODEX in the machine and securely mount the loads such as the table. Confirm that no interference occurs and that safety is ensured when movable parts are rotated.
4 Do not tap the output shaft with a hammer or apply excessive force during assembly. Doing so could prevent the achievement of full accuracy and performance, or cause failure.
5 Do not place objects that produce strong magnetic fields, such as rare earth magnets, near the actuator. It may not be possible to maintain the original accuracy.
6 The actuator may become hot, depending on the working conditions. Provide a cover or other means to prevent the actuator from being touched.
7 The driver surface may become hot, depending on the working conditions. Place it inside the switchboard or take other measures to prevent it from being touched.
8 Do not drill holes into the actuator. Contact CKD if machining is required.

9 P Please do not perform maintenance work on the actuator, the rotary table attached to the actuator or other moving parts.

10 A About combining the actuator and driver

- If the actuator and driver are combined mistakenly after program input (after parameter settings are configured), alarm 3 is activated. Check the actuator and driver combination.
(Note) Alarm 3 occurs to prevent malfunction if the actuator and driver combination differs from when the program was input. Alarm 3 is reset when the program and parameters are input again.
- If operation is started with an incorrect actuator and driver combination after the program input (after parameter settings are configured), malfunction could occur or equipment be damaged.
- Order a separate cable when the length of the cable needs to be changed.
- If a driver other than the compatible type is connected, it could cause the actuator to burn out.
11When using a circuit breaker, select one that incorporates high-frequency measures for inverter use.
12 The position of the output shaft on the actuator dimensions does not represent the actuator's origin position. When using it at the output shaft shown in dimension drawings, the origin must be adjusted by the origin offset function.
13The lead-out cable for the AX4009T, AX2000T Series, and AX6000M Series is not movable. Make sure to secure the cable at the connector so that it does not move. Do not lift up the body by the lead-out cable or apply excessive force to the cable. Doing so may activate the malfunction alarm or cause the connector to break or become disconnected.
14For additional notes and conditions of compliance to international standards, please refer to the technical data (ABSODEX AX Series TS/TH Type Technical Data, ABSODEX AX Series MU Type Technical Data).
15Do not pull strongly on the actuator lead-out cable or connector part, as it could cause the lead-out cable shield braid to become exposed.

acaution

1 Do not pull the cable forcibly, apply excessive force to it, or damage it.
2 Do not overhaul the actuator unit, as original functions may not be restored. In particular, taking apart the rotational position detection unit may cause malfunction or accuracy degradation.
3 When performing withstand voltage test on the machine with the ABSODEX installed, disconnect the main power cable to the ABSODEX driver and ensure that no voltage is applied to the driver. This may lead to failure.
4 If alarm 4 (actuator overload: electronic thermal) is activated, wait for the actuator temperature to drop before restarting. Alarm "4" may be activated in the cases described below. Remove the cause before resuming use.

- If caused by resonance/vibration \rightarrow Sufficiently secure mounting rigidity. - If tact/speed \rightarrow Increase travel time/stop time.
-When the structure constrains the output shaft, add \rightarrow M 68 and M69 commands.
5 The actuator coordinates are recognized after the power is turned ON . Make sure that the output shaft does not move for several seconds after the power is turned ON.

Use/maintenance

6 For additional notes and troubleshooting for the alarm display, please refer to the technical data (ABSODEX AX Series TS/TH Type Technical Data, ABSODEX AX Series MU Type Technical Data).

For other precautions, check the materials below.

1. CKD website
https://www.ckd.co.jp/kiki/en/

- Instruction manual

2. Request the materials below. ABSODEX AX Series TS/TH Type Technical Data ABSODEX AX Series MU technical data

Related products

Direct drive motor

■ DISC Series

The Direct Drive Servo Motor boasts high performance. A varied lineup handling numerous demands for high precision, high speed, speed stability, etc. Achieves one level higher performance.

ABSODEX Actuator NX4 Series

Driver NXD Series
ActuatorActuator NX4 Series
\square Flexible rotation positioning
\square High rigidity
E Easy installation and centering
\square Easy wiring and piping by securing a hollow hole
\square Adopts an absolute resolver with superior environment conditions

Driver NXD Series
Five types of interfaces are available

Catalog No. CC-1456

*J apan only release

Catalog No. CB-055A

For press fitting and hoisting EBR-L Series

Electric actuator FLSH/FLCR/FGRC Series

■ 2-Finger Gripper FLSH Series
For soft handling of various workpieces
■ Table FLCR Series
For short-stroke workpiece transport and positioning
\square Rotary FGRC Series
For indexing operation and workpiece inversion

- Controller ECR Series
"One controller" that connects to any actuator
Controller ECG Series
"New Controller" with easy inventory management, easy design, and easy configuration

Electric actuator D Series, G Series

New electric actuator inheriting the DNA of air Components
\square D Series (screw drive method)
An actuator specialized for positioning between two points
■ D Series (Spring drive method)
Clamp / gripping applications specialized
Spring integrated actuator
\square G Series (screw drive method)
64-point positioning actuator

Catalog No. CC-1444A

Catalog No.CC-1591

*J apanese catalog only

Catalog No.CC-1569A

WORLD－NETWORK

CKD Corporation

Website https：／／www．ckd．co．jp／en／ ASIA
喜開理（上海）機器有限公司 CKD（SHANGHAI）CORPORATION
－営業部 $/$ 海浦西事務所（SALES HEADQUARTERS／SHANGHAI PUXI OFFICE） Room 601，6th Floor，Yuanzhongkeyan Building，No． 1905 Hongmei Road，Xinhui District，Shanghai 200233，Chin
PHONE $+86-21-61911888$ FAX $+86-21-60905556$上海浦東事務所（SHANGHAI PUDONG OFFICE）
寧波事務所（NINGBO OFFICE）
杭州事務所（HANGZHOU OFFICE）
無錫事務所（WUXI OFFICE）
－囌山州事務所（KUNSHAN OFFICE）
薬州事務所（SUZHOU OFFICE）
南京事務務（NANJING OFFICE）
宬都事務邪（CHENGDU OFFFIC

- 歲都事務務所（CHENGDU OFFICE）
- 䣹忡事務所（ZHENGZHOU OFFICE）

長沙事務所（CHANGSHA OFFICE）
重慶事務所（CHONGQING OFFICE）
西安事務所（XIAN OFFICE）

- 広州事務所（GUANGZHOU OFFICE）
- 中山事務所（ZHONGSHAN OFFICE）

深圳䠓事務所（WEST SHENZHEN OFFICE）
深圳東事務所（EAST SHENZHEN OFFICE）
東荎事務所（DONGGUAN OFFICE）
度門事務所（XIAMEN 所（FUZHOU OFFICE）
湾陽事務所（SHENYANG OFFICE）
大量事務所（DALIAN OFFICE）
長春事務所（CHANGCHUN OFFICE）
北京事務所（BEIJING OFFICE）
天津事務所（TIANJIN OFFICE）

- 責島事務所（QINGDAO OFFICE）
- 潍坊事務所（WEIFANG OFFICE）

済南事務所（JINAN OFFICE）
CKD INDIA PRIVATE LTD．
－HEADQUARTERS
Unit No．607， 6 th Floor，Welldone Tech Park，Sector 48 Sohna Road，Gurgaon－122018，Haryana，India BANGA 1 －124－418－8212
PUNE OFFICE

Revision details

－Deleted AX7000X and AX9000XS
－2－250 Ouji，Komaki City，Aichi 485－8551，Japan
－PHONE＋81－568－74－1338 FAX＋81－568－77－3461

PT CKD TRADING INDONESIA
－HEAD OFFICE
Menara Bidakara 2，18th Floor，JI．Jend．Gatot Subroto Kav
71－73，Pancoran，Jakarta 12870，Indonesia
PHONE＋62－21－2938－6601 FAX＋62－21－2906－9470
－MEDAN OFFICE
－KARAWANG OFFICE
－SEMARANG OFFICE
－SURABAYA OFFICE
CKD KOREA CORPORATION
－HEADQUARTERS
（3rd Floor），44，Sinsu－ro，Mapo－gu，Seoul 04088，Korea PHONE＋82－2－783－5201～5203 FAX＋82－2－783－5204
水原学業所（SUWON OFFICE）
天安営業所（CHEONAN OFFICE）
蔚山営業所（ULSAN OFFICE）
M－CKD PRECISION SDN．BHD．
－HEAD OFFICE
Lot No．6，Jalan Modal 23／2，Seksyen 23，Kawasan MIEL， Fasa 8， 40300 Shah Alam，Selangor Darul Ehsan，Malaysia PHONE $+60-3-5541-1468$ FAX $+60-3-5541-1533$
－JOHOR BAHRU BRANCH OFFICE
PENANG BRANCH OFFICE
CKD SINGAPORE PTE．LTD． No． 33 Tannery Lane \＃04－01 Hoesteel Industrial PuONE，singapore 347 s9，singapore
CKD CORPORATION BRANCH OFFICE
No． 33 Tannery Lane \＃04－01 Hoesteel Industria Building，Singapore 347789 ，Singapore PHONE $+65-67447260$ FAX $+65-68421022$

CKD THAI CORPORATION LTD
－HEADQUARTERS
19th Floor，Smooth Life Tower， 44 North Sathorn Road， PHONE $+66-2-267-6300$ FAX +66 －2－267－6304－5
－NAVANAKORN OFFICE
－EASTERN SEABOARD OFFICE
－LAMPHUN OFFICE
－KORAT OFFICE
－AMATANAKORN OFFICE
－SARABURI OFFICE

台湾喜開理股份有限公司
TAIWAN CKD CORPORATION
－HEADQUARTERS
16F－3，No．7，Sec．3，New Taipei Blvd．，Xinzhuang Dist．， New aiper Cly 242，Taiwan
PHONE＋886－2－8522－8198 FAX＋886－2－8522－8128

- 新竹学業所（HSINCHU OFFICE）
- 台中谠業所（TAICHUNG OFFICE
- 台南学営業所（TAINAN OFFICE）

CKD VIETNAM ENGINEERING CO．，LTD．
－HEADQUARTERS
18th Floor，CMC Tower，Duy Tan Street，Cau Giay PHONE＋84－24－3795－7631

631 FAX＋84－24－3795－7637
EUROPE
CKD EUROPE B．V
－HEADQUARTERS Beechavenue 125A， 1119 RB Schiphol－Rijk，the Netherlands PHONE＋31－23－554－1490
－CKD EUROPE GERMANY OFFICE
－CKD EUROPE UK
－CKD EUROPE CZECH OZ
CKD CORPORATION EUROPE BRANCH Beechavenue 125A， 1119 RB Schiphol－Rijk，the Netherlands PHONE＋31－23－554－1490

NORTH AMERICA \＆LATIN AMERICA

CKD MEXICO，S．DE R．L．DE C．V Cerrada la Noria No． 200 Int．A－01，Querétaro Park II， Parque Industrial Querétaro，Santa Rosa Jáuregui， Querétaro，C．P．76220，México
PHONE＋52－442－161－0624
CKD USA CORPORATION
－HEADQUARTERS
1605 Penny Lane，Schaumburg，IL 60173，USA PHONE＋1－847－648－4400 FAX＋1－847－565－4923
－LEXINGTON OFFICE
－SAN ANTONIO OFFICE
－SAN JOSE OFFICE／TECHNICAL CENTER
BOSTON OFFICE

The goods and／or their replicas，the technology and／or software found in this catalog are subject to complementary export regulations by Foreign Exchange and Foreign Trade Law of Japan．
If the goods and／or their replicas，the technology and／or software found in this catalog are to be exported from Japan，Japanese laws require the exporter makes sure that they will never be used for the development and／or manufacture of weapons for mass destruction．

[^0]: *1) The origin position of the actuator may differ from that shown in the dimensions.
 The origin offset function allows you to set a desired origin position.

[^1]: *1) The origin position of the actuator may differ from that shown in the dimensions.

[^2]: * Custom order products are CE, UL/CUL, and RoHS non-compliant. Contact CKD as needed.

[^3]: * The parts listed on this page can be purchased from CKD.

