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Long-read transcriptomics require understanding error sources inherent to technologies. Current approaches cannot com-

pare methods for an individual RNA molecule. Here, we present a novel platform-comparison method that combines bar-

coding strategies and long-read sequencing to sequence cDNA copies representing an individual RNA molecule on both

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). We compare these long-read pairs in terms of se-

quence content and isoform patterns. Although individual read pairs show high similarity, we find differences in (1) aligned

length, (2) transcription start site (TSS), (3) polyadenylation site (poly(A)-site) assignment, and (4) exon–intron structures.

Overall, 25% of read pairs disagree on either TSS, poly(A)-site, or splice site. Intron-chain disagreement typically arises

from alignment errors of microexons and complicated splice sites. Our single-molecule technology comparison reveals

that inconsistencies are often caused by sequencing error–induced inaccurate ONT alignments, especially to downstream

GUNNGU donor motifs. However, annotation-disagreeing upstream shifts in NAGNAG acceptors in ONT are often con-

firmed by PacBio and are thus likely real. In both barcoded and nonbarcoded ONT reads, we find that intron number and

proximity of GU/AGs better predict inconsistencies with the annotation than read quality alone. We summarize these find-

ings in an annotation-based algorithm for spliced alignment correction that improves subsequent transcript construction

with ONT reads.

[Supplemental material is available for this article.]

Long-read sequencing is being increasingly used in transcriptom-
ics, particularly for barcoded unique molecules (Gupta et al.
2018; Singh et al. 2019), which yields single-cell and spatially re-
solved long-read transcriptomes. Various platforms such as
Pacific Biosciences (PacBio) (Eid et al. 2009; Koren et al. 2012; Au
et al. 2013; Sharon et al. 2013; Tilgner et al. 2014; Weirather et
al. 2015), Oxford Nanopore Technologies (ONT) (Oikonomopou-
los et al. 2016; Byrne et al. 2017), and linked-read technologies.
Linked-read technologies for RNA were originally represented ei-
ther by synthetic long reads (SLRs) (Tilgner et al. 2015) or usually
bymore sparsely covered 10x Genomics linked-reads (Tilgner et al.
2018), although more recently other linked-read technologies
have emerged (Wu et al. 2019; Chen et al. 2020). Furthermore,
for all these platforms a variety of protocols either exists or can
be imagined. Comparing the accuracy of these distinct approaches
is therefore fundamental in modern transcriptomics just as it has
been fundamental for short-read sequence analysis (Engström
et al. 2013; Steijger et al. 2013; Li et al. 2014a,b).

A drawback of commonly used strategies is their lack of single-
molecule resolution. For example, percent-spliced-in (PSI) values
(Wang et al. 2008) of splice sites, or transcripts per million (TPM)
(Wagner et al. 2012) values, can easily be compared between mul-
tiple strategies. However, these approaches do not allow for the
comparison of the accuracy of different strategies for a single mol-
ecule. Usually, platforms are compared by the estimated percent-

ages of molecules that behave in a similar way. High
concordance of such percentages theoretically suggests that both
platforms would behave identically on an individual molecule.
However, this theoretical suggestion has so far been impossible
to verify because of the impossibility to assess whether two plat-
forms sequence a representation of the same molecule. Our sin-
gle-RNA-molecule reasoning provides a framework in which an
alignment is either correct or false. This is not the case for groups
of molecules, in which an alignment can be correct for one mole-
cule and false for another molecule.

Single-cell and spatial barcoding of cDNAs have revolution-
ized the investigation of complex organs (Macosko et al. 2015;
Zeisel et al. 2015). In most single-cell approaches, cDNAs are gen-
eratedwith a polydeoxythymidylic acid (poly(dT)) primer carrying
added sequences. In single-cell barcoding, a portion of this added
sequence (the barcode, here 16 bases) is identical for all cDNAs
from the same individual cell but distinguishes one cell from oth-
ers. Another portion (the unique molecular identifier [UMI], here
12 bases) is random for each reverse transcription event and thus
informs onwhether two sequenced reads represent two distinct re-
verse transcription events or polymerase chain reaction (PCR) du-
plicates of only one reverse transcription event. Similarly, spatial
approaches use barcodes and UMIs to distinguish spatial locations
and reverse transcription events. Our advances in long-read se-
quencing of single-cell (Gupta et al. 2018; Joglekar et al. 2021;
Hardwick et al. 2022) and spatially (Joglekar et al. 2021) barcoded
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cDNAs allow the identification of full-
length isoforms for barcoded molecules.

Here, we aim to compare the PacBio
and ONT platforms in terms of error
profiles, spliced alignments, their dis-
crepancies with the reference, and poten-
tial pitfalls in downstream analysis. For
this purpose, we use barcoded cDNA cop-
ies corresponding to the same RNA mol-
ecule sequenced on both platforms.

Results

Identification of RT pairs sequenced on

PacBio and ONT platforms

Here we compare cDNAs that are bar-
coded by their single cell (ScISOr-Seq) of
origin or their spatial location (Sl-ISO-
Seq), sequenced on both the PacBio
Sequel II (circular consensus reads)
and ONT systems (Joglekar et al. 2021;
Hardwick et al. 2022). A reverse-
transcription event is identified by the
combination of (1) single-cell/spatial lo-
cation barcode, (2) a UMI, and (3) the
gene to which the molecule is mapped
(Fig. 1A). PCR copies of the same re-
verse-transcription event are sequenced
on both platforms (RT read pairs), which
enables their comparison for individual
RNAmolecules. To have the highest-con-
fidence barcodes and ONT-PacBio read
pair correspondences, we only use a perfect matching strategy
for barcode and UMI detection (Supplemental Note,
“Experimental details”). Thus, we compare sequencing errors
and intron structure in identified RT read pairs.

Molecule identification discards lower-quality ONT reads

We first compare Phred scores of all individual reads sequenced on
both platforms independently of molecule detection. The Phred
quality score of a base indicates the probability of a base being
called correctly. The Phred quality score of a read is computed as
the average across Phred scores of all bases in a read. PacBio shows
much higher Phred scores than ONT, both in single-cell data and
in spatial data (Fig. 1B). Because we conservatively analyze only
perfectly matched barcodes, ONT reads with barcodes have signif-
icantly higher Phred scores than those without (two-sided
Wilcoxon rank-sum P-value=2.4 × 10−9) (Fig. 1D), whereas no sig-
nificant difference is detected for PacBio (two-sided Wilcoxon
rank-sum P-value= 0.2) (Fig. 1C). Similar observations are made
on the single-cell data set, although the difference for ONT reads
is even more prominent (Supplemental Fig. S1A,B). Overall, bar-
code detection in spatial data yields 2,873,455 PacBio reads (of
3,371,331, 85%) and 12,153,599 ONT reads (of 73,181,790,
16%). Although ONT essentially has a deeper sequencing depth
than PacBio, the difference between the number of usable reads
is not so highwhenonly considering readswith detected barcodes.
It is likely that allowing for barcodemismatches could lead tomore
ONT reads being retained, although that comes at the risk of intro-
ducing more inaccurate barcodes.

Sequence comparison using reference-based and reference-free

alignments

Our downstream analysis mostly relies on read mappings, so we
first aligned reads using different tools: the widely usedminimap2
(Li 2018) and specialized transcriptome aligners: deSALT (Liu et al.
2019), GraphMap2 (Marić et al. 2019), and uLTRA (Sahlin and
Mäkinen 2021). Of note, we did not use STARlong (Dobin et al.
2013) because it has strong performance for PacBio reads but is
not optimized for error-prone ONT data.

Although all three aligners yield largely similar results,
GraphMap2 and uLTRA produce slightly shorter alignments
than deSALT and minimap2, and uLTRA generates alignments
with more prominent differences between aligned lengths of
PacBio and ONT reads (Supplemental Table S3). In addition,
GraphMap2 produces the least number of RT read pairs because
a PacBio read and an ONT read sharing the same barcode and
UMI are mapped to different genes more frequently.

Alignments generated by deSALT and especially Graphmap2
showmore discordance between PacBio andONT reads in terms of
splice sites than alignments produced by uLTRA and minimap2
(Supplemental Fig. S6). Moreover, minimap2 performs signifi-
cantly better in terms of isoform detection (see Splice site correc-
tion improves transcript discovery precision) (Table 1). To
enforce the same strategy for PacBio and ONT, here we use mini-
map2 for alignment.

Mapping RT read pairs (54,752 in the Sl-ISO-Seq and 274,287
in the ScISOr-Seq data) to the genome with minimap2 (Li 2018)
showed highly correlated alignment lengths (Fig. 2A;
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Figure 1. Outline and primary read characteristics. (A) Individual reverse transcription events turn an
individual RNA molecule into a barcoded RNA–cDNA hybrid, which is amplified into many cDNA mole-
cules that carry the same barcode and UMI.We previously performed this process in two distinct ways: by
single-cell 10x Genomics barcoding and by spatial 10x Genomics Visium barcoding. Aliquots of these
cDNAs are then sequenced on PacBio and ONT. Using the identity of barcode and UMI, we can detect
individual RNA molecules whose cDNA copies have been sequenced on both ONT and PacBio. We refer
to these read pairs as RT read pairs. (B) Comparison between Phred scores of PacBio CCS and ONT reads
from both data sets. (C) Phred score distribution for PacBio CCS reads from the Sl-ISO-Seq data set with
(light green) and without (yellow) detected barcodes. (D) Phred score distribution for ONT reads from
the Sl-ISO-Seq data set with (light blue) and without (purple) detected barcodes.
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Supplemental Fig. S2A). PacBio reads were significantly longer
than their ONT counterparts in ScISOr-Seq and, although less pro-
nounced, in Sl-ISO-Seq data, but differences were small compared
with the entire read (Fig. 2B). However, in terms of absolute num-
bers, the difference is notable: 70% of read pairs have a longer
aligned portion (median, 15 bp) in the PacBio; 27%, in the ONT
read (median, 9 bp) (Fig. 2C). In comparison to read length, the dif-
ferences areminor. However, 9- to 15-bp sequences can harbor im-
portant elements such as polyadenylation (poly(A)) signals,
protein/miRNA-binding sites, microexons, or G-quadruplexes
(Lee et al. 2020).

To delineate common and diverging sequences in reads from
RT read pairs, we aligned them to each other using the Smith–Wa-
terman algorithm. Of note, unlike modern mapping algorithms
based on heuristics, Smith–Waterman is
an exact solution and not subject to fu-
ture improvements. We divided each
alignment pair into an unaligned 5′ part,
an aligned portion, and an unaligned 3′

part. In all three compartments within
the spatial data, PacBio showed much
higher read-wise Phred scores than ONT,
but PacBio qualities slightly drop in the
nonaligned 5′ portion. However, for the
single-cell data, PacBio qualities in the 5′

unaligned portion remained constant
and comparable to the aligned portion.
In both data sets, ONT qualities deterio-
rate in the 5′ unaligned portion and grad-
ually decrease in the unaligned 3′ portion
(Fig. 2D; Supplemental Fig. S2B).

Sequencing error rates and k-mer

identity in alignments to the genome

Deducing sequencing errors from align-
ments is difficult because in addition to
sequencing and alignment errors, PCRer-
rors, single-nucleotide variants (SNVs),
and mutations cause a divergence be-
tween reads and the genome. We used a
three-way comparison between paired
PacBio and ONT reads as well as the ge-
nome to define a “ground truth” using a
majority call among all three sources
and to delineate error patterns as a diver-
gence from this ground truth (Methods).
ONT has more errors than PacBio

(Supplemental Fig. S3A). For PacBio, deletions or mismatches are
approximately threefold less abundant than insertions, whose fre-
quency increases toward read ends (Supplemental Fig. S3B). ONT
behaves very differently: Deletions dominate over insertions and
mismatches, and all error types decrease toward alignment ends
(Supplemental Fig. S3C). Forty-one percent of PacBio errors and
only 23% of ONT errors occur in homopolymers (Supplemental
Fig. S3D). For PacBio, indels within homopolymers are more prev-
alent thanmismatches, and slightlymore errors occur inhomopol-
ymers toward the 3′end (Supplemental Fig. S3E). For ONT, similar
trendswereobserved, althoughthe insertionsare lessbiased toward
homopolymers than in PacBio (Supplemental Fig. S3F). In sum-
mary, PacBio has fewer errors than ONT, but a large fraction of
PacBio errors occur in homopolymers, whereas ONT errors mostly

Table 1. Precision, recall, and false-positive rates of StringTie2 results on the simulated ONT data set aligned with different strategies

All isoforms Known isoforms Novel isoforms

Recall % Precision % Recall % Precision % Recall % Precision % No. of false isoforms

deSALT 36 24 39 81 17 2 38,209
minimap2 84 58 86 88 58 14 18,683
minimap2 + annotation 86 68 88 89 64 22 12,135
minimap2 + annotation + FLAIR 75 70 80 93 31 14 11,767
minimap2 + annotation + 2passtools 85 71 86 91 67 26 9979
minimap2 + annotation + our correction 87 76 89 91 67 33 7368

The best values across different methods are highlighted in bold.
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Figure 2. Alignment characteristics of RT read pairs. (A) Heatscatter plot showing aligned lengths of
respective PacBio read (x-axis) and ONT read (y-axis) from the RT read pair after mapping to the genome
using minimap2 (Sl-ISO-Seq data set, Spearman’s Rho: 0.96, p < 2.2×10−16). (B) Comparison between
aligned lengths of PacBio and ONT reads for both data sets after mapping to the genome using mini-
map2. (C ) Density plot showing the difference between aligned lengths of PacBio read and ONT read
from the RT read pair after mapping to the genome using minimap2 (Sl-ISO-Seq data set) and box
plot showing distribution of the differences. In the density plot, cases when PacBio alignment is longer
correspond to the yellow area under the curve; the opposite is represented by the blue area. (D) Mean
Phred score distribution along the read for aligned (middle) and unaligned (left and right) parts of
PacBio (yellow) and ONT (blue) reads based on a (reference-free) pairwise Smith–Waterman alignment
of the PacBio and ONT reads from the RT read pair (Sl-ISO-Seq data set). Lower and upper bounds rep-
resent the standard deviation of the Phred score distribution.
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arise from other areas. Similar observations were obtained for the
older ScISOr-Seq data set, although the overall error rate in ONT
reads was higher (Supplemental Fig. S4A–D).

Alignments to a genome often use seeding throughmatching
k-mers. We considered 14-mer identity, a commonly used k-mer,
for example, in minimap2 (Li 2018) and analyzed each exon
alignment separately. As expected, 14-mer identity was lower
than single-base identity and specifically affected ONT reads (Sup-
plemental Fig. S3G). For ONT data, we found lower 14-mer identi-
ties for slightly longer exons (two-sidedWilcoxon rank-sum test P
=0.005, 1- to 20-bp vs. 21- to 50-bp exons). The most reasonable
explanation is that short exons may become unmappable with
few sequencing errors, which thus excludes them from this analy-
sis and creates a bias for k-mer identity values. However, for both
PacBio and ONT reads, the interquartile
range of k-mer identities in short exons
is higher compared with longer exons,
as a single sequencing error may disrupt
all k-mers and lead to 0% k-mer identity
(Supplemental Fig. S3G). These effects
are noticeably stronger for ONT align-
ments than for PacBio alignments. After
homopolymer compression (Methods),
14-mer identity reached ∼100% for Pac-
Bio regardless of exon length. However,
for ONT, compression caused high vari-
ability in short exons (<21 bp): Although
the median increased to 100%, the first
quartile decreased to 0%, because a single
error in a short exon can affect all 14-
mers (Supplemental Fig. S3H). Broadly
similar observations were made for ScI-
SOr-Seq data (Supplemental Fig. S4E,F).
Thus, homopolymer compression
should be applied to ONT reads with
care.

Three-way comparison of annotation,

ONT, and PacBio shows differences at

exon and splice-site calling

Long-read experiments regularly uncov-
er many isoforms that are inconsistent
with annotations (Au et al. 2013; Sharon
et al. 2013; Tilgner et al. 2014, 2015;
Oikonomopoulos et al. 2016; Tardaguila
et al. 2018; Kovaka et al. 2019; Tung
et al. 2019; Tang et al. 2020; Wyman
et al. 2020). Although for short-read ex-
periments, splice site identification and
the following splice site quantification
has been addressed with large success
(Vaquero-Garcia et al. 2016), long-read-
based annotation-inconsistent isoforms
can be truly novel or simply false. This
question can only be conclusively an-
swered for a single molecule as a correct
alignment for one molecule can be false
for another molecule. Here, we exploit
RT read pairs to evaluate inconsistencies
between alignments and the annotation
using a “three-way comparison” in

which the ground truth is defined as a variant supported by the ref-
erence and at least one long-read technology for an RT read pair.

We considered 22,600 and 48,993 RT read pairs, in which at
least one of the PacBio/ONT reads is assigned to a known transcrip-
tion start site (TSS) (Lizio et al. 2015) and poly(A) site (Herrmann
et al. 2019), respectively (Methods). Indeed, all barcoded reads
have a poly(A) tail, which creates a bias toward 3′completeness
in RT read pairs, and thus, a knownpoly(A) site is assigned for a sig-
nificantly larger portion of reads than a TSS. Moreover, in 95% of
RT read pairs, both the PacBio and ONT reads are assigned to the
same annotated poly(A) site, whereas agreement on TSS is lower
(87%) (Fig. 3A,B). For TSS assignment, a significant portion of dis-
agreeing pairs arises from unassigned ONT reads (8% of all RT read
pairs), which suggests that 5′ truncation of PacBio reads is less

E F
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Figure 3. Agreement in RT read pairs of Sl-ISO-Seq data. (A) Fractions of TSS assignments that agree
(green), disagree (magenta), or are found only in one read (blue for ONT, yellow for PacBio) from the RT
read pair. (B) Same as A, but for poly(A) sites. (C) Percentage of RT read pairs that disagree on the assigned
TSS (top) and poly(A) site (bottom): only PacBio read assigned (yellow), only ONT (blue), and both as-
signed but to different sites (magenta). (D, middle) Percentage of RT read pairs that agree (green), dis-
agree (magenta), or have one chain being longer (blue for ONT, yellow for PacBio [PB]) when splice
junctions are compared precisely (left; delta = 0bp) or inexactly (right; delta = 6bp). (Top left)
Classification of disagreeing intron chains from RT read pairs with respect to the reference annotation
(delta = 0 bp): Both are inconsistent with the annotation (dark blue); both correspond to known (differ-
ent) transcripts despite the disagreement (green); and PacBio is consistent with the annotation whereas
ONT is not (yellow) and vice versa (light blue). (Top right) Classification of disagreeing intron chains with
respect to the reference annotation using inexact comparison (delta = 6 bp). (Bottom left) An example of
agreeing intron chains from an RT read pair in which PacBio intron chain is longer (Mrps12 gene). (Bottom
right) An example of intron chains from an RT read pair that have a 6-bp difference in the donor site of the
second intron. Comparing intron chains with delta = 6 bp classifies them as agreeing (Eif3f gene). (E)
Fraction of agreeing (green) and disagreeing (magenta) intron chains with respect to intron chain length
when compared precisely (delta = 0 bp). (F) Same as E, but with delta = 6 bp.
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frequent. We noticed that the results differ for spliced and
unspliced reads. Although spliced reads are assigned to TSS more
often, the percentage of RT read pairs with both reads spliced
and assigned to different TSS is also higher (3.2% for spliced reads
vs. 1.7% for unspliced). Thismay potentially be explained by short
starting exonsmisaligned inONT reads. For poly(A) sites, however,
the difference between spliced and unspliced reads is marginal
(Fig. 3C).

We then considered for each read mapping the list of all its
introns, which we refer to as an intron chain. In 81.8% of RT read
pairs (of 28,330 total pairs in which both reads are spliced), the
PacBio and the ONT read had identical intron chains. In 2% of
cases, the intron chains were not contradictory, but the PacBio
read had extra intron(s) at its extremities, whereas ONT reads
had longer intron chains only in 0.6% of pairs. In the remaining
15.7%, PacBio and ONT intron chains disagreed with each other.
When compared with the annotation, 17% of the disagreeing RT
read pairs had both intron chains that corresponded to different
known transcripts (green in Fig. 3D, top left), whereas in 15% of
cases, both were inconsistent with the annotation (dark blue
in Fig. 3D, top left). In these cases, it is not easy to ascertain
which mapping is true. However, in a large fraction (65%) of
the disagreeing pairs, the PacBio mappings were consistent
with the annotation, whereas ONT mappings were not (yellow
in Fig. 3D, top left). In this case, assuming that the PacBio intron
chain is in fact correct appears more parsimonious than the
contrary.

The above statements are based on a single-base interpreta-
tion of PacBio and ONT splice sites (delta = 0 bp; Methods). To ac-
count for slight shifts in splice-site mapping, we explored inexact
intron chain comparison, in which junctions are considered equal
if the distance between them does not exceed 6 bp (delta = 6 bp).
This reduced disagreements between paired PacBio and ONT reads
by 48%. Among the remaining disagreements, in nearly half of the
cases the PacBio mapping corresponded to an annotated tran-
script, whereas the ONT read did not (Fig. 3D, middle and right).
Overall, 43% of ONT and 15% of PacBio mappings inconsistent
with the annotation at delta = 0 bp were reclassified as annotated
with delta = 6 bp. Notably, further increasing delta to 10 bp affects
only a small portion of reads: specifically, 78 PacBio and 468 ONT
reads (Supplemental Table S6).

In addition, we compared intron chains of PCR duplicated
read pairs sequenced on the same platforms for intra-molecular
consistency (Supplemental Fig. S8). Indeed, when two reads
that correspond to one original RNA molecule disagree in terms
of alignment, only one can be correct. As expected, PacBio read
pairs originating from PCR duplicates have significantly lower in-
tron chain disagreement (1.8% with delta = 0 bp, 0.4% with delta
= 6 bp) compared with ONT (8.3% with delta = 0 bp, 4.7% with
delta = 6 bp), thus confirming the observations stated above.

We further hypothesized that the fraction of disagreeing RT
read pairs would increase with the number of splice sites per
read. Indeed, reads with eight or more introns disagreed with its
pair approximately threefold more often than reads with two in-
trons. However, read pairs with eight or more introns still agreed
in 70% of cases (Fig. 3E). Using delta = 6 bp reduces disagreements
but roughly preserves the trend (Fig. 3F). Broadly similar observa-
tions were also made for ScISOr-Seq data (Supplemental Fig. S5).
These observations suggest that other factors beyond the intron
chain length influence disagreements between PacBio and ONT
reads. We therefore investigated sequence characteristics of dis-
agreeing introns.

Sequence characteristics underlying disagreements within

RT read pairs

We then analyzed alternative splicing events in 23,356 pairs of
PacBio and ONT reads in which both reads in a pair were spliced,
uniquely mapped, and unambiguously assigned to an isoform
(Methods). Exon skipping with respect to the identified isoform
was observed 461 times (1.9%) in ONT data and only 45 times
(0.2%) in PacBio data (Fig. 4A). Exon skipping in ONT data is typ-
ically observed in exons ≤40 bp; however, in PacBio data, skipping
is rarely observed in exons >15 bp (Fig. 4B). Minimap2 uses exact
matching of certain k-mers with default k=15 (Li 2018), followed
by dynamic programming. However, sequencing errors, especially
in ONT data, may cause the above short exons to be missed.

Alternative acceptors (4.2% of ONT reads; 2% of PacBio
reads), and comparatively more often, alternative donors (8.3%
for ONT and 1.3% for PacBio) were more commonly observed
than exon skipping (Fig. 4A). Thus, overall, 11.6% of ONT reads
and 3.7% of PacBio reads showed one or more discrepancies to
the annotation. We found similar trends in the single-cell data, al-
beit with higher inconsistencies for ONT data (Supplemental Fig.
S7A,B). Discrepancies between an alignment and annotation
found in both PacBio and ONT likely are novel isoforms. Such cas-
es generally exceed discrepancies supported by PacBio-only (Fig.
4A).

From here on, we only consider canonical introns with GU/
AG splice sites. We found that inconsistent acceptors were usually
shifted by 3–5 bp downstream in ONT-only, whereas 80% up-
stream 3-bp shift (“NAGNAG”) acceptors were supported by
both PacBio and ONT. Thus, downstream ONT acceptor shifts
are questionable, whereas upstream NAGNAG shifts appear often
true (Fig. 4C). For inconsistent donors, a downstream shift of 4
bp predominantly occurred for ONT data and with amuch smaller
overlap between both technologies than for the acceptor sites (Fig.
4D). Such shifts are caused by misalignment at the commonly
known GUNNGU donor motif (Wang and Ruvinsky 2010). In
summary, downstream 4-bp shifts from an annotated donor ob-
served inONT are doubtful, whereas 3-bp shifts from an annotated
acceptor harbor a significant number of trustworthy novel splice
sites. Broadly similar observations were made with ScISOr-Seq
data (Supplemental Fig. S7C,D).

It is worth noting thatmodern transcriptome aligners can use
annotated splice junctions. This highly reduced the discrepancies
between ONT and the annotation but had a marginal effect on
PacBio and cases for which ONT and PacBio agreed. Using the an-
notation makes PacBio seem to have more inconsistencies than
ONT, possibly because novel ONT splice sites are overcorrected
to the annotation (Supplemental Fig. S7E–H).

Extrapolating characteristics observed in barcoded read pairs to

nonbarcoded ONT reads

The observations described above are based on RT read pairs,
which require a detected barcode and UMI in both the PacBio
read and the ONT read. However, as opposed to PacBio data,
ONT reads with barcodes have higher Phred scores than those
without (Fig. 1D). To understand quality effects on read character-
istics, we analyzed the entire Sl-ISO-seq ONT data, which mimics
nonbarcoded transcriptomic experiments. We observed that the
aligned length increased from 532 bp for read-wise Phred-score =
10 reads to 815 bp for Phred-score = 20 (Fig. 5A). Similarly, high-
quality reads had one more detected intron on average: 2.7 and
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3.7 introns for spliced readswith Phred score 10 and 20, respective-
ly (Fig. 5B).

Furthermore, we compared each read’s intron chain against
annotated transcripts (Methods). The inconsistency rate goes
down with higher Phred score: 28% of reads are inconsistent
with the annotation for Phred-score = 10 (n=206,675), but only
15% are inconsistent for reads with Phred-score = 20 (n=
2,667,759) (Fig. 5C). Moreover, as found previously (Au et al.
2013; Sharon et al. 2013; Tilgner et al. 2013, 2015), inconsistency
increases with longer intron chains; that is, 40% of reads with sev-
en or more introns are inconsistent, which is approximately 2.7-
fold more than for reads containing three or fewer introns
(∼15%). Similar trends were observed when intron chains were
compared using delta = 6 bp, although overall inconsistency rates
dropped (Fig. 5D). However, we noticed that the lowest inconsis-
tency rate is observed for reads with two introns (11%), rather

than for single-intron reads (17%).
Although this observation was previous-
ly reported, no explanation was found
(Sharon et al. 2013; Tilgner et al. 2013,
2015). We hypothesized that aligners
can arbitrarily split a read into two exons,
whereas such splits into three or more
exons are less likely. Additional analysis
(Methods) showed that 19% of incon-
sistent single-intron alignments have
their intron entirely within an annotated
exon, approximately fivefold more than
for alignments with two introns (3.5%)
(Fig. 5E). Moreover, only 12% of such
mappings are supported by PacBio reads.
Thus, rather than representing true alter-
native isoforms, some inconsistent sin-
gle-intron mappings likely occur owing
to misalignments.

We further examined individual
splice sites by considering all canonical
introns in ONT alignments that matched
annotated canonical introns with a loose
threshold of 10 bp. Similar to barcoded
ONT reads, mapped acceptors are rarely
shifted upstream and are more consis-
tent with the annotation than donors,
which have a dominant 4-bp down-
stream shift caused by theGUNNGUmo-
tif (Fig. 5F). To understand the major
source of these shifts, we computed dis-
tances from all annotated splice sites to
the nearestGU/AG (Fig. 5G). As these dis-
tances strongly resemble the distribution
of ONT shifts, we hypothesized that
shifts may depend on the proximity of
GU/AG in general, rather than a particu-
lar motif.

Thus, we analyzed the inconsisten-
cy rate of annotated splice sites with re-
spect to (1) the nearest GU/AG and (2)
read quality (Methods). Donor inconsis-
tency strongly depends on both read
quality and distance to the nearest GU
(Fig. 5I). For example, the probability of
a downstream 4-bp shift caused by a

GUNNGU motif is approximately twofold lower than of a down-
stream 2-bp shift near a GUGU (3.06% and 6.48%, respectively),
despite GUNNGU being vastly more frequent than GUGU overall
(36,663,585 and 1,066,886 of total detected splice sites near re-
spective motif). Acceptor sites, on the other hand, show visible
quality dependency only for downstream shifts, most likely owing
to rare occurrences of upstream AGs. The upstream shifts are dom-
inated by NAGNAG acceptors, which show only a 1.5-fold
decrease in inconsistency rate between reads with Phred-score 10
and 20 (4.25% vs. 2.86%). As this difference is noticeably smaller
than that for all acceptors (approximately 4.4-fold, 3.13% vs.
0.71%), in conjunction with our RT read pair analysis, it suggests
that a portion of the upstream NAGNAG shifts may be real.

In summary, because of the elevated number of sequencing
errors, ONT read alignments obtained with minimap2 may not
provide exact splice site coordinates, especially for the cases

BA

C

D

Figure 4. Exon and splice site characteristics underlying disagreements between PacBio andNanopore
in Sl-ISO-Seq data. (A) Number of missed exons (left), alternative acceptors (middle), and donors (right)
with respect to the reference annotation that occur only in ONT read (blue), only in PacBio read (yellow),
and in both reads from an RT read pair (brown). (B) Length distribution for skipped exons in PacBio reads
(yellow) and ONT reads (blue). (C, middle) Number of alternative acceptor sites in PacBio (yellow) and
ONT reads (blue) with respect to the distance from the annotated acceptor site. (Top left) Venn diagram
for 3-bp upstream alternative acceptor sites in PacBio (yellow) andONT reads (blue) from an RT read pair.
(Bottom left) Nucleotide frequency for loci where 3-bp upstream acceptor sites occur. (Top right) Venn
diagram for 3-bp downstream alternative acceptor sites in PacBio (yellow) and ONT reads (blue) from
an RT read pair. (Bottom right) Nucleotide frequency for loci where 3-bp downstream acceptor sites oc-
cur. (D,middle) Number of alternative donor sites in PacBio (yellow) andONT reads (blue) with respect to
the distance from the annotated donor site. (Top left) Venn diagram for 4-bp upstream alternative donor
sites in PacBio (yellow) and ONT reads (blue) from an RT read pair. (Bottom left) Nucleotide frequency for
loci where 4-bp upstream donor sites occur. (Top right) Venn diagram for 4-bp downstream alternative
donor sites in PacBio (yellow) and ONT reads (blue) from an RT read pair. (Bottom right) Nucleotide fre-
quency for loci where 4-bp downstream donor sites occur.
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when (1) a read has lowquality, (2) a read
spansmultiple introns, and (3) canonical
dinucleotides are located near splice
sites. To avoid a potential misinterpreta-
tion of reads disagreeing with the anno-
tated transcripts, one should treat such
alignments with additional care or use
inexact intron comparison when match-
ing the annotation.

Splice site correction improves transcript

discovery precision

Based on the observations made for ONT
data, we implemented an algorithm for
correcting splice junctions in individual
reads with the aid of the annotation.
This algorithm works with aligned reads
and is capable of restoring (1) skipped
short exons and (2) incorrectly detected
splice sites (Methods). To evaluate how
the designed algorithm affects transcript
discovery, we simulated ONT reads with
NanoSim (Hafezqorani et al. 2020)
because the ground truth is unknown
for the real data used in this study. Al-
though we could use PacBio reads from
the same RT read pair for verification,
the fraction of ONT reads having an RT
read pair is comparably low and not suit-
able for transcript model construction.

Transcript discovery was performed
using StringTie2 (Kovaka et al. 2019). To
mimic real-life situations, we removed
some transcripts from the annotation be-
fore running our correction algorithm
and StringTie2. The generated transcripts
were matched against the set of “ex-
pressed” transcripts (known) and ones
that were removed from the annotation
(novel) using gffcompare (Pertea and
Pertea 2020) to computeprecision and re-
call of different approaches.

To understand the effect of splice site
correction, we generated read alignments
using (1) deSALT with default options,
(2) minimap2 with default options and
without correction, (3) minimap2 with
the annotation and without additional
correction, (4) minimap2 with the anno-
tation and FLAIR (Tang et al. 2020) correc-
tion, (5) minimap2 with the annotation
and the additional correction by 2pas-
stools (Parker et al. 2021), and (6) mini-
map2 with the annotation and the
additional correction with our algorithm.

Table 1 demonstrates that tran-
scripts generated by StringTie2 using
deSALT alignments have significantly
lower quality compared with minimap2.
Further analysis of deSALT alignments
showed that the tool often incorrectly
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Figure 5. Characteristics of all ONT reads including nonbarcoded ones for Sl-ISO-Seq data. (A) Aligned
read length with respect to read Phred score (average across all read bases) for all ONT reads from the Sl-
ISO-Seq data set. (B) Read intron chain length with respect to read Phred score for all ONT reads from the
Sl-ISO-Seq data set. (C) Heatmap showing average inconsistency rate between read intron chains and
annotated intron chains (exact comparison, delta = 0 bp) with respect to read Phred score (x-axis) and
intron chain length (y-axis) for all ONT reads from the Sl-ISO-Seq data set. Barplot at the top (on the right
side) summarizes the inconsistency rate with respect to only the Phred score (only intron chain length).
Purple corresponds to a higher inconsistency rate, and light blue indicates a lower inconsistency. (D)
Same as C, but using inexact intron chain comparison (delta = 6 bp). (E) Histogram showing a fraction
of inconsistent ONT reads that have at least one intron entirely contained inside an annotated exon.
Dark blue represents reads for which the contained intron is supported by at least one PacBio read,
and light blue corresponds to the rest of ONT reads. (F) Number of inconsistent donor (purple) and ac-
ceptor (green) splice sites in ONT reads from the Sl-ISO-Seq data set with respect to the distance from the
annotated splice site. (G) Percentage of annotated canonical donor (green) and acceptor (purple) splice
sites with respect to distance to the nearest canonical dinucleotides (GU for donors, AG for acceptors).
Zero corresponds to the case when no canonical dinucleotides were detected within 10 bp. (H)
Inconsistency rates of individual acceptor splice sites in ONT reads from the Sl-ISO-Seq data set with re-
spect to reads’ Phred scores. Each histogram represents splice sites with a certain distance from the an-
notated splice site (gray bars on top). (I) Same as H, but for donor splice sites.
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reports the transcript’s strand (for 1.3 million out of 2.6 million
alignments), which can substantially affect downstream analysis.

Runningminimap2 with the annotation greatly improves re-
sults for novel transcripts. Using FLAIR for additional correction
slightly improved precision but significantly reduced recall (a re-
duction from 86.4% to 75.7% overall, from 64.2% to 31.0% for
novel isoforms). At the same time, the additional correction with
our algorithm makes substantial improvements: Overall recall
and precision increase by 0.9% and 8.8%, respectively, whereas
the precision of novel transcripts improves by ∼50% (from
21.9% to 32.5%) as the number of false positives among novel
transcripts decreases 1.6-fold (from 12,135 down to 7368). 2pas-
stools performed similarly well, although it was slightly worse in
terms of precision (a reduction from 76.5% to 71.4% overall,
from 32.5% to 26.2% for novel isoforms). Although minimap2
and the correction algorithms only used information about
known transcripts, this information aids the more precise detec-
tion of novel isoforms because they often share one or more exons
with known isoforms.

Discussion

Different long-read RNA approaches are being increasingly used
for isoform analysis (Koren et al. 2012; Au et al. 2013; Sharon
et al. 2013; Tilgner et al. 2014, 2015, 2018; Oikonomopoulos et
al. 2016; Garalde et al. 2018; Gupta et al. 2018; Tardaguila et al.
2018; Volden et al. 2018; Depledge et al. 2019; Wang et al. 2019;
Tang et al. 2020; Joglekar et al. 2021; Sun et al. 2021; Hardwick et
al. 2022). Therefore, understandinghoweach approach fares in de-
tecting RNA traits is fundamental. Previous and current compari-
sons (Li et al. 2014a, 2014b; Weirather et al. 2017; Cui et al. 2020;
Pardo-Palacios et al. 2021) of long-read technologies focused on
such important data properties as overall read mappability,
sequencing error rates, quantification analysis, isoform reconstruc-
tion, and alternative splicing detection. Indeed, broad conclusions
of these studies correlate with our results: ONT does have notice-
ably higher yield compared with PacBio but also contains signifi-
cantly more sequencing errors that complicate spliced alignment
and consecutive transcript discovery. However, although being
highly useful, none of these studies examines individual reads
and compares multiple technologies for an individual RNA mole-
cule. Moreover, previous approaches do not analyze spliced align-
ment error patterns and their dependency on isoform complexity.

Here, we used single-molecule barcoding technologies (Gupta
et al. 2018; Joglekar et al. 2021) to sequence cDNA copies of single
reverse transcription events on PacBio and ONT. Using perfectly
matching barcodes and UMIs, we established the correspondence
of a pair of ONT and PacBio reads to an individual RNA molecule.
This procedure is highly specific while discarding doubtful PacBio-
ONT read pairs but causes a selection for higher-quality reads in
ONT but not in PacBio (see Fig. 1C,D). We found important differ-
ences that can avoid misinterpretation of data and guide research-
ers in their choice of technology.

PacBio and ONT reads from an RT read pair frequently differ
in length, usually with up to 50 extra nucleotides in the PacBio
read, which is small compared with the entire read. However, extra
nucleotides in ONT also exist, although less frequently and fewer.
These differences are small but can harbor poly(A) signals, Kozak
sequences, or splicing factor binding sites. Additionally, we ob-
served that PacBio reads extended more often to a known TSS
and poly(A) site than ONT, a criterion important to defining com-
plete isoforms. Of note, despite an overall low error rate, a signifi-

cant fraction of PacBio errors arises from homopolymers (up to
40%), whereas ONT shows more errors but with less bias toward
homopolymers.

With respect to exon–intron structures, PacBio–ONT incon-
sistenciesmostly come from splice site shifts and skipped short ex-
ons owing to alignment errors. Such errors appear more often in
ONT, althoughPacBiomayalsomiss exons <15 bp. These inconsis-
tencies increase as intron chains become longer.

The probability of a donor shift in an alignment primarily de-
pends on the distance from the donor site to the nearest GU dinu-
cleotide. However, the GTNNGT donor motif is very common in
mammalian genomes, and thus, more donor shifts are explained
by this doubleGT arrangement thanwith fewer ormore separating
nucleotides. Donor shifts in ONT reads are usually not confirmed
by PacBio reads from the same RNA molecule. For acceptors, the
most commonly observed shift is NAGNAG acceptors, and such
shifts in ONT are often confirmed in the corresponding PacBio
reads. Thus, GUNNGU donors in ONT that diverged from the an-
notation aremost oftennot real, whereas such divergingNAGNAG
acceptors are often likely real.

Because using only barcoded ONT reads creates a bias toward
high-quality reads, we also analyzed all ONT reads. Low-quality
reads are shorter, cover fewer introns, and disagree with the anno-
tation more frequently than reads with high Phred scores. Other
trends detected in RT read pairs comparison, such as higher incon-
sistency for long intron chains and intron shifts in the proximity
of canonical dinucleotides, are generally preserved and therefore
useful to nonbarcoded approaches.

We leveraged the above observations in an algorithm for cor-
recting individual read alignments based on gene annotation.
Using simulated Nanopore reads, we demonstrate that correcting
splice site coordinates and misaligned microexons with our meth-
od has a noticeable positive effect on subsequent transcript detec-
tion using StringTie2. Moreover, annotation-based correction
improves discovery of novel transcripts as they often share exons
with known isoforms. Thus, the described findings can be of use
for other researchers developing novel algorithms for long-read
transcriptome analysis.

Although various sources provide different cost estimates for
ONT and PacBio RNA sequencing, it seems that a single
PromethION flow cell yield is about three to 10 times larger com-
pared with a single Sequel II SMRT cell. Taking into account signif-
icantly higher accuracy of PacBio reads in terms of both per-base
quality and the ability to correctly detect splice site positions, we
believe that PacBio reads can be especially useful for creating de
novo annotations and detecting novel isoforms in annotated ge-
nomes. As modern transcript discovery tools such as StringTie2
may generate a significant amount of false-positive isoforms
when using ONT data, Nanopore sequencing should be used for
automatic annotation with care. However, as Nanopore sequenc-
ing generates noticeably more data, it may be applied for estimat-
ing expression levels of annotated transcripts and further
differential isoforms expression analysis, as well as detecting iso-
forms with subsequent manual validation. We believe that more
studies and benchmarks, such as LRGASP (Pardo-Palacios et al.
2021), will shed additional light on this. Moreover, as the field
of long-read transcriptomics continues its rapid expansion, novel
protocols and computational methods will ensure more accurate
usage of both PacBio and ONT technologies for all kinds of re-
search projects.

Overall, the single-reverse-transcription event approach pro-
vides a powerful instrument for platform comparisons. In contrast
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to the comparisons of distinct molecules, this method offers terti-
um-non-datur reasoning, in which disagreements are known to be
caused by errors of one of the platforms.

Methods

Experimental details

No new samples or sequencing data were generated for this study;
however, we provide a brief description of the samples used and
experimental protocols followed in the Supplemental Material.
The description is taken from Joglekar et al. (2021). Sequenced
data were previously submitted to the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under acces-
sion numbers GSE158450 and GSE178175. Read statistics are
shown in Supplemental Tables S1 and S2.

Alignment to the reference genome using minimap2

PacBio reads were mapped to GRCm38 mouse reference genome
withminimap2 v2.17 (Li 2018) using -t 16 -a -x splice:hq ‐‐second-
ary =no options. ONT reads weremappedwith the -t 16 -a -x splice
-k 14 ‐‐secondary=no options. When GENCODE M21 mouse an-
notation was used for read mapping, it was converted to BED for-
mat using paftools.js gff2bed command (included in minimap2
package) and provided to minimap2 using the ‐‐junc-bed option.

Alignment to the genome using deSALT

PacBio reads were mapped to GRCm38 mouse reference genome
with deSALT v1.5.6 (Liu et al. 2019) using the -t 16 -x ccs options.
ONT reads were mapped with the -t 16 -x ont1d options.

Alignment to the genome using GraphMap2

Reads were mapped to GRCm38 mouse genome with GraphMap2
v0.6.5 (Marić et al. 2019) using the -t 16 -x rnaseq options. In ad-
dition, GraphMap2 was run with GENCODE M21 mouse annota-
tion provided using the ‐‐gtf option; however, the run failed with
an error.

Alignment to the genome using uLTRA

PacBio reads were mapped to GRCm38 mouse reference genome
with uLTRA v0.0.4.1 (Sahlin andMäkinen 2021) using the ‐‐isoseq
‐‐t 24 options. ONT reads were mapped with the ‐‐ont ‐‐t 24
options.

Pairwise read alignment

Pairwise read alignment was performed using the Smith–
Waterman local alignment algorithm implemented in the SSW
Python library (Zhao et al. 2013) with default options.

Sequencing error rate

Sequencing error rates were computed based on minimap2 align-
ments using a three-way comparison between the reference ge-
nome and RT read pairs. An error at a certain position in a read
from RT read pair was reported only when the alignment shows
a difference from the genome (i.e., insertion, deletion, or substitu-
tion), whereas the second read from the pair eithermatches the ge-
nome or contains an alternative discrepancy at this position (e.g.,
another base is inserted). Identical differences from the reference
genome (same position and nucleotide) detected in both PacBio
andONT reads from an RT read pair were not classified as sequenc-
ing errors. An error is deemed to occur within a homopolymer re-

gion if any 3-bp window in the genome that contains an error
position consists of the same nucleotides.

k-mer identity and homopolymer compression

The k-mer identity (k=14bp)with the reference genomewas calcu-
lated using minimap2 alignments for each exon individually. We
first extracted all genomic k-mers from the respective mapped re-
gion (of the exon) and then calculated the fraction of the k-mers
that occurred within this exon in the read. Homopolymer com-
pression (Au et al. 2012) was performed by substituting all stretch-
es of identical nucleotides (≥2 bp) with a single nucleotide of the
same kind in both read sequence and reference sequence from
the respective mapping region. The k-mer identity was then com-
puted in the same way as for noncompressed sequences.

TSS/poly(A) analysis

TSS and poly(A) sites were assigned to each read as previously per-
formed (Joglekar et al. 2021). For published TSS, we used high-
quality calls from the FANTOM5 Consortium (Lizio et al. 2015).
Among all published TSS calls, within 100 bp of the 5′ end of
the read mapping, we assigned the closest TSS to the read and
none if there are no such calls within 100 bp. Using very recent
poly(A) site calls (Herrmann et al. 2019), we applied a similar pro-
cedure to assign poly(A) sites to the read (within 100 bp of the 3′

end of the read mapping).
An RT read pair is considered as “agreeing” on TSS/poly(A)

site assignment if both reads have an assigned TSS/poly(A) site
and the two assigned sites are identical.

Intron chain comparison and inconsistency detection

Intron chains were compared against each other as ordered lists of
coordinate pairs. In the precise intron chain comparison, two in-
trons are considered equal if their splice site coordinates are iden-
tical (delta = 0 bp), whereas in the inexact comparison, each splice
site is allowed to differ by delta = 6 bp at most. Intron chains are
considered as agreeing if they are equal or if one chain is a subchain
of another with respect to the given delta value and disagreeing
otherwise.

To detect inconsistencies between reads in RT read pairs, in-
tron chains for both reads were extracted from the BAM files ob-
tained with minimap2 and compared against each other as
described above. Similarly, to detect agreement between a read
and the annotation, a read intron chain extracted from the BAM
file was compared against intron chains of known transcripts
from GENCODE M21 comprehensive mouse annotation. Read is
deemed to be consistent if its intron chain agrees with at least
one annotated transcript and is deemed inconsistent otherwise.
Reads that do not overlap with annotated exons (i.e., entirely
map to intergenic or intronic regions) are considered as uninfor-
mative and are ignored in the analysis.

Classification of splicing modifications

To classify splice site inconsistencies with the gene annotation,
reads were assigned to known transcripts using a custom script,
assign_reads.py available at GitHub (see Data access), which as-
signs mapped reads to known isoforms based on intron chains
and nucleotide identity. For PacBio reads, the script was run with
the ‐‐data_type pacbio_ccs option; for ONT reads, the ‐‐data_type
nanopore was used. Benchmarking of the method on the simulat-
ed data is presented in the Supplemental Note, “Benchmarking of
the read-to-isoform assignment algorithm” (Supplemental Table
S4).
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For further analysis, we selected unambiguous assignments
with respective reported splicingmodifications (skipped exons, al-
ternative donor, or acceptor site). To investigate alternative donors
and acceptors (i.e., shift frequency, nucleotide content), only in-
trons with canonical splice sites were used (GT-AG).

The output of the script was also used to track the origin of in-
consistent nonbarcoded reads. To detect reads having at least one
intron entirely located within an annotated exon, we selected
uniquely assigned reads having this specific type of inconsistency
(additional novel intron according to our categories).

Splice site analysis for nonbarcoded reads

To analyze splice site consistency in nonbarcoded reads, we as-
signed each read intron separately to an annotated intron (rather
than the entire intron chain) with a loose threshold delta =
10 bp. Such an approach allows us to maximize the number of in-
vestigated splice sites and consider individual introns even from
inconsistent chains. For the analysis, we selected only cases
when both read and annotation intron have canonical splice sites
(GU/AG). We say that an assigned read intron correctly detects a
splice site if its position is equal to the annotated splice site
(0-bp difference), it detects incorrectly otherwise. The inconsisten-
cy rate of an annotated splice site is defined as the number of incor-
rect calls divided by the total number of read introns assigned.
Each annotated splice site was classified according to the distance
to the nearest GU (for donors) or AG (for acceptors) in the vicinity
of 10 bp. It allowed us to compute overall inconsistency rates for
splice sites with respect to this distance.

Splice site correction algorithm

The correction algorithm takes aligned reads and genome annota-
tion as input. Each read is processed individually, as opposed to the
classic transcript constructionmethod that relies on clustering and
splice site consensus (Kovaka et al. 2019; Tang et al. 2020;Wyman
et al. 2020; Sahlin andMedvedev 2021). An aligned read is first as-
signed to a reference isoformbased on inexact intron chainmatch-
ing and exon similarity as described above. Further, each read is
examinedwith respect to the accuracy of the detected intron struc-
ture. Coordinates of corrected alignments are output in BED12 for-
mat. The algorithm is available at GitHub (correct_splice_sites.py;
see Data access).

Splice site correction algorithm: restoring skipped exons from

neighboring splice sites

A reference exon is considered to be skipped during the alignment
if (1) it is <50 bp, (2) it is spanned by a read intron, and (3) adjacent
exons in the alignment contain extra sequences reaching into the
annotated introns surrounding the reference exon and these two
extra sequences are of a similar total length as the reference exon
(Supplemental Fig. S9).

Splice site correction algorithm: correcting individual splice sites

With the same considerations as above, an individual spice site in
the read is to be corrected if (1) it is no further than delta = 6 bp
apart from a known splice site and (2) the read alignment has
indels close to this position.

Simulating ONT data

To simulate ONT data we used the NanoSim software in transcrip-
tome mode (Hafezqorani et al. 2020) using the pretrained ONT
cDNA error model. However, examining the code, we found that
NanoSim randomly selects a starting position of a read in an

mRNA to simulate truncation. This is performed using a uniform
distribution, thus assuming that 5′ and 3′ are identical, which is
not the case for the real data. To avoid this pitfall, we mapped
raw ONT reads to the reference transcripts using minimap2 (with
-x map-ont option) and estimated the probabilities of the initial se-
quence being truncated on each side by N% of its length. We thus
modified the NanoSim truncation procedure so that reference se-
quences are clipped according to empirically derived probabilities
(Supplemental Fig. S10). In addition, we turned off the simulation
of random decoy reads, which represent the background noise of
the sequencing experiment. We simulated 30 million ONT reads
using transcripts from theMouse GENCODE v26 basic annotation
(Frankish et al. 2021). In addition, a 30-bp poly(A) tail was attached
to every transcript before simulation. Each transcript with at least
one generated read was considered as “expressed” and then repre-
sented the ground truth.

Evaluating transcript model construction

We first generated a reduced genome annotation by removing 20%
of expressed spliced transcripts. Removed transcripts are consid-
ered novel, whereas expressed transcripts kept in the annotation
represent the set of known models. Using these two sets allowed
to independently evaluate the ability of the algorithm to report
known and discover novel isoforms. StringTie2 results were simi-
larly split into novel and knownmodels based on the information
provided in the GTF file, and gffcompare (Pertea and Pertea 2020)
was further launched to estimate precision and recall.

In addition, we performed the series of experiments with dif-
ferent fractions of excluded expressed isoforms to analyze how this
parameter affects the results (Supplemental Note, “Novel isoform
discovery with different fractions of unknown transcripts,”
Supplemental Table S5).

Running StringTie2

StringTie2 (Kovaka et al. 2019) was run with -L option for long
reads and the reduced genome annotation.

Running FLAIR

Correction module of FLAIR (Tang et al. 2020) was run with mini-
map2′ alignments (converted to BED file using bam2Bed12.py)
and the reduced genome annotation as an input.

Running 2passtools

First, 2passtools (Parker et al. 2021) “score” command was run on
minimap2′ alignments. Results were filteredwith the “filter ‐‐exprs
“decision_tree_2_pred’” command and provided to minimap2 us-
ing the ‐‐junc-bed option.

Data access

Simulated data generated in this study are available at Zenodo
(https://doi.org/10.5281/zenodo.6325107). The barcode detec-
tion tool is available as the “GetBarcodes” function in the scicor-
seqr R-package (https://github.com/noush-joglekar/scisorseqr).
All scripts used for data analysis and spliced alignment correction
are available as Supplemental Code and at GitHub (https://github
.com/ablab/platform_comparison).
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