Carnegie Mellon University

Spring-Powered Tether Launching Mechanism for Improving Micro-UAV Air Mobility

Felipe Borja, Luis Viornery, Sarah Bergbreiter Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Motivation

Concept art generated with Starry AI.

Tethered projectiles grant robots increased mobility options such as climbing, rappelling, and hanging. However, these do not exist at the cm-scale due to power and weight constraints. Small-scale impulsive systems allow miniature robots to deliver bursts of energy that far exceed the maximum output of similarly-sized conventional actuators. In this work, we leverage 3D printing and an impulsive, latchactuated mechanism for the purpose of **launching tethered** projectiles from a miniature drone. This improves the mobility options available to small robots and lets them better navigate complex environments.

Proposed Setup

- The selected mini-quadcopter is a **Bitcraze CrazyFlie 2.1**, an agile, versatile, and opensource platform.
- The launcher's dimensions 3cm × 1.4cm × 6cm are (L×W×H) and it has a mass of 16.8 g.
- The launcher draws **3 V** at **0.1 A** from the drone's battery.
- The design was evolved from a system submitted to an ICRA 2022 workshop.

Website: cmu.edu/mrl

Projectile Launches

- Initial tests observed the flight trajectories of ball bearing projectiles and custom magnetic slugs.
- Both the ball and slug projectiles show considerable initial velocity, demonstrating large force output that could translate to long range.
- Small horizontal deviation allows the projectiles to accurately hit targets located directly above the launcher.

Tethered Casting

- Vertical launches were conducted with three projectile variants: a magnetic slug, a claw, and a grappling hook. The flight performance of tethered and untethered
- projectiles was compared.
- The grappling hook had the best tethered performance.

- Miniature tether launchers are a compact and feasible aid to micro-UAV mobility. In this work, a novel cm-scale impulsive launcher was designed, capable of casting projectiles for useful distances with reasonable accuracy. Tether retraction and storage will be explored. So far,
- this work has incorporated tethers without considering how to retract them or how to store tethers onboard. Flight testing will characterize system performance in the
- air under diverse and complex environmental conditions. All investigations thus far have involved ground testing.

Contact: Felipe Borja, fborja@andrew.cmu.edu

