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Abstract 

 

RNA isoforms influence cell identity and function. Until recently, technological limitations prevented 

a genome-wide appraisal of isoform influence on cell identity in various parts of the brain. Using 

enhanced long-read single-cell isoform sequencing, we comprehensively analyze RNA isoforms in 

multiple mouse brain regions, cell subtypes, and developmental timepoints from postnatal day 14 

(P14) to adult (P56). For 75% of genes, full-length isoform expression varies along one or more axes 

of phenotypic origin, underscoring the pervasiveness of isoform regulation across multiple scales. As 

expected, splicing varies strongly between cell types. However, certain gene classes including 

neurotransmitter release and reuptake as well as synapse turnover, harbor significant variability in 

the same cell type across anatomical regions, suggesting differences in network activity may 

influence cell-type identity. Glial brain-region specificity in isoform expression includes strong 

poly(A)-site regulation, whereas neurons have stronger TSS regulation. Furthermore, developmental 

patterns of cell-type specific splicing are especially pronounced in the murine adolescent transition 

from P21 to P28. The same cell type traced across development shows more isoform variability than 

across adult anatomical regions, indicating a coordinated modulation of functional programs 

dictating neural development. As most cell-type specific exons in P56 mouse hippocampus behave 

similarly in newly generated data from human hippocampi, these principles may be extrapolated to 

human brain. However, human brains have evolved additional cell-type specificity in splicing, 

suggesting gain-of-function isoforms. Taken together, we present a detailed single-cell atlas of full-

length brain isoform regulation across development and anatomical regions, providing a previously 

unappreciated degree of isoform variability across multiple scales of the brain.  
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Introduction 

 
Studies characterizing the single-cell gene expression profiles of whole tissues and organisms have 

offered insight into the molecular makeup of complex tissues such as the brain1–6, evolutionary 

conservation of neuronal expression profiles7–9, and perturbations in neurological diseases10,11. Early 

single-cell transcriptomic studies in the brain characterized the hippocampus and cortex, given the 

crucial roles of these brain structures in cognitive function. These seminal studies identified 

heterogeneous cell populations in mammalian neurodevelopment1,3,4,9,12. However, few brain single-

cell studies consider mRNA isoforms. mRNA isoforms are strongly modulated in the mammalian 

brain, influencing processes such as cellular growth13, maturation14–17, migration18,19,  synapse 

formation
20,21

, and activity patterns
22–26

. These properties of neuronal and non-neuronal cells are 

highly distinct between brain regions and change during development. Moreover, multiple diseases 

are associated with malfunctioned alternative splicing and may underlie regional vulnerabilities. 

While tissue-specific splicing is thought to have evolved across species27–29, there is an unmet need 

to identify conserved transcript elements defining the cellular diversity within highly specialized 

tissue such as the brain. Therefore, a comprehensive view of brain-region, cell-type, and 

developmental mapping of isoform usage at a single-cell resolution would aid our understanding of 

the brain in health and disease. 

 

We and others have developed various single-cell short30–32- and long-read33–37 technologies to study 

splicing. Long-read sequencing cDNAs end-to-end yields isoform profiles for thousands of single 

cells34,38–41 thus allowing the quantification of isoforms within and between conditions. These studies 

in the mouse brain have shown that isoforms can define embryonic cell types34 and cell subtypes can 

differ in isoform expression and between two brain regions as early as postnatal day 7 (P7)38. 

However, the extent to which brain regions such as the thalamus, striatum, and cerebellum, which 

have distinct functions in motor control and coordination, differ in isoform expression for matched 

cell types is unknown. Furthermore, whether these regional differences differ in development or 

cell-subtype identity in defining splicing variation in neuronal and glial cell types is incompletely 

understood. Lastly, the degree to which any brain-region specific or cell-type specific isoform 

patterns are transient or maintained across development is an unsolved question. 

  

Here, using an enhanced single-cell long-read method (ScISOr-Seq2), we investigate these questions 

in a comprehensive manner. We start by investigating full-length isoforms across three axes: 

multiple adult brain regions, cell subtypes, and developmental timepoints. We find that distinct 

types of neurons and glia show widespread and characteristic isoform variability along these three 

axes. Glia in thalamic and cerebellar regions exhibit especially strong transcription start site (TSS), 

PolyA site, and exon regulation. Distinct sets of exons display extremely high variability in their 

inclusion patterns across cell types, brain regions, and developmental time points, and cell-type 

specificity tends to be conserved in human brain. A strong splicing shift occurs in the hippocampal 

and cortical oligodendrocyte lineage after gene expression signatures already distinguish 

oligodendrocyte precursors from astrocytes. Fluctuations in splicing variation occur during mouse 

adolescence and exhibit a peak of neuronal subtype variability in the telencephalon, a period critical 

in the establishment and dissolution of splicing variability across all major cell types. These data 

showcase the importance of using long reads to capture a fuller picture of transcriptomic diversity in 

brain function.   
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Results 
 

Short-read single-cell RNAseq identifies heterogenous cell populations Based on our single-

cell/nuclei isoform sequencing33,35 studies, we devised ScISOr-Seq2 (Methods) to investigate brain-

region specific, cell-type specific, and developmental-stage specific isoform regulation. Given the 

widespread transcription-mediated cell-identity establishment occurring in the telencephalon during 

postnatal development, particularly in the cortex and hippocampus which are crucial for memory 

and cognition, we first obtained single-cell 10x transcriptomics data from mouse hippocampus 

(HIPP) and visual cortex (VIS) at postnatal days 14, 21, 28, and 56 (n=16 samples: 2 replicates/age x 2 

brain regions). To compare these substructures with diverse brain regions, we also obtained similar 

data from adult (i.e., P56) striatum (STRI), thalamus (THAL) and cerebellum (CEREB) (n=6 samples: 2 

replicates/brain region x 3 brain regions). Filtering, quality control, short-read analysis42,43 and 

integration-mediated batch-effect control
44

 yielded 204,725 cells (mean=9,300 cells/sample, 

Methods, Table S1). This allowed us to leverage the relatively high sequencing depth per single cell 

to identify brain cell types, namely neuronal, glial, vascular, and immune cells. Using marker genes 

and public databases42,43, we defined three granularity levels for each cell: 1) Broad, e.g., neurons vs. 

glia, 2) medium cell type, e.g., excitatory vs. inhibitory neurons, and 3) cell subtype, e.g., layer2/3 vs. 

layer6 excitatory neurons (Fig 1a). Timepoint-specific UMAP embeddings described hippocampal 

neurogenesis with neuronal intermediate progenitors (NIPCs) and granule neuroblasts giving way to 

mature dentate gyrus granule neurons and pyramidal CA neurons. Oligodendrocyte progenitor cells 

(OPCs) and immature oligodendrocyte subtypes were enriched in pre-adulthood (Fig 1b). Similarly, 

mouse P56 brain-region specific UMAPs yielded broadly replicable cell types, albeit with certain 

brain-region specific neuronal populations such as layer-specific cortical excitatory cells, cerebellar 

granule cells, and type 1 vs. 2 medium spiny neurons (MSNs, Fig 1c). Gene expression of glial, 

immune, and vascular cells was more homogeneous across brain regions, e.g., cerebellar Bergmann 

glia aligned with telencephalic astrocytes in concordance with previous observations45–47 (Fig 1 a,c). 

Total cell numbers and cell subtypes were broadly consistent between samples and experiments, 

and microglia were often among the most abundant subtypes detected (Fig 1d-e). In total, we 

identified 34 cell subtypes and used these annotations to query differences in isoform expression 

between cell types arising from different brain regions and developmental timepoints with 

orthogonal long-read data.  
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Figure 1. Summary of mouse brain cell subtype assignments by age and region. (a) UMAP embedding of all 

~200K cells. Each dot represents a cell which is colored according to its cell type of origin based on marker gene 

annotation. (b) Same UMAP representation from A but split by timepoint for the hippocampal (browns) and visual 

cortex (purples) lineage. (c) Same UMAP representation from A but split by the region of origin at P56. Blue: 

Cerebellum, Green: Thalamus, Olive: Striatum, Yellow: Hippocampus, Lilac: Visual Cortex. (d) Barplot depicting 

number of cells obtained from each single cell experiment. (e) Dotplot showing the percent of cells belonging to 

each cell subtype indicated on the Y-axis obtained from the samples on the x-axis. Color of the dots indicates 

sample of origin, size of dot indicates the percentage of cells belonging to a subtype per sample. 
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Cell types are characterized by distinct regulation of isoforms across brain regions, development, 

and subtypes. Oxford Nanopore Technology (ONT) and PacBio HiFi sequencing yielded 250x106 and 

38x10
6 

barcoded long reads respectively for 395 cell clusters (e.g., P56:Thalamus:Replicate1:OPCs) 

obtained from the short-read analysis pipeline (Methods, Table S2-3). Using recent transcript-

discovery software
48,49

 high accuracy single-cell PacBio reads identified novel splice sites, enhancing 

the GENCODE annotation by 22.1% (40,184 transcripts). Over 67.3% of mapped, barcoded ONT 

reads (SD=4.51%, Table S2) represented multi-exonic transcripts with trustworthy splice sites, and 

~70% of these ONT transcript models corresponded to annotated or PacBio-derived transcripts 

(Methods, Fig S1). After removing UMI duplicates, all samples exhibited QC metrics commensurate 

with their sequencing depth, and these reads were used to calculate isoform abundance per cell 

cluster (Fig S2). 

To parse the individual and/or coordinated roles of (i) developmental age, (ii) brain region, 

and (iii) cell subtypes in shaping the splicing programs for a given cell type, we determined the 

extent of isoform variability of the same cell type (progenitor, inhibitory neurons, etc.) across these 

three axes (Methods). Similar to TSS-exon-poly(A)-site contributions in the ENCODE project50, we 

represented the normalized age-subtype-region variability in a ternary plot. Each vertex of the 

triangle shows directed enrichment for the indicated axis of variability, while lines connecting the 

halfway points of the axes define a “center triangle” representing isoforms with broadly equal 

variability along all three axes (Fig 2a). Progenitor-cell isoforms varied more strongly by subtype than 

by age, suggesting that the switch from NIPCs to GranuleNBs is associated to strong isoform-

mediated establishment of cell identity, regardless of developmental age. Perhaps unsurprisingly, as 

progenitors are less abundant in non-hippocampal adult regions, there is little variation in 

progenitor isoforms between brain regions (Fig 2b). Considering genes for which two isoforms were 

localized in distinct triangles in the ternary plots – indicating isoform regulation rather than gene 

regulation - we found enrichment for specific patterns. To isolate these patterns, we constructed a 

network diagram per cell type with nodes representing the axes, and the thickness of connecting 

lines indicating the number of such genes. One isoform largely exhibited progenitor-subtype or age 

variability while the other isoform(s) had uniform variability (center triangle) suggesting that 

different isoforms of a gene play distinct functional roles in establishing and maintaining progenitor 

identity (Fig 2b, inset).  

Isoform variability was strong between ages and brain regions for inhibitory neurons – and 

in both cases stronger than for excitatory neurons. Additionally, increased abundance of excitatory 

neurons allowed the measurement of subtype-specific variability within one region, which was 

possible to a lesser extent for inhibitory subtypes (Fig 2c, 2d.i.). Indeed, for excitatory neurons, 

strong variation across subtypes for one isoform was frequently accompanied by uniform variation 

across all three axes for the other isoform (Network diagram Fig 2d.i.). Due to the normalized matrix 

of variability being represented, center-triangle isoforms by definition have similar variability across 

all three axes – with variabilities being either all high, or all low (ref Fig 2a, Fig 2d.ii.). For excitatory 

neurons, most such center-triangle isoforms had consistent low variability, however a few showed 

consistent high variability (Figure 2d.iii.). Additionally, despite their similar variability across three 

axes, excitatory neuron isoforms in the center triangle tend to display subtype specificity, mirroring 

the trend in the entire excitatory neuronal population (Fig 2d.iv.). A similar observation was made 

across all cell types (Fig S3). Among glia, both astrocytes and oligodendrocytes showed complex 

variability patterns along regions, ages and subtypes, but oligodendrocytes had stronger variability 

across regions and subtypes (Fig 2e-f). The microglial subtype dominated the immune population, 

where little variability between subtypes was observed. However, strong regional isoform variability 

characterized immune cells. (Fig 2g). In summary, distinct cell types exhibit distinct preferences for 

isoform variability across brain regions, age, and cell subtypes pointing to a complex interplay of the 

three axes of phenotypic definition.  

Considering overall patterns, isoforms had higher mean variability across the three axes in 

neurons than in glia or progenitors, pointing to more complex neuronal regulation (Fig 2h). 
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Approximately 75.4% of genes had isoforms in distinct triangles and thus showed isoform variability 

independent of gene variability along at least one axis for one or more cell types. Moreover, 53.26% 

of genes showed isoforms in three triangles, revealing isoform variability along two or three axes. 

However, this analysis does not allow for the comparison of isoform patterns of individual genes 

between different medium-level cell types (excitatory/inhibitory neurons, astrocytes, etc). We found 

that at least 36.6% of genes showed a variability in isoform usage between these cell types in 

addition to regulation along another axis (Methods, Fig S4a). Within a fixed cell type, between 43.4% 

(in inhibitory neurons) and 53.34% (in excitatory neurons) of genes had isoforms in distinct triangles. 

Hence, excitatory neurons display isoform regulation not recapitulated in other cell types (Fig 2i). In 

addition to a third of genes showing multi-axial variability in most cell types, ~66% genes showed 

this hyper variability only in restricted cell types (Fig S4b). The gene Rufy3, which plays a role in 

neuronal polarity51, axon growth52, and synaptic plasticity53, exemplifies cell-type specific isoform 

variability along multiple axes. Three of the six annotated transcripts exhibit developmental 

variability in distinct cell types (progenitors, inhibitory neurons, and immune cells), two isoforms 

exhibit subtype and regional variability in astrocytes, while one isoform (Rufy3-207) is consistently 

found in the center-triangle (Fig S5). This points to a previously underappreciated complexity of 

isoform expression for genes such as Rufy3 in conferring specialization across neurodevelopment, 

cell (sub)types, and brain regions.  

Given the widespread brain-region variability in isoform expression within individual cell 

types, we systematically tested genes for altered isoform expression for matched cell types 

comparing one brain region to all other brain regions at P56 using our isoform tests and differential 

isoform quantification53 (ΔΠ, Methods). Thalamic and cerebellar astroglia showed strong specialized 

isoform expression compared to other brain structures. This is particularly interesting since 

cerebellum contains specialized Bergmann glia that are both morphologically and functionally 

distinctive54. This high splicing specialization supports alternative splicing as an important influence 

on brain anatomical region morphology and function. At modest differences of 10% isoform usage 

between conditions (ΔΠ=0.1, FDR ≤ 0.05, Methods), ~40% of tested genes show a significant 

difference in isoform abundance between thalamic astrocytes and all other sequenced astrocytes. 

Broadly similar observations arose for oligodendrocytes and immune cells. Neurons had more 

differentially expressed isoforms, with medium spiney neurons (MSNs) contributing to high brain-

region specificity of striatum inhibitory neurons, and distinct hippocampal pyramidal cells 

contributing to region specificity in excitatory neurons. These observations remained true, albeit 

lower, for increased ΔΠ values across all cell types. However, for ΔΠ≥0.5 few brain-region 

differences arose indicating that regional differences in isoform expression arise from smaller 

modulations across many genes (Fig 2j).  

While a large percentage of genes exhibited unique regional signatures, most genes showed 

distinct isoform expression in two or three regions, and rarely in four or five (Fig 2k). Consistent with 

the observation in Fig. 2g, immune populations had high regional specificity, and thalamus was an 

outlier in differential isoform expression, in which a high number of significantly differentially spliced 

genes were either non-significant or untestable in other brain regions (Fig 2l, Fig S6). Region-specific 

isoform expression of immune and oligodendrocyte populations had more changes in Poly(A)-site as 

opposed to TSS usage. Compared to glia, neurons exhibited higher levels of differential TSS and 

PolyA site usage between regions, and neuronal TSS usage was more region-specific than that of glial 

or immune types (Fig 2m). In summary, in addition to isoform regulation across development and 

between distinct cell (sub)types within an anatomical structure, the same cell type present in 

different brain regions leverages distinct splicing patterns, alternative TSS and PolyA sites, pointing 

to brain-region specificity of isoforms tied to distinct structure, localization, and function.  
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Figure 2. Distinct sources contribute to cell-type and brain-region specific isoform expression in the mouse brain.  (a) 

Outline of full-length isoform variability across developmental age, brain region and cell subtypes. (b) Ternary plot of 

variability in three axes for progenitor cells. (c) Same as (b) for Inhibitory cells. (d.i.) Same as (b) for excitatory cells; (d.ii) 

points colored by origin of specificity: age-orange, region-teal, subtype-blue, center-red; (d.iii) Density of mean 

variability across three axes for each isoform; (d.iv) Fraction of isoforms in each triangle; inset shows variability of 

center-triangle isoforms (e-g) Same as (b) for astrocytes, oligodendrocytes & immune cells. (h) Comparison of mean 

variability for three broad cell types. (i) % of genes with isoforms in 1, 2, 3, or 4 triangles of variability. (j). % of genes 

showing significant differences in isoform expression between astrocytes of one brain region vs. astrocytes of all other 

brain regions at 9 ΔΠ cutoffs (left). Neighboring four plots depict the same for oligodendrocytes, immune cells, 

inhibitory, and excitatory neurons. (k) % of genes with significant differential isoform expression (ΔΠ≥0.1) that are 

unique to one (light grey) or shared between multiple (darker grays) brain regions for each cell type. (l) Heatmap 

showing status (black–NonSig, Tan–Untested, Maroon–Significant) for each gene with significant differential isoform 

usage in one brain region compared to all others for immune cells. Foreground region indicated on the x-axis. (m) % of 

genes with significant differences in TSS/poly(A) site choice for astrocytes of a fixed brain region vs. astrocytes of all 

other brain regions at ΔΠ≥0.1 (left). Neighboring four plots depict the same for oligodendrocytes, immune, inhibitory, 

d ll
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Marker exons delineate cell-type and brain-region specific splicing patterns conserved in human 

To define precise transcript elements underlying brain-region and developmental splicing programs 

in the mouse brain, we focused on individual exons as opposed to full-length isoforms. We 

considered exons alternatively included in at least one brain region or time point and calculated the 

percent-spliced-in (Ψ) values for four main cell types (astrocytes, oligodendrocytes, excitatory 

neurons, inhibitory neurons) after averaging both replicates (Methods). Similar to the three axes of 

isoform variability, an exon’s Ψ value can vary along the triad of (a) cell subtypes, (b) matched cell 

types at different ages, or (c) brain regions (P21:Hippocampus:Oligo, n=44 triads, Fig S7). Pairwise 

correlations of Ψ values of such triads separated neuronal from non-neuronal populations, and all 

adult (P56) astrocytes clustered together regardless of region of origin. However hippocampal 

excitatory neurons clustered together regardless of age. Thus, unifying programs of age and/or brain 

region do not dictate splicing of distinct cell types (Fig S8). 

We next compared exon inclusion between triads to isolate splicing programs. This yielded 

4557 exons where a 25% difference in exon inclusion (ΔΨ≥0.25) was observed in at least one 

comparison, which we termed highly variable exons (hVEx, Methods). Hierarchical clustering 

showed that the highest ΔΨs corresponded to neuron vs. non-neuron comparisons – corresponding 

to a vertical split in the heatmap (top left, bipartite network diagram). On average, moderate ΔΨs 

corresponded to comparisons between two neuronal or two glial triads (top right, fully-connected 

network diagram). Many comparisons in the right half of the heatmap corresponded to differences 

between finer cell subtypes, or to brain-region and developmental differences of a matched cell type 

as indicated by self-loops in the network diagram. Clustering along rows defined four exon groups 

(A1-A4, Fig 3a), whose genes harbor largely non-overlapping functional ontologies: A1 and A4 hVEx 

have high ΔΨs for a few comparisons and low ΔΨs for most others. These exons’ genes are linked to 

regulatory roles for transcription, histone methylation and acetylation, and synaptic signalling. 

Conversely, hVEX exhibiting high ΔΨs in many comparisons, especially in the left half of the heatmap 

(A2, A3) belong to genes implicated in protein localization and neurotransmitter transport to the 

synapse. Together with the clean neuron versus glial split in the left half of the heatmap, these 

observations emphasize the role of synaptic isoforms rather than simple changes in expression of 

synaptic genes in establishing neuronal and glial identities (Fig S9).  

By definition, each hVEx arises from one or more triad comparisons with highly different Ψ 

values. Considering the triads giving rise to hVEx, we found that while most came from cluster 

comparisons within one brain region, a cell type could also show variability across brain regions (Fig 

3b). Indeed, 33.71% of these comparisons corresponded to a matched cell type between two brain 

regions, and 66.29% to a comparison within the same brain region (Fig 3c). We then compared 

brain-region and developmental Ψ variability for matched cell types. Developmental variability 

exceeded variability between adult brain regions (median ΔΨ=0.115 and 0.197 resp., Wilcoxon rank-

sum-test p<2.2e-16). This was equally true for each major cell type, suggesting that cell types 

extensively modulate exon inclusion over time but reach homeostasis in adulthood for many genes 

(Fig 3d).  

To delineate the markers of this extensive modulation in matched cell types across brain 

regions and development and between cell types at a given developmental timepoint or brain 

region, we defined extremely variable exons (EVEx, ΔΨ≥0.75 between two triads, Methods) as 

representing potential candidates for functionality. Specifically, we determined five exon groups (E1-

E5): 89 exons in E1 with cell-type specific inclusion during development but not in adulthood; 60 

exons in E2 with temporal variability. The largest group, E3, had 373 exons with cell-type specificity 

in development and in adulthood. E4 included 75 exons with brain-region variability between 

matched cell types, combined with cell-type specificity within a brain region. Thus, variability 

between matched cell types of different brain regions largely implied cell-type specialization within 

one region. Lastly, E5 contained 84 exons with cell-type specificity acquired only in adulthood (Fig 

3e). Exons in E3 and E5, i.e., those with adult cell-type specificity, regardless of earlier cell-type 

specificity, were markedly shorter, suggesting a link to microexons35,55. Exons in E1, E2 (transient 
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cell-type specificity in development) and E4 (brain-region specific regulation) were all longer (Fig 3f, 

two-sided Wilcoxon rank sum test p=1.62e-10). Moreover, exons with adult cell-type specificity (E3, 

E4, E5) harbored more non-coding sequence (Fig 3g, Fisher’s exact test p=1.5e
-4

).  

To evaluate the transferability of EVEx to human tissue, we obtained single-cell long-read 

data for six adult human hippocampi and compared cell-type specific exon inclusion between human 

and mouse (Methods, Figure S10). Among the EVEx, 24.09% (seen in E5) to 48.31% (in E1) of exon 

sequence and boundaries were conserved between species and were sufficiently expressed in our 

human hippocampal data (Methods, Fig S11a). Among those, exons with cell-type specificity in 

mouse (E3, E5) tended to also exhibit high cell-type specificity in human (Fig 3h, Wilcoxon p<2.2e
-16

). 

Probing the transferability from human to mouse revealed that among exons that were highly cell-

type specific in human hippocampus, ~42.6% showed similar cell-type specificity in mouse 

hippocampus. However, ~57.4% of human cell-type specific and almost 82.7% of invariable 

alternative exons in human were constitutively included in mouse tissue, suggesting that human 

brains evolved some gain-of-function exons and the expression patterns of these cannot be 

modelled well in mouse (Methods, Fig 3i, Fig S11b).  

We next sought to estimate the functional impact of EVEx inclusion patterns by determining 

affected protein domains (Methods). The “inter-domain linker” was most frequent in all EVEx 

groups. Inter-domain linkers are largely unstructured parts of a protein and typically represent 

intrinsically disordered regions, often mediating protein-protein interactions56. This suggests that 

EVEx do not directly affect the tertiary structure but affect protein functioning and may rewire 

signalling and regulatory networks in different cell types57. Additionally, protein repeats, including 

WD40 and ankyrin repeat with short repetitive sequence and/or structural motifs were frequently 

affected. Alternative splicing is known to drive functional and structural diversity in these highly 

modular domains
58–60

. Protein Kinase-like (PK like) superfamily was enriched highly with adult brain-

region specific inclusion of matched cell types (E4), consistent with the known roles of kinases in 

synaptic plasticity
61

. Additionally, exons with transient developmental exon regulation (E2), which 

were also lowly recapitulated in human tissues, are enriched for DBL homology domains as well as 

D-aminoacid aminotransferase-like PLP-dependent enzymes. These superfamilies are associated 

with cytoskeletal organization and neuronal development and morphogenesis62 – processes 

governing both cell-type identity establishment and differentiation. Finally, adult cell-type specific 

EVExs (E5), especially those distinguishing neurons from glia, are enriched for Fibronectin type III 

(Fn3) superfamily. Examples of proteins whose Fn3 domains are affected by EVExs include NRCAM 

and NFASC, both of which have been associated with neural regulation63–66.Their structure includes 

immunoglobulin-like (IG-like) domains followed by several Fn3 domain repeats. The presence of Fn3 

repeats in tandem with IG domain repeats are not uncommon and found in other proteins 

associated with regulation of neuronal activities, such as IFN-R-167, IL-6 receptor subunit beta68, and 

Tyrosine-protein kinase69 (Fig S12). These findings indicate that biological programs defining EVEx 

inclusion are intrinsically tied to cellular identity and function (Fig 3j, Wilcoxon p<2.2e-16).  

 Identified in E2, Exon 3 of the Jakmip2 gene, annotated as constitutive, is developmentally 

regulated in hippocampal but not visual cortex excitatory neurons (Fig 3k). Similarly, the Testis 

expressed 9 (Tex9) exhibits low brain-region specificity in protein and single-cell RNA data70,71. 

However, Tex9 exon 5 is found in E4 and marks brain regions: VIS excitatory neurons have near-

constitutive inclusion while other brain regions’ excitatory neurons show as low as 11% (Fig 3l). Gene 

ontology terms associated with neurotransmitter secretion and synaptic potential are enriched in 

E4, indicating that matched cell types expressing the same gene across multiple brain regions 

modulate neuronal function using alternative splicing (Fig 3m). These findings further underscore 

the role of alternative exons in conferring developmental, cell-type, and brain-region specificity. 
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Figure 3. Marker exons underlying distinct splicing programs correlate with function and are conserved in 

human. (a) ΔΨ heatmap for pairwise cluster comparisons (columns) and exons (rows) where ΔΨ≥0.25 in at 

least one comparison. (b) Circos plot for connections between triad pairs (P56). Outer concentric ring: brain 

region; inner concentric ring: cell types. At constant age (P56), triad is defined by brain region and cell type. 

Triads connections indicate that HVExs are present in this comparison. Connection thickness indicates number 

of HVExs detected in comparison. Connection color indicates brain region of origin but cross-brain region-

comparison colors are random. (c) % of HVEXs whose variability stems from a comparison of a matched cell 

type across brain regions or from two cell types in the same region (d) Maximal ΔΨs for matched cell types 

across brain regions and across developmental timepoints (e) Heatmap of EVExs (rows) and axes of variations 

(columns: adult cell-type specificity, developmental cell-type specificity, adult brain-region specificity and 

developmental specificity of a matched cell type) Five EVEx classes indicated in bar on the left (f) Length 

distribution of 5 EVEx classes (g) Non-coding fraction for 5 EVEx classes (h) Cell-type variability of mouse EVExs 

in human hippocampus (i) Heatmap of neuron and glia Ψ values for mouse (left) and human (right) for exons 

that have high cell-type specificity in human (j) Protein domains enriched in 5 EVEx classes (k) Cluster-resolved 

single-cell long reads for Jakmip2 gene. Each line is a single cDNA molecule. Blue exons: alternative exons. Top 3 

tracks: Hippocampal excitatory CA isoforms for P21, P28 & P56. Next 3 tracks: Visual-cortex excitatory isoforms 

from P21, P28 & P56. Bottom black track: Gencode annotation (l) Similar as (j) for Tex9 gene with tracks colored 

for brain region of origin for P56 excitatory neurons. (k-l) Plotted with ScisorWiz (m) GO biological process 

annotations for EVEx in E4 from (e)
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Adolescent splicing regulation shows a transient increase in brain-region specificity  Given that age 

alone was not enough to 

define isoform differences 

(refer Fig S8), we 

delineated the dynamic 

programs of cell-type and 

brain-region specificity in 

development. We first 

considered neuronal cell 

subtypes from the HIPP 

and VIS developmental 

lineages and correlated 

their Ψ values. 

Hierarchical clustering of 

these separated excitatory 

from inhibitory 

populations 

independently of brain 

region and developmental 

stage (Fig 4a). 

Surprisingly, pairwise 

correlations were higher 

between excitatory types 

than between inhibitory 

neuron types (Fig S13, 

two-sided Wilcoxon rank 

sum test, p=5.099e-14). We 

then considered finer 

excitatory-cell subtypes 

(22 cortical types at 

different ages and eight 

area-specific hippocampal 

types at different ages). 

Similarly, inhibitory cells 

comprised eight 

interneuron and four 

Cajal-Retzius types, while 

progenitors relating to 

both lineages comprised 

NIPCs accounting for eight 

types, and four granule 

neuroblast types 

(GranuleNBs). Clustering 

of exon inclusion 

correlation values 

revealed four main 

groups, corresponding to: 

(i) NIPCs, (ii) GranuleNBs, 

(iii) a group of mature 

neurons including 

excitatory and inhibitory 

Figure 4. Neuronal exon inclusion changes between mouse visual cortex 

(VIS) and hippocampus (HIPP) and over time. (a) Heatmap of pairwise 

correlations of exon inclusion (Ψ) for excitatory and inhibitory types. (b) 

Boxplot of pairwise correlations of Ψs for pairs of excitatory subtypes, all 

inhibitory subtypes, and inhibitory subtypes excluding Cajal-Retzius cells. (c) 

Correlations of exon inclusion for excitatory clusters between neighboring 

time points in the visual cortex (yellow). Same for inhibitory clusters (green) 

(d) Correlations of exon inclusion for excitatory clusters at each time point 

between visual cortex and hippocampus (yellow). Same for inhibitory 

clusters (green) (e) Depiction of cell type-resolved single-cell long reads for 

the Bin1 gene in HIPP and VIS excitatory neurons. Each line represents one 

individual cDNA molecule, and blocks are colored by cell type and 

timepoint. Green represents alternative exons.  Grey blocks indicate 

oligodendrocyte populations at P56. Bottom black track: Gencode 
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subtypes, and (iv) multiple Cajal-Retzius clusters, with a unique cell-type signature (Fig S14). 

Removing Cajal-Retzius subtypes from inhibitory neurons yielded higher intra-inhibitory neuron 

correlation, but even in their absence, pairwise inhibitory correlations remained lower than pairwise 

excitatory-cluster correlations. Thus, Cajal-Retzius cells contribute strongly to hippocampal inhibitory 

neuron diversity, but do not fully account for it (Fig 4b). We further investigated timepoints dictating 

large developmental shifts to examine if these distinguished brain regions. In VIS, excitatory-neuron 

correlations between adjacent timepoints were lowest at the P21-to-P28 transition with higher 

values before and after. However, for inhibitory neurons, we found the opposite trend (Fig 4c). We 

correlated exon Ψs between VIS and HIPP for matched cell types. Excitatory neurons showed high 

HIPP-vs-VIS correlation at P14 and P56, but lower correlations at P21 and especially P28. These 

observations imply that developmental timelines of excitatory-neuron splicing differ between VIS 

and HIPP in this period, and brain-region specificity transiently increases. A similar albeit weaker 

observation was made for inhibitory neurons. The lowest HIPP-vs-VIS correlation occurred at the 

P21-to-P28 critical developmental period, indicating non-aligned splicing shifts for cortical and 

hippocampal excitatory and inhibitory neurons (Fig 4d). Bin1, a synaptic gene implicated in 

Alzheimer’s disease, exemplifies regional specificity in excitatory neurons and temporal regulation at 

the P21-P28 transition. Hippocampal excitatory CA neurons express the P1 cerebellar neuronal 

isoform70 at P14 and as the main isoform at P56, which begins to transiently disappear at P21 and is 

almost entirely absent at P28. At P28, Bin1 excitatory-neuron isoforms resemble the isoform profile 

of oligodendrocytes, skipping all six alternative exons. While this is also observed in the visual cortex, 

the transition is drastic from P21 to P28, marking a brain-region difference between HIPP and VIS 

(Fig 4e). Similar patterns are seen in other disease-relevant genes such as Mapt (Fig S15a-b). In 

summary, cell-type and brain-region specificity in isoform expression can be transient for a subset of 

genes, blurring the lines of cell-type identity as defined by splicing. This raises questions about the 

effect of the cellular microenvironment on splicing and is an important consideration in functional 

ramifications 

especially during 

development.  

  

 

A splicing switch in 

oligodendrocyte 

maturation occurs 

after a gene-

expression defined 

split from astrocytes 

Similar to the 

previous analysis of 

neuronal types, using 

timepoint-resolved 

visual cortex and 

hippocampal data for 

astrocyte and 

oligodendrocyte 

subtypes, we 

determined exon 

inclusion levels for 35 

corresponding 

clusters. We 

represented 

clustering based on 
Figure 5 Exon inclusion patterns in glial subtypes suggest an ordered molecular 

cascade (a). Heatmap based on pairwise correlations of exon inclusion patterns 

for astrocyte and oligodendrocyte-lineage cells. (b) Similar heatmap based on 

pairwise gene expression values. (c) Slingshot trajectory of glial cells using exon 

inclusion values. (d) Model depiction summarizing findings of previous panels: 

Subtypes in the oligodendrocyte lineage have similar gene expression patterns. 

However, a switch in splicing patterns occurs after OPCs have matured to COPs. 

Arrows represent alternative exons
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pairwise correlations of these cluster-level exon inclusion profiles in a heatmap. Surprisingly, the first 

split in the dendrogram separated astrocytes and all OPC clusters -regardless of age- from all 

committed and mature oligodendrocytes (Fig 5a). This is in stark contrast to similar analysis based 

on gene expression profiles for each cluster, which groups all oligodendrocyte-lineage clusters 

together – but well separated from astrocytes (Fig 5b). Consistent with these observations, a 

pseudotime trajectory analysis72 using single-cell isoform expression data (Methods) with a starting 

point defined at OPCs revealed two trajectories, one towards astrocytes and one along the 

oligodendrocyte lineage. Of note, the trajectory from OPCs to astrocytes likely does not represent a 

maturation pattern, but rather the fact that mathematically OPCs are close to astrocytes in terms of 

splicing patterns (Fig 5c). Taken together, these analyses support divergent cell-group similarities 

observable in splicing and 3’ gene expression patterns which yet again motivate cell-type identity in 

part defined by splicing (Fig 5d). 

 

Fluctuating patterns of exon variability between cell types in a critical developmental period We 

hypothesized that EVExs with temporal regulation (E1-E2, Fig 3e) were related to the correlation 

drop around P28 (Fig 4c-d). We focused on 1,072 exons that substantially change exon variability 

between timepoints (Fig S16, Methods). Three transitions, each of (i) increasing, (ii) decreasing, or 

(iii) constant variability define 33=27 potential patterns – but after removing invariable exons (G0), 

only 9 were frequent (denoted as G1-G9, Fig 6a). For genes containing multiple alternative exons, 

36% had all exons exhibiting fluctuations in a single pattern (n = 106 HIPP, n = 115 VIS) while 64% 

had exons in two or more patterns (n = 195 HIPP, n = 204 VIS). Interestingly, we found that pairs of 

neighboring exons were frequently included or skipped together (Fig S17a). As hypothesized, the 

P21-P28 transition consistently exhibited drastic shifts in exon variability (Fig 6b, Fig S18-S19, 

Bernoulli p-value 1.89e-06). The exon-inclusion variability between cell types had the highest 

standard deviation at P28 in both HIPP and VIS, and we found that pairs of exons were tightly 

coordinated at this timepoint (Fig S17b). These observations further suggest that the difference 

between cell types can either disappear or be enhanced during this critical time period (Fig S20). 

Genes unique to each of the G1-G9 patterns were largely non-overlapping in function (Fig 

S21). Of note, synaptic vesicle budding and transport was associated with genes exhibiting an exon 

variability increase at P28 (G1) whereas actin filament capping and functions associated with cell 

projection were associated with the aforementioned G5 where we see an increase in exon variability 

at P21 and P56. Both observations likely indicate a developmentally regulated neuronal versus glial 

split (Fig S21, Fig 6c). The Dynamin2 (Dnm2) gene is ubiquitously expressed, has known roles in 

intracellular membrane trafficking and cytoskeleton organization, and has previously been 

associated with neurological diseases73. In VIS, Dnm2 has exons in G5 and G8 and therefore 

exemplifies repetitive developmental changes in cell-type variability. The ScisorWiz74 plot shows 

Dnm2 leveraging four alternative exons to produce 6 complex isoforms. In excitatory neurons at P14, 

two mutually exclusive exons (Exons A,B) define two major isoforms, the second of which dominates 

at P21 and P28. At P56 however, the first exon gets upregulated to again resemble the pattern at 

P14. However, two additional exons render the isoform landscape more complex, where Exon C is 

only visible in P56 excitatory neurons while Exon D starts upregulating its expression at P28 (Fig 6d). 

Exons A and B in glia at all timepoints resemble the splicing patterns of excitatory neurons at P21 

and P28, but not at P14 and P56. In contrast to excitatory neurons, exon C is not seen in glia in the 

ages and region examined, while exon D is expressed uniformly starting at P28 (Fig 6e). Dnm2 not 

only varies across the cell-type and developmental axes but also shows differing patterns of isoform 

regulation between VIS and HIPP (compare Fig 6d-e to Fig S22). This example highlights how cell 

types leverage inclusion patterns of multiple exons in tandem for developmental and brain-region 

specific specialization.  
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Discussion 
 

Isoform expression underlies physiological differences in brain regions and cell types and is altered in 

development and evolution. Developmental regulation of alternative splicing further encapsulates 

cellular differentiation and maturation. However, while a large body of research had recognized that 

isoform changes occur during brain development and evolution, a unified view of these dimensions 

of anatomic regional and cell type differences over time remained elusive. 

Figure 6: Developmental exon regulation reveals convergent and divergent patterns of exon variability (a) 

Heatmap of z-normalized exon variability between the four major cell types across development (b) Line 

plot of values of exon variability for individual genes in groups 3 (left) and 7 (right) for VIS. Heatmap of exon 

variability for group 7 in VIS. Some show lower changes while others exhibit drastic differences (c) Heatmap 

of gene ontology (GO) enrichment values for highly enriched sets of genes contributing to the 9 groups from 

(a). (d) Depiction of timepoint-resolved single-cell long reads from visual cortex excitatory neurons for the 

Dnm2 gene. Each line represents one individual cDNA molecule. Alternative exons denoted in orange and 

marked A through D. (e) Same as in (d) but for astrocyte (teal) and oligodendrocyte (sea-green) clusters. 

Bottom black track: Gencode annotation 
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We found that cell types vary extensively in their splicing patterns across multiple investigated axes. 

While the number of exons modulating their variability between cell types within a single brain 

region exceeds that of the same cell type between brain regions, we find compelling evidence for 

the latter, involving neurotransmitter secretion and regulation as well synaptic regulation. Thus, 

while the establishment of cell-type identity is essential for brain function and regional 

specialization, cell types that are considered homogenous and are ubiquitously present in brain 

tissue display specialized splicing patterns depending on their region of origin. This is particularly 

true for astrocytes in the thalamus and the cerebellum, which differ not only in their exon inclusion 

patterns, but also in their TSS and PolyA-site usage, rendering the mRNA isoform landscape more 

complex than previously imagined.  

 

We parsed through this complex landscape and defined groups of exons with extreme variability 

(EVExs) seen across brain regions, development, cell types, as well as in combinations thereof. These 

exon classes exhibit key differences in intrinsic properties such as length, protein coding capacity, 

and protein domain architecture. Therefore, distinct programs of exon variability correlate with 

functional consequences of the protein product. This still leaves some questions unanswered such as 

the precise definition of regulatory elements governing the establishment of these variability classes 

and their conservation in human. Nonetheless, we found that adult cell-type variability is largely 

recapitulated in human single-nuclei long-read data. Therefore, many of the mouse results can be 

extrapolated to large cell-type specific splicing changes in perturbed and disease conditions to 

human endeavors.   

 

Importantly, we find that the same cell type traced along the developmental axis exhibits more 

fluctuation in its splicing patterns than it does across brain regions in adulthood. Synapse formation, 

axon guidance, and general neural network formation induce a temporal heterogeneity in splicing 

patterns within cell populations that are attenuated in adulthood. This observation is further 

strengthened by nine patterns of developmental variability that we identify, a majority of which 

involve fluctuations during the critical developmental period
75

 of murine adolescence (P21-P28) in 

the visual cortex and hippocampus. We repeatedly find that exons that are cell-type specific at a 

developmental timepoint can transiently change inclusion status and lose their cell-type specificity. 

Fundamental genes, such as Bin1 and Mapt show such transient cell-type specificity in isoform 

expression which suggests a highly sophisticated developmental splicing program. Additionally, our 

data reveal the precise timing of splicing switches in maturation programs, especially on the 

oligodendrocyte lineage after the split from astrocytes. This adds a layer of subtlety to studies of 

isoform expression over development and justifies the need for simultaneous recording of gene 

expression and splicing to define the relationships between cell types and across brain regions.  

 

Taken together, we present a comprehensive single-cell investigation of alternative isoform usage in 

mouse and human brain and the dynamics of isoform expression variation across anatomical 

structures and development.  
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Methods 
 

Ethics statement 
All experiments were conducted in accordance with relevant NIH guidelines and regulations, related 

to the Care and Use of Laboratory Animals tissue. Animal procedures were performed according to 

protocols approved by the Research Animal Resource Center at Weill Cornell Medicine. 

 

ScISOr-Seq2: Single cell isoform RNA sequencing from adolescent and adult mouse brain 

 

Tissue acquisition (mouse) 

C57BL/6NTac mice were perfused with 25mL ice-cold and carbogen treated 1X partial-sucrose 

cutting solution containing 5 µg/mL actinomycin D.  The remaining 1X partial sucrose cutting solution 

and EBSS was oxygenated. Dissection of specific brain regions was conducted by using the Mouse 3D 

Coronal sections from Allen Brain Atlas as a reference map for coordinates. The brain slices were 

collected on Vibratome (Leica) at the thickness of 300 µm/slice and kept in ice-cold 1 X partial 

sucrose cutting solution. For the hippocampus, 8~10 mouse coronal slices (300µm) were collected 

from the caudal region of the brain after removing of the cerebellum. The hippocampus region was 

dissected out based on the Mouse Coronal Sections (images 62~89). Note: each image section on 

Allen Brain Atlas is spaced at 100 µm interval. 8~10 slices can cover almost the whole hippocampus 

region.  Visual cortex was collected based on the images 79~100. The first 1 or 2 slices from the 

caudal region of the brain were discarded and subsequently 5~6 continuous slices were collected. 

For striatum, 5~6 mouse coronal slices were collected from the rostral region of the brain after 

removing the olfactory bulb. The striatum was dissected out based on the Mouse coronal Sections 

(images 39~59). Dissecting of cerebellum does not require any vibratome sectioning. The cerebellum 

was dissected based on the location and structure with forceps and minced into small pieces with 

scalpel. Slices were transferred to slicing chamber with bubbling 1X partial sucrose-containing small 

molecule mix B at RT – and slices were allowed to recover for ~30 minutes. 1X cutting solution: 93 

mM N-Methyl-D-glucamine (Acros Organics, AC126841000), 2.5 mM KCl (Sigma, 44675), 1.2 mM 

NaH2PO4 (Sigma, S5011), 30 mM NaHCO3 (Sigma, S5761), 20 mM Hepes (Gibco, 15630106), 25 mM 

glucose (Sigma, G7021), 5 mM sodium ascorbate (Sigma, A4034), 2 mM thiourea (Alfa Aesar, 

AAA1282822), 3 mM sodium pyruvate (Gibco, 11360070), 10 mM N-Acetyl-L-Cysteine (Alfa Aesar, 

AAA1540914), 0.5 mM CaCl2 (Sigma, 223506), 10 mM MgSO4 (Sigma, M2643), pH7.2-7.4. 

 

Single cell disassociation (mouse): 

Tissue sections were dissociated with modification from a previous protocol from the Smit lab at VU, 

Netherlands: Regions of interest were dissected on a Sylgard coated plate with dark background, in 

1-2 mL carbogen treated cutting solution. Tissue pieces were transferred to 5RmL of 2Rmg/mL 

activated papain (Wortington, LK003150) then incubated for 15-25Rmin at 37R°C with gentle mixing. 

After the incubation, tissue was cut into tiny pieces and then gently triturated 15–20 times using 

Large to small size 24asteur pipettes until no obvious chunks can be observed. Pasteur pipettes with 

different openings sizes (Large:  0.6–0.7 cm, middle:  0.3–0.4 cm, small: 0.15-0.2 cm) were created 

by flame polishing disposable glass pasteur24 pipettes (ThermoFisher) and assembled with rubber 

bulbs.  After undissociated tissue chunks settled down, supernatant was taken and then filtered 

using a 30Rμm cell strainer (Miltenyi Biotec, 130-041-407) into a nuclease free collection tube. The 

supernatant was then centrifuged at 300-400 rcf for 5Rmin at RT. After discarding the supernatant, 

the cell pellet was resuspended in 3 ml 10% ovomucoid protease inhibitor solution (150 µL DNase I, 

300 µL ovomucoid protease inhibitor solution and 2.55 mL EBSS, Wortington, LK003150). Next, the 

cell suspension was slowly and gently added to the top layer of 5 mL ovomucoid protease inhibitor 

solution (Wortington, LK003150) without interfering with the bottom layer. The cells were spun 

down after centrifugation at 70-100 g for 6 min at RT. After removing all the supernatant, cells were 

suspended in 1 mL FACS buffer: 1X HBSS (Gibco, 14175079) containing 0.2% BSA (Thermo Scientific, 
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37525), 25mM glucose (Sigma, G7021), 3mM sodium pyruvate (Gibco, 11360070), and 0.2U/µL 

RNase inhibitor (Ambion,AM2682). After incubation for 15 min in FACS buffer with 0.1 µg/mL DAPI 

(Sigma, D9542), viable cells were collected as DAPI negative population using Sony MA900 sorter 

with FlowJo version 10 software. Sorted viable cells were centrifuged down and subsequently 

diluted to 1000-1500 cells/μL in FACS buffer for capture on the 10x Genomics Chromium controller. 

 

SnISOr-Seq: Single nucleus isoform sequencing in frozen human tissue 

 
Sample acquisition (human) 

Hippocampal samples for SnISOr-Seq: Six healthy human brain samples (hippocampus, 3M, 3F, Table 

S5) used for this study were requested through the NIH NeuroBioBank and obtained from the 

University of Maryland Brain and Tissue Bank according to Institutional Review Board-approved 

protocols. No subjects had pre-existing neurodegenerative or neurological disease. Tissues were 

flash frozen and kept at -80°C until processing. 

 

Single-nuclei isolation (human) 

Single nuclei suspension was isolated from fresh-frozen human brain samples using the SnISOr-Seq1 

protocol. In brief: Approximately 30 mg of frozen tissue of each sample was dissected in a sterile 

dish on dry ice and transferred to a 2 mL glass tube containing 1.5 mL nuclei pure lysis buffer 

(MilliporeSigma, catalog no. L9286) on ice. Tissue was completely minced and homogenized to nuclei 

suspension by sample grinding with Dounce homogenizers (Millipore Sigma, catalog no. D8938-1SET) 

with 20 strokes with pestle A and 18 strokes with pestle B. The nuclei suspension was filtered by 

loading through a 35 µm diameter filter and followed by centrifuging 5 min at 600 g and 4℃. The 

nuclei pellet was collected and washed with cold wash buffer, which consisted of the following 

reagents: 1X PBS (Corning, catalog no. 46-013-CM), 20 mM DTT (Thermo Fisher Scientific, catalog no. 

P2325), 1%BSA (NEB, catalog no. B9000S), 0.2U/µL RNase inhibitor (Ambion, catalog no. AM2682) 

for three times. After removing the supernatant from the last wash, the nuclei were resuspended in 

1 mL of 0.5 µg/mL DAPI (Millipore Sigma, catalog no. D9542) containing wash buffer to stain for 15 

min. The nuclei suspension was prepared for sorting by filtering cell aggregates and particles out 

with a diameter of 35 µm. After removing myelin and fractured nuclei by sorting, the nuclei were 

collected by centrifuging 5 min at 600 g and 4℃, then resuspended in wash buffer to reach a final 

concentration of 1x10e6 nuclei/mL after counting in trypan blue (Thermo Fisher Scientific, catalog 

no. T10282) using a Countess II cell counter (Thermo Fisher Scientific, catalog no. A27977).  

 

10x 3’ library preparation and sequencing  

A single cell/nuclei suspension containing 10,000 cells/nuclei was loaded on a Chromium Single Cell 

B Chip (10x Genomics, catalog no. 1000154) as follows: 75 µL of master mix + nuclei suspension was 

loaded into the row labeled 1, 40 µL of Chromium Single Cell 3R Gel Beads (10x Genomics, catalog 

no. PN-1000093) into the row labeled 2 and 280 µL of Partitioning Oil (10x Genomics, catalog no. 

2000190) into the row labeled 3. This was followed by GEM generation and barcoding, post GEM-RT 

cleanup and cDNA amplification. Then 100 ng purified cDNA derived from 12 cycles of cDNA 

amplification was used for 3R Gene Expression Library Construction by using Chromium Single Cell 

3R GEM, Library & Gel Bead Kit v3 (10x Genomics, catalog no. 1000092) according to the 

manufacturer’s manual (10x Genomics, catalog no. CG000183 Rev C). The barcoded short-read 

libraries were measured using a Qubit 2.0 with a Qubit dsDNA HS assay kit (Invitrogen, catalog no. 

Q32854) and the quality of the libraries was assessed on a Fragment analyzer (Agilent) using a high-

sensitivity NGS Fragment Kit (1-6000bp) (Agilent, catalog no. DNF-474-0500).  Sequencing libraries 

were loaded on an Illumina NovaSeq6000 with PE 2 x 50 paired-end kits by using the following read 

length: 28 cycles Read1, 8 cycles i7 index and 91 cycles Read2. 
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Linear/asymmetric PCR and exome capture (LAP-CAP) 

Linear/asymmetric PCR to remove non-barcoded cDNA 

The first round PCR protocol (95R°C for 3Rmin, 12 cycles of 98R°C for 20Rs, 64°C for 30Rs and 72R°C 

for 60Rs) was performed by applying 12 cycles of linear/asymmetric amplification to preferentially 

amplify one strand of the cDNA template (30Rng of cDNA generated by using 10x Genomics 

Chromium Single Cell 3R GEM kit) with primer ‘Partial Read1’, and then the product was purified 

with 0.8× SPRIselect beads (Beckman Coulter, B23318) and washed twice with 80% ethanol. The 

second round PCR is performed by applying six cycles of exponential amplification under the same 

condition with forward primer ‘Partial Read1’ and reverse primer ‘Partial TSO’, and then the product 

was purified with 0.6× SPRIselect beads and washed twice with 80% ethanol and eluted in 30 µl of 

buffer EB (Qiagen, 19086). Sequences of primers: Partial Read1 (5R-CTACACGACGCTCTTCCGATCT-3R) 

and Partial TSO (5R-AAGCAGTGGTATCAACGCAGAGTACAT-3R). KAPA HiFi HotStart PCR Ready Mix 

(2×) (Roche, KK2601) was used as polymerase for all the PCR amplification steps in this paper, except 

for the 10x Genomics 3R library construction part. 

Exome capture to enrich for spliced cDNA  

Exome enrichment was applied to the cDNA purified from the previous step by using probe kit 

SSELXT Human All Exon V8 (Agilent, 5191-6879) for human samples, or SureSelectXT Mouse All Exon 

(Agilent, 5190-4641) for mouse samples. The reagent kit SureSelectXT HSQ (Agilent, G9611A) was 

used according to the manufacturer’s manual. First, the block oligo mix was made by mixing an 

equal amount (1Rµl of each per reaction) of primers Partial Read1 (5R-CTACACGACGCTCTTCCGATCT-

3R) and Partial TSO (5R-AAGCAGTGGTATCAACGCAGAGTACAT-3R) with the concentration of 

200Rng/µL (IDT), resulting in 100Rng/µL. Next, 5Rµl of 100Rng/µLcDNA diluted from the previous 

step was combined with 2RµL of block mix and 2RµL of nuclease free water (NEB, AM9937), and 

then the cDNA block oligo mix was incubated on a thermocycler under the following conditions to 

allow block oligo mix to bind to the 5R end and the 3R end of the cDNA molecule: 95R°C for 5Rmin, 

65R°C for 5Rmin and 65R°C on hold. For the next step, the hybridization mix was prepared by 

combining 20RmL of SureSelect Hyb1, 0.8Rml of SureSelect Hyb2, 8.0RmL of SureSelect Hyb3 and 

10.4RmL of SureSelect Hyb4 and kept at room temperature. Once the reaction reached to 65R°C on 

hold, 5RµL of probe, 1.5RµL of nuclease-free water, 0.5RµL of 1:4 diluted RNase Block and 13RµL of 

the hybridization mix were added to the cDNA block oligo mix and incubated for 24Rh at 65R°C. 

When the incubation reached the end, the hybridization reaction was transferred to room 

temperature. Simultaneously, an aliquot of 75RµL of M-270 Streptavidin Dynabeads (Thermo Fisher 

Scientific, 65305) were prepared by washing three times and resuspended with 200Rµl of binding 

buffer. Next, the hybridization reaction was mixed with all the M-270 Dynabeads and placed on a 

Hula mixer for 30Rmin at room temperature. During the incubation, 600RµL of wash buffer 2 (WB2) 

was transferred to three wells of a 0.2 mL PCR tube and incubated in a thermocycler on hold at 

65R°C. After the 30-min incubation, the buffer was replaced with 200RµL of wash buffer 1 (WB1). 

Then, the tube containing the hybridization product bound to M-270 Dynabeads was put back into 

the Hula mixer for another 15-min incubation with low speed. Next, the WB1 was replaced with 

WB2, and the tube was transferred to the thermocycler for the next round of incubation. Overall, 

the hybridization product bound to M-270 Dynabeads was incubated in WB2 for 30Rmin at 65R°C, 

and the buffer was replaced with fresh pre-heated WB2 every 10Rmin. When the incubation was 

over, WB2 was removed, and the beads were resuspended in 18RµL of nuclease-free water and 

stored at 4R°C. Next, the spliced cDNA, which bound with the M-270 Dynabeads, was amplified with 

primers Partial Read1 and Partial TSO by using the following PCR protocol: 95R°C for 3Rmin, 12 

cycles of 98R°C for 20Rs, 64R°C for 60Rs and 72R°C for 3Rmin. The amplified spliced cDNA was 

isolated from M-270 beads as supernatant and followed by a purification with 0.8× SPRIselect beads. 
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Library preparation for PacBio  

HiFi SMRTbell libraries were constructed according to the manufacturer’s manual by using SMRTbell 

Express Template Prep Kit 2.0 (PacBio, 100-938-900). For all samples, ~500Rng of cDNA obtained by 

performing LAP-CAP from the previous step was used for library preparation. The library 

construction includes DNA damage repair (37R°C for 30Rmin), end-repair/A-tailing (20R°C for 30Rmin 

and 65R°C for 30Rmin), adaptor ligation (20R°C for 60Rmin) and purification with 0.6× SPRIselect 

beads. 

Library preparation for ONT 
For all samples, ~75 fmol cDNA was processed with LAP-CAP underwent ONT library construction by 

using the Ligation Sequencing Kit (ONT, SQK-LSK110), according to the manufacturer’s protocol 

(Nanopore Protocol, Amplicons by Ligation, version ACDE_9110_v110_revC_10Nov2020). The ONT 

library was loaded onto a PromethION sequencer by using PromethION Flow Cell (ONT, FLO-

PRO002) and sequenced for 72Rh. Base-calling was performed with Guppy by setting the base 

quality score >7. 

Short read assignment of cell types (mouse) 
Fastq files were obtained from the Illumina sequencing reads by running bcl2fastq. Gene x cell 

matrices processed with cellranger V3.1.0 were loaded into Seurat V3.2.3
2
 and preprocessed 

individually using cutoffs described in Table S4. After filtering for high quality cells, they were scaled 

and normalized using default parameters and clustered using the Louvain algorithm. Doublet 

clusters were discarded. Subsequently, all samples from the hippocampal developmental lineage 

were processed together, as were the samples from the visual cortex lineage. After combining the 

data without any integration approaches and using the Seurat merge function, the data was scaled, 

normalized, and variable genes identified. Integration of data to control for sample-specific batch 

effects was done using Harmony. Cell types were assigned using marker genes in three levels of 

granularity – broad, cell type, and cell subtype. These were then assigned to each single cell along 

with the information on replicate, brain region, age. For the spatial axis i.e., the cerebellum, 

striatum, and thalamus, the two replicates were integrated with Harmony3 before assigning cell 

types in the same three levels of granularity as above. Finally, the entire dataset was merged 

together into a single object for visualization purposes and to obtain summary statistics in Fig 1. This 

was also done using harmony while controlling for region-specific differences in gene expression. 

 

Short read assignment of cell types from human hippocampal data 

Fastq files were obtained from the Illumina sequencing reads by running bcl2fastq. Gene x cell 

matrices processed with cellranger v3.1.0 were loaded into Seurat 3.2.2 and preprocessed 

individually. After filtering for high quality cells, they were scaled and normalized using default 

parameters and clustered using the Louvain algorithm. Doublet clusters were discarded. 

Subsequently, all samples were processed together. After combining the data without any 

integration approaches and using the Seurat merge function, the data was scaled, normalized, and 

variable genes identified. Integration of data to control for sample-specific batch effects was done 

using Harmony 3. Cell types were assigned using marker genes in three levels of granularity – broad, 

cell type, and cell subtype. These were then assigned to each single cell along with the information 

on sample id.  

 

Generation of PacBio circular consensus reads  

Using the default SMRT-Link (v8.0.0.78867) parameters, we performed circular consensus 

sequencing (CCS, 8.0.0.80529) with IsoSeq3 with the following modified parameters: maximum 

subread length 14,000Rbp, minimum subread length 10Rbp, and minimum number of passes 3. 
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Preprocessing of long read sequencing data with PacBio 

Subread fastq files were obtained, CCS performed using parameters described above. Data was 

processed using the scisorseqr4 pipeline by first aligning to the genome using STARlong (v2.7.0). 

Cellular barcodes were assigned using the cell type and sample information from the short read 

analysis as input to the GetBarcodes() function. Subsequently, uniquely mapped, spliced, barcoded 

reads were obtained using the MapAndFilter() and InfoPerLongRead() functions in scisorseqr.  

 

Preprocessing of long read sequencing data with ONT 

Reads were basecalled using MinKNOW Core (v 4.0.5), Bream (v6.0.10), and guppy (v4.0.11) on the 

PromethION machine. Reads were aligned using minimap2
5
 (v2.17-r943-dirty) and data was 

preprocessed using the scisorseqr (v0.1.9)4 package. Cell barcodes were assigned using the cell type 

and sample information from the short read analysis.  

 

PacBio transcript assignment using IsoQuant 

IsoQuant (v2.3.0) was run using default PacBio parameters on an aggregate of all barcoded PacBio 

reads with GENCODE v21 as annotation. Multi-exonic transcripts classified as “novel in catalog” were 

then used to create an enhanced annotation 

 

ONT transcript assignment using IsoQuant 

This enhanced annotation gtf file was used on each of the ONT samples to correct incorrectly 

assigned splice sites in multi-exonic barcoded reads. Isoquant (v3.1) was run using default 

parameters for ONT data. These corrected splice sites were then re-assigned to reads in the AllInfo 

file, which was then filtered for unique UMIs, and used as input in subsequent analysis. 

 

Obtaining exon counts using corrected splice sites 

Using all exons appearing as internal exon in a read, we calculated: 

1. The number of long-read molecules containing this exon with identity of both splice sites: ��� 

2. The number of long-read molecules assigned to the same gene as the exon, which skipped 

the exon and >=50 bases on both sides: ���� 

3. The number of long-read molecules supporting the acceptor of the exon and ending on the 

exon: ����_	� 

4. The number of long-read molecules supporting the donor of the exon and ending on the 

exon: �
��_	� 

5. The number of long-read molecules overlapping the exon: ����  

Non-annotated exons with one or two annotated splice sites, ≥70 bases of non-exonic (in the 

annotation) bases, were excluded as intron-retention events or alternative acceptors/donors. 

We then calculated  

� �������  �  
��� � ����_�� � ��	�_�� 

��� � ����_�� � ��	�_�� � �	
�

 

� ��������  �  
��� � ����_��  

��� � ����_��  � �	
�

 

� �
���  �  
��� ���	�_�� 

��� �  ��	�_�� � �	
�

 

If  

C 0.05 � ����
�����  �  0.95  
��� ��������� �  �������, �������, ����� 

C 
��� � ����_�� � ��	�_�� � �	
�

��	�

 �  0.8 

the exon was kept. 
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We then calculated the �������  for each cell type from all long-read UMIs for that cell type if and 

only if. ����  � 10 for the exon and cell type in question. Otherwise, ������� for the exon and cell 

type was set to “NA”.  

 

 

Obtaining full length isoform variability across three axes 

To find regional variability, we first calculate the percent inclusion (PI, Π) for each isoform in a region 

by summing the inclusion values over all cell subtypes and time points for that region. If at least two 

regions have Π values, we obtain an isoform x region matrix of Π values. Then we define the 

variability per isoform as the max(Π) – min(Π). The brain region contributing the most to the region-

specific variability is recorded as having the Π with the highest divergence from the median Π value.  

The same procedure was carried out to calculate age and subtype variability of a given cell type. 

More formally, 

For a cell type (CT), all possible clusters can be represented as a combination of brain region 

(a1), age (a2), and subtype (a3). 

Therefore for CT �  Oligodendrocytes, 

����  ~ �1 . �2 . �3  �1 � ������ �!", $� ���%& . . ', 
 �2 � �(14, (21, . . ' 

*+! ! �3 � �,(��, �,(�, . . ', 
 

Per gene and cell type (CT), a matrix (G) can be constructed with i rows containing the 

isoforms of the gene and j columns containing the cell clusters. So, 

- ~ .�,�  *+! ! / � ���� �01 � �� �0 ���2�&  

So for a brain region (x), a subset of the matrix can be obtained containing only the subtypes 

originating from that brain region 

-�~ .�,��  *+! ! /3  ~ �1 � " . �2 . �3  

 

Thus, for a cell type (CT), the brain region variability for isoform (i) is defined as 

����� �_��_
�  �  &�"4Π�
666667 8 min4Π�

666667 *+! ! 

Π���
: �  

∑ -3�,�� ���

∑ -3���

  

Similarly, the age variability is defined as 

����� �_��_���  �  &�"4Π��
666667 8 min4Π��

666667 *+! ! 

Π����
: �  

∑ -3�,�� ���

∑ -����

  

And the subtype variability is defined as 

����� �_��_�������  �  &�"4Π��
666667 8 min4Π��

666667 *+! ! 

Π����
: �  

∑ -3�,�� ���

∑ -����

  

 

For each isoform, we thus had a raw value for age, region, and subtype variability. If any of these 

values were at least 0.1 i.e., exhibiting at least a 10% change in isoform usage across an investigated 

axis, then the values were normalized to add up to 1 and represented in the ternary plot. For values 

where the normalized regional variability was greater than 0.5 but the age and subtype variability 

was less than 0.5, then the isoform was considered to be region-specific for a particular cell type. 

 

Obtaining full length isoform variability across three axes in pseudo-bulk 
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A similar analysis to the one above was performed, except that the cell subtype axis was replaced by 

a cell type axis. Therefore, to find regional variability, we first calculate Π for each isoform in a 

region by summing the inclusion values over all cell types and time points for that region, and the 

variability values is obtained by subtracting the min(Π) from the max(Π). Similarly, age variability is 

calculated by summing the inclusion values of all cell types and regions for a given timepoint. Cell 

type variability is calculated by summing the inclusion values of all regions and timepoints for a given 

cell type and the variability is reported as the max(Π) – min(Π) across all cell types.  

 

Highly variable gene identification 

We filtered the matrix of variability along the three axes for isoforms that had a raw variability value 

of at least 0.25 along one of the axes. Furthermore, if the isoforms were present in the center 

trangle, we filtered the isoforms that had a variability of 0.25 in all three axes. These were then 

clustered together using hierarchical clustering, and plotted as a heatmap per cell type with Complex 

Heatmap6. 

 

Differential isoform expression for one brain region vs all 

We obtained transcript counts per cell type from IsoQuant as described above. For each major cell 

type, we obtained an isoform X region matrix of counts. To perform differential isoform expression 

(DIE) analysis, we used the two-sample framework using χ2 
tests of abundance as described in 

scisorseqr 4. In brief: For each brain region, we aggregated counts from the other four brain regions 

as a background and performed DIE tests. For each differential abundance test between two 

categories, genes were filtered out as ‘untestable’ if reads did not reach sufficient depth (25 

reads/gene category). For genes with sufficient depth, a maximum of an 11C×C2 matrix of counts 

denoting isoform x category was constructed with the first ten rows corresponding up to the first ten 

isoforms, and the last row comprised of collapsed counts from all the other isoforms (if any). P-

values from a χ2 test were reported per gene, along with a ΔΠ value per gene. The ΔΠ was 

constructed as the sum of change in percent isoform (Π) of the top two isoforms in either positive or 

negative direction. After these numbers were reported for all testable genes for a comparison, the 

Benjamini Hochberg (BH) correction for multiple testing with a false discovery rate of 5% was 

applied to return a corrected p-value. If this FDR p-value wasCC≤0.05 and the Π was more than 0.1 

in one direction, i.e., the change in percent inclusion of one or two isoforms was more than 10% 

from one category to the other, then the gene was considered to be significantly differentially 

spliced. 

 

Differential TSS, PolyA expression for one brain region vs all 

For each sequenced long read, we assigned a known CAGE peak if the start of the read fell within 50 

bp of an annotated peak. Similarly, we assigned a PolyA site to a read if it fell within 50 bp of a 

known site. Counts for each known TSS and PolyA site were obtained per cell type, and reads where 

a TSS / PolyA site could not be assigned were discarded. Counts for brain region comparison were 

aggregated in a similar fashion to the full-length transcript analysis described above to obtain an n x 

2 matrix. DIE was performed using scisorseqr, and the ΔΠ was recorded for each gene. 

 

Identifying highly variable exons (hVEx) 

We first obtained a matrix of Ψ values for all major cell types i.e., astrocytes, oligodendrocytes, 

excitatory neurons, and inhibitory neurons for each of the 11 samples by summing the counts over 

all replicates. This yielded 44 triads defined by the age, region, and cell type of origin. Then we 

considered four lineages to calculate differences of exon inclusion values (ΔΨs) across: 

- For a matched cell type and region (HIPP and VIS), the developmental-time specific changes 

in exon inclusion were obtained by calculating pairwise ΔΨs. All comparisons that yielded 

ΔΨ ≥ 0.25 i.e., showed a 25% change in inclusion for an exon between two timepoints were 

reported 
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- For a given timepoint (P14, P21, and P28) and region (HIPP and VIS), the cell-type specific 

changes in exon inclusion were obtained by calculating pairwise ΔΨs. All comparisons that 

yielded ΔΨ ≥ 0.25 i.e., showed a 25% change in inclusion for an exon between two cell types 

were reported 

- For a matched cell type at the adult timepont (P56), adult brain-region specific changes in 

exon inclusion were obtained by calculating pairwise ΔΨs. All comparisons that yielded ΔΨ 

≥ 0.25 i.e., showed a 25% change in inclusion for an exon between two brain region were 

reported 

- For a given brain region (HIPP, VIS, STRI, THAL, CEREB) at P56, the cell-type specific changes 

in exon inclusion were obtained by calculating pairwise ΔΨs. All comparisons that yielded 

ΔΨ ≥ 0.25 i.e., showed a 25% change in inclusion for an exon between two cell types were 

reported 

The exons obtained from the four lineages above were classified as highly variable exons (hVEx). The 

ΔΨ for all pairwise comparisons of 44 triads, i.e., for 946 comparisons were then calculated for these 

hVEx were reported. To enable hierarchical clustering of this matrix of comparisons x exons, exons 

with too many NA values due to lack of depth for Ψ calculation in many triads were filtered out.  

 

Identifying extremely variable exons (EVEx) 

For the exons classified as highly variable (see above), and for each of the four lineages considered, 

we retained the comparison with the highest ΔΨ value. This yielded a matrix with 4 columns, one for 

each of the lineages, and 5931 rows, one for each hVEx. Of these, exons with ΔΨ≥ 0.75 in any of the 

four columns were retained. These were defined as extremely variable exons (EVEx), wherein at 

least one comparison between triads across the four lineages displayed 75% or more change in exon 

inclusion.  

 

Obtaining developmental modalities of variability 

Considering the second of the four lineages above, i.e., the cell-type specific differences in exon 

inclusion for a given timepoint and brain region, we calculated exon variability. For exons where we 

had sufficient depth to calculate the Ψ values for at least two cell types, we calculated the exon 

variability as the max(Ψ) – min(Ψ) for each timepoint. Thus, 

 

����� � max#PSI''''( ) min#PSI''''( 
��� 

PSI ~ -Ψ����� ,Ψ�����,Ψ�� ��!"!#��$,Ψ%$&�'"!#��$.   

 

Then, we considered the first lineage from the hVEx paradigm above, i.e., developmental-time 

specific changes. Here, we looked at the change in variability between timepoint transitions, i.e., 

from P14 to P21, P21 to P28, and P28 to P56. If the change in eVar (ΔeVar) was less than 0.1 in all 

three transitions, indicating less than 10% change in cell-type specific variability over time, then the 

exon was classified as invariable (Fig S14).  

∆��� �  ���( )  ���) 
��� 0 1 2 ��� 0, 2 � �314, 321, 328, 356� 

∆�����*� � 0.1 7 ��8� � #314 9 321, 321 9 328, 328 9 356(~" Invariable �0��" 

 

Otherwise, the exon was classified as variable, and the normalized matrix of exon x eVarTP was used 

for clustering and obtaining 9 developmental modalities.  

 

Getting protein superfamily annotations per exon 

We developed a computational pipeline to identify protein superfamily annotations per exon. For 

each exon, we used the genomeToProtein() function of the ensembldb package and extracted the 

ensembl ID, coordinates, and residue sequence of the protein identified. We filtered the obtained 

protein identifiers based on their corresponding ensembl transcript IDs and limited the search to the 
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principal isoforms from APPRIS7, a database of curated principal and alternative isoforms which 

determines the principal isoforms based on the integrated analysis of the protein’s structure, 

function and cross-species conservation. For each protein sequence, we ran the SUPERFAMILY 
8,9

 

tool that utilizes Hidden Markov Model to identify the structural-defined SCOP protein domain 

families and the domain boundaries. The tool was implemented in InterProScan
10–12

. Protein regions 

not associated with domains were considered inter-domain linkers. Subsequently for each exon, the 

superfamily annotation associated with the protein residue for those coordinates was identified and 

used for further analysis. 

 

Enrichment of protein superfamily annotations 

We considered EVEx in clusters E1-E5 (Fig3), as well as background set consisting of exons with low 

variability across the entire dataset. For exons which had a domain associated with the coordinates 

of the coding sequence, we extracted the superfamily rather than individual and similar domains, 

given that the broader classification would allow for better grouping. We then counted the number 

of exons associated per superfamily and group, and reported a percentage. The superfamilies for 

which a value was obtained only for the background set were discarded, yielding a total of 55 

superfamilies. For better interpretability, we retained superfamilies that were associated with at 

least 4% enrichment in any group, yielding a total of 15 superfamilies. 

 

Mapping orthologous exons in human data 

The TransMap 13 projection alignment algorithm was used to map exons between human and mouse 

assemblies. LASTZ
14

 genomics alignments between the human GRCh38 and mouse GRCm39 

reference assemblies were used to map reference transcript annotations between assemblies. 

TransMap was used instead of UCSC Genome Browser liftOver
15

, as it produces base-level 

alignments, allowing observation of indels and other differences between the LASTZ chain and net 

alignments files
16

. These were obtained from the UCSC Genome Browser site, along with the below-

mentioned programs to process them. 

 

Syntenic genomic alignments were obtained by filtering the net files to obtain the syntenic nets 

using "netFilter -syn" and then using "netChainSubset -wholeChains" to obtain a set of syntenic 

chain alignments for mappings.  GENCODE17 human v35 and mouse vM26 were mapped to the other 

assembly using the "pslMap" program. 

 

Getting cell type variability in human hippocampus 

We obtained Ψ values for each cell type in the human data using the same strategy as in for mouse 

data. Orthologous exons that were unambiguously and reciprocally mapped between human and 

mouse, shared sequence homology and length were selected. For EVEx in groups E1-E5 identified in 

mouse, exon Ψ values were obtained per cell type for exons where sufficient depth for the exons 

ortholog was available. Since only one brain region (HIPP) and timepoint (adult) were available, 

variability was defined as the max(Ψ) – min (Ψ) among the major cell types. Similarly, for all exons in 

the human data that had orthologs in mouse, Ψ values were obtained per major cell type and exons 

were classified as “highly” variable if the eVar ≥ 0.5 and invariable but alternative if eVar ≤ 0.2. To 

allow for a higher number of exons to be queried, we then obtained the Ψ values for the broad 

categories of neurons and glia, from both mouse and human data, and reported them. 

 

Pseudotime trajectory analysis 

Isoquant v3.1 was run on the ONT data and full-length isoforms were grouped by barcode to obtain 

a isoform x cell sparse matrix similar to the cellranger pipeline across the dataset. Cell barcodes 

corresponding to astrocytes and oligodendrocytes from the HIPP and VIS developmental lineage 

were isolated and a subset of a matrix containing these cellular barcodes as columns was obtained. 

This matrix was then processed using Seurat (v3.2.3) to obtain a UMAP representation of the cells. 
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Each cell was colored according to the original short-read cell type assignments. Slingshot (v1.6)18 

was then used to obtain a pseudotime trajectory along these clusters, with the initial point specified 

at OPCs. Lineages obtained were then reported.  

 

Gene ontology analysis for genes associated with variable exon categories.  

For exons in the four hVEx categories (H1-H4), genes to which these exons belonged were extracted 

per category. Only unique genes per category were retained, meaning that if two exons from a gene 

belonged to two different categories, the gene was discarded from the analysis. Gene ontology (GO) 

biological process (BP) enrichment analysis was performed using the function enrichGO() from the 

clusterProfiler19 package. GO terms with qvalues ≤ 0.1 were reported, and the enrichment value was 

defined as the ratio of genes in the category being considered to those in the background. Similarly, 

for the invariable exons and the 9 variable developmental categories (G0-G9), unique genes 

containing the exons in each category were identified. GO-BP analysis was performed as above, 

using a list of brain-expressed genes obtained from SynGO20 as the background set. GO terms with 

qvalues ≤ 0.1 were reported, and the enrichment value was defined as the ratio of genes in the 

category being considered to those in the background.  In the same vein, genes of adult brain-region 

specific EVEx (group E4) were identified and the same steps were performed.  

 

Testing for exon coordination 

Testing for exon coordination can be done at the pseudo-bulk level, or at the cell-type level. For 

every exon pair passing the criteria for sufficient depth, a 2 x 2 matrix of association for a given 

sample i.e., cell type or pseudo-bulk was generated. This matrix contained counts for inclusion of 

both exons (in-in), inclusion of the first exon and exclusion of the second (in-out), exclusion of the 

first exon and inclusion of the second (out-in), and exclusion of both exons (out-out).  

The co-inclusion score of an exon was defined as the double inclusion (in-in) divided by the total 

counts for that exon pair. An exon pair was deemed “coordinated” was assessed using the @2 test of 

association. The effect size was calculated as the |log10(oddsRatio)|. The odds-ratio was calculated 

by setting 0 values to 0.5, and dividing the product of double inclusion and double exclusion by the 

product of single-inclusion i.e. [(in-in) * (out-out)] / [(in-out) * (out-in)].  

 

Data availability 
The summary of all data used for this study is/ will be made available on the Knowledge Brain Map 

(https://knowledge.brain-map.org/data/Z0GBA7V12N4J4NNSUHA/summary) which contains links to 

raw and processed data hosted on the Neuroscience Multi-Omic data archive (NeMO). All data 

supporting the findings of this study are provided within the paper and its supplementary 

information. Source data for the main figures can be found at https://github.com/noush-

joglekar/biccn_tilgner_scisorseq/tree/main/data  

 

Code availability 
The source code generated for this paper will be made publicly available at 

https://github.com/noush-joglekar/biccn_tilgner_scisorseq  

 

Methods References 
 

1. Hardwick, S. A. et al. Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity 

in frozen brain tissue. Nat. Biotechnol. (2022) doi:10.1038/s41587-022-01231-3. 

2. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 (2019). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.02.535281doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535281
http://creativecommons.org/licenses/by/4.0/


3. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. 

Nat. Methods 16, 1289–1296 (2019). 

4. Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the 

postnatal mouse brain. Nat. Commun. 12, 463 (2021). 

5. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 

(2018). 

6. Gu, Z. & Hübschmann, D. Make interactive complex heatmaps in R. Bioinformatics 38, 1460–

1462 (2022). 

7. Rodriguez, J. M. et al. APPRIS 2017: principal isoforms for multiple gene sets. Nucleic Acids Res. 

46, D213–D217 (2018). 

8. Wilson, D., Madera, M., Vogel, C., Chothia, C. & Gough, J. The SUPERFAMILY database in 2007: 

families and functions. Nucleic Acids Res. 35, D308-13 (2007). 

9. Gough, J., Karplus, K., Hughey, R. & Chothia, C. Assignment of homology to genome sequences 

using a library of hidden Markov models that represent all proteins of known structure. J. Mol. 

Biol. 313, 903–919 (2001). 

10. Mulder, N. & Apweiler, R. InterPro and InterProScan: Tools for protein sequence classification 

and comparison. in Comparative Genomics 59–70 (Humana Press, 2007). 

11. Zdobnov, E. M. & Apweiler, R. InterProScan--an integration platform for the signature-

recognition methods in InterPro. Bioinformatics 17, 847–848 (2001). 

12. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 

1236–1240 (2014). 

13. Zhu, J. et al. Comparative genomics search for losses of long-established genes on the human 

lineage. PLoS Comput. Biol. 3, e247 (2007). 

14. Harris, R. S. Improved pairwise alignment of genomic DNA. (2007). 

15. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.02.535281doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535281
http://creativecommons.org/licenses/by/4.0/


16. Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution’s cauldron: duplication, 

deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. U. S. A. 

100, 11484–11489 (2003). 

17. Frankish, A. et al. GENCODE 2021. Nucleic Acids Res. 49, D916–D923 (2021). 

18. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. 

BMC Genomics 19, 477 (2018). 

19. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: An R package for comparing biological 

themes among gene clusters. OMICS 16, 284–287 (2012). 

20. Koopmans, F. et al. SynGO: An evidence-based, expert-curated knowledge base for the synapse. 

Neuron 103, 217-234.e4 (2019). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.02.535281doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535281
http://creativecommons.org/licenses/by/4.0/

