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Accurate isoform discovery with IsoQuant 
using long reads

Andrey D. Prjibelski    1,2,7 , Alla Mikheenko1,7, Anoushka Joglekar    3,4,5, 
Alexander Smetanin6, Julien Jarroux    4,5, Alla L. Lapidus    1 & 
Hagen U. Tilgner    4,5 

Annotating newly sequenced genomes and determining alternative 
isoforms from long-read RNA data are complex and incompletely solved 
problems. Here we present IsoQuant—a computational tool using intron 
graphs that accurately reconstructs transcripts both with and without 
reference genome annotation. For novel transcript discovery, IsoQuant 
reduces the false-positive rate fivefold and 2.5-fold for Oxford Nanopore 
reference-based or reference-free mode, respectively. IsoQuant also 
improves performance for Pacific Biosciences data.

Long-read RNA sequencing is now widely used in bulk, sorted cells, 
single cells and spatial approaches. This wide field of applications has 
led to the development of multiple spliced alignment programs1–4, 
transcript discovery methods5–11, tools for transcript classification12, 
annotation13 and visualization14,15. Additionally, several reference-free 
tools for RNA long-read correction and assembly have been devel-
oped16,17. Current community efforts address the problem of under-
standing performance, weaknesses and advantages of each approach 
for various applications18.

Here we present IsoQuant—a tool for transcript discovery and 
quantification with long RNA reads. IsoQuant takes as input a reference 
genome and a dataset containing PacBio or ONT (Oxford Nanopore 
Technologies) RNA reads. By default, IsoQuant maps input reads to 
the genome via minimap2 in splice mode2. Alternatively, a user may 
provide BAM files generated with a spliced aligner of their choice, for 
example STARlong1 for PacBio and uLTRA4 or deSALT3 for ONT reads. In 
two distinct modes, IsoQuant can be used for de novo annotation-free 
transcript discovery as well as with the reference gene annotation.

IsoQuant uses long-read spliced alignments to construct an intron 
graph, in which vertices are splice junctions, that is, pairs of splice sites 
(donor and acceptor), and two vertices are connected with a directed 
edge if the corresponding splice junctions are consecutive in at least 
one read (Methods). This graph is exploited for constructing paths that 
correspond to full-length transcripts (Fig. 1a). If the reference annota-
tion is provided, IsoQuant first assigns reads to known isoforms via an 

inexact intron-chain matching algorithm that accounts for splice site 
shifts, which are typical for alignment of error-prone reads19. These 
assignments are further used for reference transcript quantification 
and correction of inaccurately detected splice junctions and misalign-
ments, such as skipped microexons.

To compare IsoQuant performance against existing transcript 
discovery tools, we first simulated mouse PacBio and ONT data using 
realistic gene expression profiles with IsoSeqSim (https://github.com/
yunhaowang/IsoSeqSim) and Trans-NanoSim20 respectively. For more 
informative benchmarking, we simulated an ONT R9.4 dataset repre-
senting R9.4 chemistry and an ONT R10.4 dataset corresponding to a 
more accurate R10.4 chemistry (Methods).

To mimic real-life datasets containing unannotated transcripts, 
we arbitrarily removed 5,311 (15%) of 35,684 expressed isoforms (the 
ones contributing to at least one read during the simulation) from the 
GENCODE21 gene annotation. These 5,311 hidden transcripts were fur-
ther used as a ground truth for novel transcript discovery. The reduced 
GENCODE annotation was used as an input for all tools. Each output 
annotation was then separated into a set of known and a set of novel 
transcripts, which were compared against the respective baselines 
using gffcompare22 (Methods).

For known transcripts, IsoQuant has the highest F1-score (the 
harmonic mean of precision and recall) compared to TALON7, FLAIR8, 
Bambu11 and StringTie5, but these advances are not dramatic (Supple-
mentary Tables 1–3). However, IsoQuant produces novel transcripts 
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is likely to be highly useful across many genes, including but not 
limited to low-expressed long-noncoding RNAs and marker genes 
of cell types.

Among the five listed methods, only StringTie and IsoQuant sup-
port annotation-free transcript discovery. Thus, we compared these 
two tools on the same simulated datasets used above without providing 
any annotation (Supplementary Table 4). On PacBio data both tools 
yield highly accurate transcript models. On ONT data StringTie shows 
higher recall, while IsoQuant generates transcripts with substantially 
lower false-positive rates (2.5-fold decrease for ONT R10.4 dataset and 
3.7-fold for ONT R9.4). While overall quality of transcripts discovered in 
reference-based mode is, indeed, higher compared to annotation-free 
runs, the precision and recall of novel transcripts appears to be rather 
similar in both modes.

To complement our benchmarks on simulated data, we also 
sequenced Lexogen spike-in RNA variant (SIRV) synthetic molecules 
on the Oxford Nanopore MinION using ONT R10.4 flowcells (Methods). 
Along with the complete SIRV annotation, Lexogen provides an incom-
plete annotation, missing 26 out of the total 69 SIRV isoforms, which 
allows the evaluation of novel transcript discovery, similar to the one we 
performed for simulated data with the reduced GENCODE annotation.

Results on SIRV sequencing data resemble the ones obtained on 
simulated reads. When predicting novel isoforms, IsoQuant shows at 
least four times higher F1-score and eightfold lower false-positive rate 
than any other tool. In comparison to most tools, with the exception 
of TALON, IsoQuant shows high gains in both precision and recall. 
TALON has a better recall (42.3 versus 38.5%), but IsoQuant has tenfold 
higher precision (Fig. 2a). Similar to simulated data, all tools are able to 
accurately predict SIRV transcripts kept in the annotation, with Bambu, 
StringTie and IsoQuant having perfect precision for known isoforms 
alone (Supplementary Table 5).

with a 1.9-fold higher F1-score on ONT R10.4 data compared to 
the second-best tool, StringTie. In comparison to TALON, FLAIR 
and Bambu, the improvement in F1-score is even more noticeable  
(Fig. 1b, left). On PacBio data, IsoQuant again shows the best F1-score, 
but the difference from other tools is smaller than for ONT R10.4 data  
(Fig. 1b, right).

Compared to most tools, IsoQuant’s improvements in F1-score 
is primarily caused by its very high precision of novel transcripts. 
As compared to TALON, FLAIR and StringTie, IsoQuant shows a 
minimum of fivefold drop in false-positive rate on ONT R10.4 data, 
while still maintaining slight gains in recall (Fig. 1d). The situation 
is of a different nature for Bambu. IsoQuant has higher precision  
(86.3 versus 69.9%), but substantially higher recall: while Bambu 
only reconstructs 73 out of 5,311 novel isoforms (1% recall), IsoQuant 
reconstructs 3,848 (62.6%). On ONT R9.4 simulated data IsoQuant 
similarly shows a notably lower false-positive rate compared to other 
tools (Supplementary Table 2).

On PacBio simulated data, similar trends can be observed for novel 
transcripts, although with a less drastic difference in specificity. Bambu 
shows slightly higher precision (95.8%) compared to IsoQuant (94.4%), 
but again has the lowest recall (18.7% for Bambu versus 76.8% for Iso-
Quant). StringTie, TALON and FLAIR again predict transcripts with 
comparable recall, but have at least fivefold higher false-positive rate 
compared to IsoQuant (Fig. 1e, detailed analysis of the false-positive 
transcript is provided in Supplementary Note 8).

Further, we measured precision and recall for novel transcripts 
with different expression levels (Fig. 1c and Supplementary Fig. 1).  
While all tools tend to show lower recall and precision for lowly 
expressed transcripts, IsoQuant yields highly specific transcript 
models (≥80% precision) and maintains advances for novel tran-
script discovery regardless of the expression levels. Thus, IsoQuant 
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Fig. 1 | IsoQuant pipeline outline and characteristics of novel transcripts 
generated from mouse simulated data. a, Outline of the IsoQuant pipeline. 
When a reference gene annotation is provided, reads are assigned to annotated 
isoforms and alignment artifacts are corrected (top). The intron graph is 
constructed from read alignments (middle) and transcripts are discovered via 
path construction (bottom). b, F1-score for novel transcripts reported by different 

tools on simulated ONT (left) and PacBio data (right). c, Precision and recall for 
novel transcripts reported by different tools on simulated ONT data broken up by 
expression levels in TPM. TPM bins are presented by dot sizes. d, Precision (left) 
and recall (right) for novel transcripts reported by different tools on simulated 
ONT data. e, Same as d, but for simulated PacBio data.
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To support our observations, we also applied all tools to the 
real human ONT complementary DNA, ONT direct RNA (dRNA)23 
and PacBio public datasets, for which the ground truth is indeed 
unknown. We used gffcompare to estimate the consistency of pre-
dictions by computing the number of identical transcript models 
reported by the different tools. On the human ONT dRNA dataset, 
IsoQuant shows the highest percentage of transcripts confirmed by 
at least three other methods (70.1%), while no other tool surpasses 
the 40% threshold. This suggests that IsoQuant transcript models 
are notably more consistent with other methods (Fig. 2b, middle). 
In comparison to the other approaches, IsoQuant also reports the 
lowest number of transcripts that are not predicted by any other 
method. If one interprets such transcript models as potential false 
positives, IsoQuant again stands out in the lowest false-discovery rate 
(3.5%, 1,162 transcripts). In contrast, other tools output annotations 
containing more than 33% of unconfirmed transcript models (vary-
ing from 18,000 to 48,000). Additionally, for each tool we computed 
the number of potentially missed transcripts that were reported by 
all other methods. While TALON has the lowest number of such tran-
scripts (75), Bambu shows the second-best results of 1,089 possible 
false negatives and IsoQuant shows the third-best results of 1,521 such 
transcripts (Supplementary Table 6).

Similar trends can be observed in ONT cDNA and PacBio datasets, 
although the overall percentage of common transcripts appears to be 
lower compared to ONT dRNA data (Fig. 2b, left and right). IsoQuant 
again shows the highest fraction of transcripts predicted by at least 
three other tools (35.6% for ONT cDNA, 55.6% for PacBio), while other 
programs have correspondingly 25 and 40% at best. All four other 
tools produce annotations containing a high number of transcripts 
that are not confirmed by any other method (> 50% of all transcripts 
for ONT cDNA, > 30% for PacBio), while IsoQuant’s potential false 
predictions are below 25% on ONT cDNA dataset and below 10% on 
the PacBio dataset.

Although these values cannot be explicitly treated as false positives 
and false negatives, they advocate that, unlike other tools, IsoQuant 
produces highly specific annotations that are strongly consistent with 
transcripts reported by several alternative approaches. Moreover, 
because IsoQuant typically misses very few isoforms predicted by all 
other tools simultaneously, it is likely to also be highly sensitive (Sup-
plementary Table 6, the number of potentially missed transcripts).

Additionally, we used long-read RNA sequencing data from 
a mouse brain sample, in which a previous study reported 76 novel 
isoforms of high biological importance24, which were confirmed by 
manual annotation by the GENCODE team. Here, we compared Iso-
Quant only with StringTie, which has the second-best F1-score across 
all simulated datasets. On PacBio data, IsoQuant correctly reconstructs 
71% of the confirmed novel isoforms, while StringTie restores approxi-
mately half as many novel transcripts—37% (Supplementary Table 7). 
Similarly, on the single-cell ONT dataset from the same brain sample 

IsoQuant restores almost 50% of these 76 novel isoforms, whereas 
StringTie reports 30%. Although it is not possible to evaluate specificity 
in this kind of experiment, it confirms that IsoQuant can maintain high 
recall values on real sequencing data.

Beside transcript discovery, IsoQuant implements additional func-
tionality, such as read-to-isoform assignment and transcript quantifi-
cation. Benchmarks of these supplementary features, information on 
computational performance, as well as IsoQuant results obtained with 
different spliced aligners can be found in the Supplementary Notes 2–7.

In summary, IsoQuant accurately predicts transcript models from 
PacBio or ONT RNA sequencing data. For known isoforms, IsoQuant has 
higher F1-score compared to other tested tools, but these differences 
are not dramatic. For unannotated isoforms, however, IsoQuant pro-
vides very strong increases in F1-score over other existing approaches. 
In comparison to most tools, it achieves this F1-score increase by main-
taining higher recall, while substantially increasing precision. Thus, 
IsoQuant is a valuable tool for predicting novel alternatively spliced 
isoforms in the age of long-read sequencing.

Online content
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Methods
Sequencing Lexogen SIRV transcripts
First, total RNA from HeLa cells was extracted using the miRNeasy Tis-
sue/Cells Advanced Mini Kit (Qiagen, 217604), and polyA transcripts 
were pulled-down using the NEBNext Poly(A) messenger RNA Magnetic 
Isolation Module (NEB, E7490S). Next, the SIRV-Set 4 (Iso Mix E0/ERCC/
Long SIRVs) (Lexogen, 141.01) was spiked-in to the RNA and reverse 
transcribed using the Maxima H Minus Reverse Transcriptase (Thermo 
Scientific, EP0752). The reverse transcriptase reaction final concentra-
tions are as follows: 1.25 ng μl−1 polyA HeLa RNA, 0.33 ng μl−1 SIRV-Set 
4, 0.5 mM dNTP, 5 μM dT-VN oligo, 5 μM TSO, 1× reverse transcriptase 
buffer, 2 U μl−1 RiboLock RNase Inhibitor (Thermo Scientific, EO0382) 
and 20 U μl−1 Maxima H Minus Reverse Transcriptase. The reaction was 
incubated for 30 min at 50 °C and 5 min at 85 °C. Then, 5 μl of reverse 
transcriptase reaction were amplified using the Platinum Superfi II Mas-
termix (ThermoFisher, 12368010) for 12 cycles, according to the manu-
facturer’s instructions and using Forward- and Reverse-Amplification 
primers. Finally, the cDNA was cleaned up using SPRIselect beads at 
a 0.8× ratio (Beckman Coulter, B23318) and used as input for Oxford 
Nanopore Technology sequencing with both the Kit 12 (SQK-LSK110 kit 
and FLO-MIN106D flowcells) and Q20+(SQK-LSK112 kit and FLO-MIN112 
flowcells) chemistries. Both were run for 72 h and basecalled using the 
Super Accuracy model.

Data simulation
To simulate PacBio circular consensus sequencing (CCS) reads we used 
IsoSeqSim (https://github.com/yunhaowang/IsoSeqSim), which gen-
erates a read by truncating a transcript sequence according to given 
probabilities and randomly inserts sequencing errors at a specified 
rate with uniform distribution. As reported in previous studies25, a 
uniform error distribution is a realistic model for PacBio CCS reads. 
Here we used 5′ and 3′ truncation probabilities typical for PacBio 
Sequel II (provided within the package) and an overall error rate of 
1.6%: 0.6% deletions, 0.6% insertions and 0.4% substitutions. While 
these discrepancies do not necessarily represent sequencing errors, 
they must nevertheless be modeled, as they can confuse transcript 
reconstruction. The above values were obtained by mapping real 
PacBio CCS reads to the reference genome18.

ONT reads were simulated with the NanoSim software in the 
transcriptome mode20. NanoSim is designed specifically for simu-
lating ONT-specific sequencing errors and biases. It first constructs 
error-profile and length-distribution models, which are further used to 
mutate reference transcript sequences. We trained the model using the 
ONT R10.4 sequencing data (average error rate of 2.8%: 0.7% deletions, 
1.1% insertions, 1% substitutions.). To simulate ONT R9.4 chemistry, 
we used a pretrained model provided within the NanoSim package, 
which was obtained using publicly available ONT cDNA data23 from 
the NA12878 human cell line and has an average error rate of 15.9%: 6% 
deletions, 5.1% insertions and 4.8% substitutions. In addition, we turned 
off the simulation of intron retention events and random unaligned 
reads representing the background noise.

However, additional analysis of the simulated ONT data and Nano-
Sim code revealed that NanoSim randomly selects a start position of a 
read in a transcript sequence with a uniform distribution, thus introduc-
ing no 5′ or 3′ bias. To simulate more realistic ONT reads, we aligned real 
ONT cDNA data obtained from the mouse brain sample to the reference 
transcriptome using minimap2 and derived empirical truncation prob-
ability distributions on both 5′ and 3′ ends. Further, we changed the 
NanoSim source code to enable sequence truncation with respect to 
obtained probabilities (Supplementary Fig. 2). The modified version 
is available at https://github.com/andrewprzh/lrgasp-simulation.

For both ONT and PacBio simulation we used Mouse GENCODE 
v.26 and Human GENCODE v.36 basic annotations21. Before simula-
tion, we also attached a 30 basepair (bp) polyA tail to every transcript 
sequence. To simulate realistic mouse data, a transcript expression 

profile was obtained using PacBio data from a mouse brain sample24. 
For human data, a gene expression profile was computed with PacBio 
GM12878 data. A complete description of every dataset used in this 
study is provided in the Supplementary Table 8.

Quality evaluation of predicted novel transcripts
To mimic real-life situations and assess the ability of an algorithm to 
predict novel transcripts, we created reduced gene annotations by 
removing a fraction of expressed isoforms. First, we define a subset of 
true expressed transcripts that contributed to at least one read during 
the simulation. Among this set, we select a fraction of transcripts to be 
excluded from the annotation. These transcripts are denoted as the 
true novel isoforms. The remaining transcripts (among the expressed) 
are defined as true known isoforms. To create a reduced gene anno-
tation, we remove all true novel isoforms from the comprehensive 
GENCODE annotation. Here we created a reduced mouse annotation 
with 15% of expressed transcripts removed, and four human reduced 
annotations with 10, 15, 20 and 25% of excluded expressed isoforms 
(Supplementary Note 2).

To evaluate a transcript prediction tool, we provided the entire 
set of simulated reads and the reduced annotation as an input. 
Thus, true novel isoforms are hidden from the annotation, but pre-
sent in the reads. We then compute precision and recall by running  
gffcompare22 for (1) the entire output annotation versus the complete 
set of expressed transcripts, (2) reported known isoforms versus the 
set of true known isoforms and (3) predicted novel transcript models 
versus the true novel set. The information on whether a transcript is 
known or novel is obtained from the output GTF file. The script for 
computing these metrics can be found in the IsoQuant repository in 
misc/reduced_db_gffcompare.py.

For the annotation-free benchmarks we simply compared the 
entire output annotation with the true set of expressed isoforms using 
gffcompare.

To estimate how recall and precision of novel transcripts depend 
on the expression levels, predicted transcripts are grouped into bins 
by their transcripts per million (TPM) values. For computing recall the 
number of false negative calls (undetected transcripts) in each TPM bin 
is required. We thus group transcripts by their TPM values used during 
the simulation. However, computing precision requires the number of 
false-positive predictions within each bin and thus only reported TPM 
values can be used (the true TPM for a false prediction is 0). Thus, it 
may happen that the same transcript may fall into different bins when 
benchmarking different tools. Although it is not possible to compute 
precision and recall exactly for an arbitrary TPM range, the bias has 
a minor effect as only a small number of bins was used in this experi-
ment (five). Therefore, despite being imperfect, these estimations can 
provide additional insights on whether a transcript discovery method 
has any bias toward high- or low-expressed isoforms.

To evaluate SIRV transcripts we used an incomplete SIRV anno-
tation containing only 43 out of 69 SIRV transcripts. The output 
annotations were again split into known and novel transcripts, and 
compared against the respective reference set using gffcompare. The 
SIRV-Set 4 annotations are available at https://www.lexogen.com/
sirvs/download/.

Estimating consistency between annotations
Consistency between transcripts generated on real data was estimated 
using gffcompare (without providing a reference annotation). Based 
on gffcompare output, for each tool we computed how many of its 
transcripts are supported by (1) all four other tools, (2) exactly three 
other tools, (3) one or two other tools and (4) no other tool (possible 
false predictions). We also counted the number of potentially missed 
transcripts that were reported by all methods except the one being 
evaluated (possible false negative). This approach is implemented in 
misc/denovo_model_stats.py.
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Command line options
For PacBio data minimap2 was launched with ‘splice:hq’ preset; for 
ONT data we used k-mer size 14 with the usual ‘splice’ preset. We also 
provided annotated splice junctions in BED format as an input. In each 
experiment, all tools were provided with the same BAM file and the 
same reference annotation. IsoQuant was launched with the default 
parameters setting the appropriate data type via ‘–data_type’ option. 
StringTie2 was launched with the ‘-L’ option. All other tools were run 
with the default parameters in 20 threads. In contrast to all other tools, 
Bambu outputs all reference transcripts, including unexpressed ones. 
Thus, we filtered out all transcripts with read count values <1 from 
the Bambu output. As recommended in the user manual, we also ran 
TALON using preliminary alignment correction with TranscriptClean26 
(https://github.com/mortazavilab/TALON). However, as the results 
with and without correction were almost identical, we decided to use 
the annotations obtained from raw data for a fair comparison. Com-
plete information on all options and software versions are provided in 
the Supplementary Table 9.

IsoQuant algorithm
To process long RNA reads, IsoQuant requires a reference genome and 
optionally—a corresponding gene annotation. If the reads are provided 
in the FASTQ format, IsoQuant maps them to the reference with mini-
map2 in splice mode2. Alternatively, a user may provide a sorted and 
indexed BAM file generated with a spliced aligner of their choice. If the 
reference annotation is provided, the IsoQuant algorithm includes 
four main steps: (1) assigning mapped reads to known isoforms, (2) 
transcript quantification, (3) alignment correction and (4) transcript 
model construction. In the annotation-free mode, the pipeline simply 
proceeds to the transcript discovery step. Below, we describe the key 
aspects of all four procedures.

Assigning long reads to known isoforms
The algorithm for assigning long reads to annotated isoforms is based 
on intron-chain matching and detecting exonic overlaps. To assign 
reads, IsoQuant processes each gene individually by extracting reads 
that map to the respective region from the sorted BAM file.

IsoQuant first processes the annotation to construct splice junc-
tion and exon profiles of all known isoforms. A set of annotated splice 
junctions in the gene is sorted according to their coordinates in the 
genome and enumerated from 1 to N. Thus, an annotated isoform 
can be represented as a vector of length N, in which the element at 
position i is set to 1 if this isoform includes the ith splice junction 
and −1 otherwise (Supplementary Fig. 3a). This vector is henceforth 
referred to as an isoform splice junction profile. The exon profile is 
constructed in a similar manner: all annotated exons are first split into 
a minimal set of M nonoverlapping fragments, such that every exon 
can be represented as their combination, and these exonic fragments 
are sorted and enumerated. The exon profile for an annotated isoform 
is similarly denoted as a vector of length M, where the ith element is 
set to 1 if this isoform contains the ith exon fragment and −1 otherwise 
(Supplementary Fig. 3b).

To assign a read to an annotated isoform, each splice junction 
from the alignment is matched against annotated splice junctions 
from the current gene and a read splice junction profile is constructed 
(also a vector of length N). In this vector the ith element is set to 1 if the 
annotated splice junction with index i matches to a splice junction from 
the read, −1 if it is overlapped or spanned by the read, but no match is 
detected, and 0 otherwise. A zero value indicates that the splice junc-
tion is located outside the alignment region and therefore no informa-
tion can be derived, for example due to read truncation. Similarly, the 
exon profile of the read is constructed based on M exonic fragments 
described above: 1 indicates that the respective exonic fragment is 
overlapped, −1 means it is spanned and 0 is set for exonic fragments 
outside the alignment region (Supplementary Fig. 4).

Due to sequencing errors, an aligner may detect splice site posi-
tions inaccurately19. To avoid considering them as alternative or novel, 
the algorithm allows a small difference Δ between annotated and align-
ment splice site coordinates when matching splice junctions. Formally 
speaking, an annotated splice junction (x1, x2) matches a read splice 
junction (y1, y2) if |x1 − y1| ≤ Δ and |x2 − y2| ≤ Δ. The default Δ value varies 
for different types of input data: 4 bp used for PacBio CCS reads and 6 bp 
for ONT reads (can be set manually). Although an aligned read can be 
assigned to an isoform by simply comparing its intron chain and exonic 
coordinates to the annotation, vectorizing the alignment as described 
above allows one to easily implement inexact splice site comparison 
with a delta, and quickly detect candidate isoforms for read assignment.

Further, to assign a read to an isoform, its exon and splice junction 
profiles are matched against the respective profiles of the annotated 
isoforms. The distance between two profiles is computed simply as 
the number of distinct elements in which the read profile has nonzero 
values. A read is said to be consistent with an isoform if the distances 
between their exon and splice junction profiles are 0, and the read has 
no unannotated splice junctions/exons (Supplementary Fig. 4). When a 
read is consistent with a single isoform, it is reported as a unique match. 
When a read is consistent with multiple isoforms simultaneously, it is 
classified as ambiguous, which may happen, for example, due to read 
truncation. If a read contains unannotated splice junctions/exons, or its 
profiles are not consistent with any isoform, it is marked as inconsist-
ent. For such alignments IsoQuant reports the most similar reference 
transcript and detected alternative splicing events.

Some inconsistencies can be, however, caused by misalignments, 
rather than by real alternative splicing events19: (1) skipped short exons, 
(2) intron shifts exceeding Δ bp and (3) short unannotated exons at 
transcript ends (Supplementary Fig. 5). If an inconsistent alignment 
contains only these types of discrepancy, the read is reclassified as 
conditionally consistent.

Transcript quantification
Once long reads are assigned to annotated isoforms, quantifica-
tion becomes rather trivial. Uniquely assigned reads are counted as 
a single detected transcript, while ambiguous reads are treated as 
multi-mappers and contribute to multiple assigned isoforms with 
lower weight. A transcript is reported as expressed only if it has at 
least one uniquely assigned read. Inconsistent reads are considered as 
potential novel isoforms and ignored during the quantification step. 
Beside genes and transcripts, IsoQuant can also count inclusion and 
exclusion abundances for separate exons and introns, which can be 
useful for computing percentage spliced-in values.

IsoQuant implements additional functionality for barcoded long 
RNA reads, for example barcoded by single-cell or spatial location24,27. 
A user can provide information on how the reads are grouped, for 
example, as a TSV file that indicates a barcode or a cell type of origin for 
every read. Isoform and gene abundances are then calculated for every 
read group separately, which can facilitate an expression comparison 
between different groups or cell types.

Spliced alignment correction
IsoQuant corrects each uniquely assigned read individually. If a read 
contains misalignments described above (Supplementary Fig. 5) or 
its intron chain is not identical to the intron chain of the assigned iso-
form, the alignment is corrected as follows. Short skipped exons are 
restored according to the annotation and minor splice junction shifts 
are replaced with the respective splice junctions from the assigned 
transcript. Unannotated terminal microexons are simply removed 
from the alignment. Finally, any unannotated splice site is substituted 
with the nearest site from the assigned transcript if (1) these splice sites 
are located within Δ bp and (2) read alignment contains sequencing 
errors near this splice site. Coordinates of corrected alignments are 
then saved in BED12 format.
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Transcript model construction
The transcript reconstruction procedure implemented in IsoQuant 
includes four steps: (1) intron graph construction from read align-
ments, (2) intron graph simplification, (3) attaching terminal vertices 
and (4) construction of paths representing full-length transcripts. This 
stage does not require any information on reference transcripts and 
thus can be used for both de novo and annotation-based transcript 
discovery. Below we provide a detailed description of all algorithms 
and intuition behind them.

Intron graph construction. To construct transcript models, IsoQuant 
implements a concept of an intron graph, which was influenced by the 
previously designed splice graph approach28, used, for example, in 
StringTie5. For a given set of transcripts, an intron graph is constructed 
as follows. First, we define internal vertices as a set of all splice junctions 
from all transcripts. Thus, each vertex represents a pair of splice sites 
(donor and acceptor) or, more formally, an ordered pair of coordinates 
in the genome. Two vertices are connected with a directed edge if the 
respective splice junctions are consecutive in any transcript. Finally, 
for every first or last splice junction in a transcript, the correspond-
ing vertex is connected with a terminating vertex that represents the 
transcript start and end positions (formally, a single integer). The 
intron graph is a directed acyclic graph since every edge connects 
only consecutive elements. Each transcript can now be represented 
as a path in the graph that traverses from the initial to terminal vertex, 
where internal vertices denote its intron chain (Supplementary Fig. 6a).

The described approach can be used to construct an intron graph 
from read alignments. Similarly, to the read-to-isoform assignment 
procedure, the genes are processed by IsoQuant individually. First, 
the algorithm constructs a set of internal vertices corresponding to 
splice junctions from the selected alignments. Two vertices are likewise 
connected when the respective splice junctions are consecutive in any 
read alignment. Due to the presence of inexactly detected splice sites, 
which may remain even after the alignment correction, such a graph 
may contain false vertices and connections. These false nodes typically 
form topological patterns, such as tips and bulges. A tip is defined as 
a dead end (dead start) edge that has a starting (ending) vertex with 
outdegree (indegree) at least 2. A bulge consists of two alternative paths 
having the same start and end vertices (Supplementary Fig. 6b). Similar 
patterns are also typical for de Bruijn graphs, which are used for short 
read assembly, where bulges and tips are caused by sequencing errors. 
To remove tips and bulges assemblers exploit various techniques 
broadly called graph simplification29,30.

Intron graph simplification. Here we implement a graph simplifica-
tion procedure based on the following observations: (1) a false splice 
junction is typically unannotated, (2) splice site shifts that cause a false 
intron are short and (3) the number of reads supporting the correct 
splice junction often exceeds read support of a false one. Formally, a 
bulge/tip is removed from the graph if it represents an unannotated 
splice junction that has at least twice lower read support compared to 
the alternative vertex and the alternative vertex has splice sites within 
20 bp (10 bp for PacBio). In other cases, when an unannotated splice 
junction has a high read support or no similar splice junction exists, a 
bulge or a tip is likely to represent a part of a novel isoform and thus 
should be preserved (Supplementary Fig. 6b). Although intron graph 
simplification strongly resembles naive splice junctions clustering, it 
has an important difference: a splice junction is removed not only based 
on its properties, such as splice site positions and read support, but 
based on the graph topology as well, thus considering adjacent splice 
junctions. Such a method allows one to, for example, preserve similar 
splice junctions from distinct isoforms. It is worth noting that the 
simplification procedure keeps track of all collapsed tips and bulges, 
thus preserving the possibility to later traverse alignment containing 
removed splice junctions through the graph.

Collecting terminal positions. After the graph is simplified, the algo-
rithm proceeds to attach starting and terminal vertices. In contrast 
to annotated transcripts, read alignments do not provide the exact 
terminal positions, as their sequences can be truncated. Thus, to avoid 
having an extreme number of terminal vertices, terminal positions are 
detected using the heuristics presented below. Without loss of gener-
ality here we assume that the gene of interest is on the forward strand 
and polyA tails are on the right.

For every splice junction V in the graph, the algorithm selects 
only read alignments that contain V as a terminal splice junction and 
processes them as follows. First, the polyA sites are collected and clus-
tered. Clustered polyA positions {p1, …, pk} are added to the graph as 
terminal vertices and connected to vertex V (Supplementary Fig. 7a).  
Further, the algorithm adds the rightmost non-polyA terminal posi-
tion P as a terminal vertex if one of the conditions is satisfied: (1) V 
has no outgoing edges, (2) V has an outgoing edge to a splice junction 
(u1, u2) and P > u1 + Δ or (3) V has adjacent polyA vertices {p1, …, pk} and 
P > max(p1, …, pk) + Δ (where Δ is the parameter defined above). Thus, 
a non-polyA terminal position can only be attached if it is located 
to the right of adjacent exons or polyA vertices. Starting positions 
are collected in a similar manner, but without looking for polyA sites 
(Supplementary Fig. 7b). The described approach, however, may lose 
information when several isoforms share the same starting splice junc-
tion but have distinct transcription start and end sites. Thus, we also 
apply an additional transcripts correction, which is described below.

Transcript discovery via path construction. Once the intron graph 
is constructed and simplified, IsoQuant detects full-length paths that 
connect starting and terminal vertices. Paths entirely supported by 
at least a single read alignment (that is, full-splice match) are marked 
as transcript prediction candidates (Supplementary Fig. 7c). To fil-
ter out unreliable novel transcripts IsoQuant applies read support 
cutoffs: at least five full-splice match reads (three for PacBio) and at 
least 2% from the maximum graph coverage. Since some isoforms 
may not have a full-splice matching alignment, IsoQuant also reports 
known transcripts that (1) have at least one uniquely assigned read and 
(2) can be traversed through the intron graph. It also reports known 
mono-exonic transcripts that have (1) a uniquely assigned read and 
(2) a confirmed polyA site.

To correct terminal positions of a novel transcript, the algorithm 
selects all alignments consistent with this transcript and uses them to 
extract terminal positions using the approach described above (Sup-
plementary Fig. 7d). In contrast to detecting terminal vertices for the 
entire graph, where all alignments are used, the subset of consistent 
reads likely belongs specifically to this isoform and thus provides cor-
rect start and end positions. The resulting transcripts are saved in GTF 
format, providing additional information about transcript types and 
their reference genes.

While the previously designed splice graph structure and the 
intron graph implemented in this work are designed to represent 
alternatively spliced transcripts and, in general, are highly similar, 
there are a few differences that can be highlighted. First of all, the 
splice graph natively supports transcription start and polyA sites as 
well as mono-exonic transcripts. The intron graph, however, requires 
the introduction of additional types of ‘terminal vertex’ that denote 
transcript start and end positions. At the same time, any exonic overlap 
between alternative transcripts will lead to a merged node in the splice 
graph, while the intron graph requires an exact match of both splice 
sites between two transcripts to form a single connected component. 
Thus, the intron graph can potentially be less tangled for the genes 
containing multiple alternatively spliced isoforms and, therefore, 
less complex to traverse through. Moreover, the intron graph natively 
provides information on neighboring splice junctions, which allows to 
easily detect incorrectly detected splice sites caused by misalignments 
and perform graph simplification. While this procedure can definitely 
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be implemented within the splice graph concept, it seems to be more 
straightforward and native for the intron graph.

To evaluate how different steps of the transcript model construc-
tion algorithm affect recall and precision of IsoQuant, we performed a 
separate experiment described in Supplementary Note 1.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Nanopore sequencing data obtained from the human NA12878 cell 
line is available at https://github.com/nanopore-wgs-consortium/
NA12878/blob/master/RNA.md. PacBio human GM12878 data is avail-
able at ENCODE (https://www.encodeproject.org/search) under the 
accession numbers ENCFF450VAU and ENCFF694DIE. Sequencing data 
obtained from mouse brain samples is available at NCBI Gene Expres-
sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession 
numbers GSE158450 and GSE178175. ONT SIRV data, simulated data 
and reduced gene annotations are published at https://zenodo.org/
record/7121404 (ref. 31).

Code availability
IsoQuant and the supplementary scripts used for the evaluation are 
available at https://github.com/ablab/IsoQuant. Scripts for data simula-
tion are available at https://github.com/andrewprzh/lrgasp-simulation.
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