Applications of Transphorm High Voltage GaN and its comparison with Si, SiC & other GaN

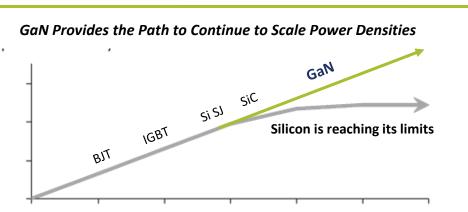
Vipin Bothra

Vice President of North Americas & Europe Sales

November 2022

transphorm

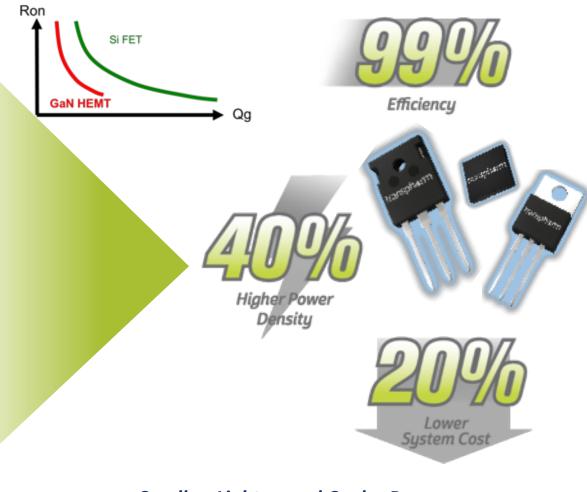
Highest Performance, Highest Relability GaN



- Introduction to GaN Application Space vis-à-vis other Power Technologies
- Comparison of Transphorm GaN vs. Si, e-GaN and SiC
- Applications of 650V GaN in 45W to 10+kW Power Levels
 - a. Power range 45W to 65W Adapters, LED Lighting
 - b. Power range 100W to 150W Adapters, Computer Supplies
 - c. Power range 250W to 1kW Computing, 2-wheeler (e-bikes, e-scooters)
 - d. Power range 2.2kW to 10+kW PV, UPS, Server Power, EV
- Few Cases Studied Inverter and 2-wheeler OBC
- Benchmarking GaN vs. SiC and Si MOSFETs in Select Topologies

transphorm GaN is Best-in-Class in Relevant Voltage Range

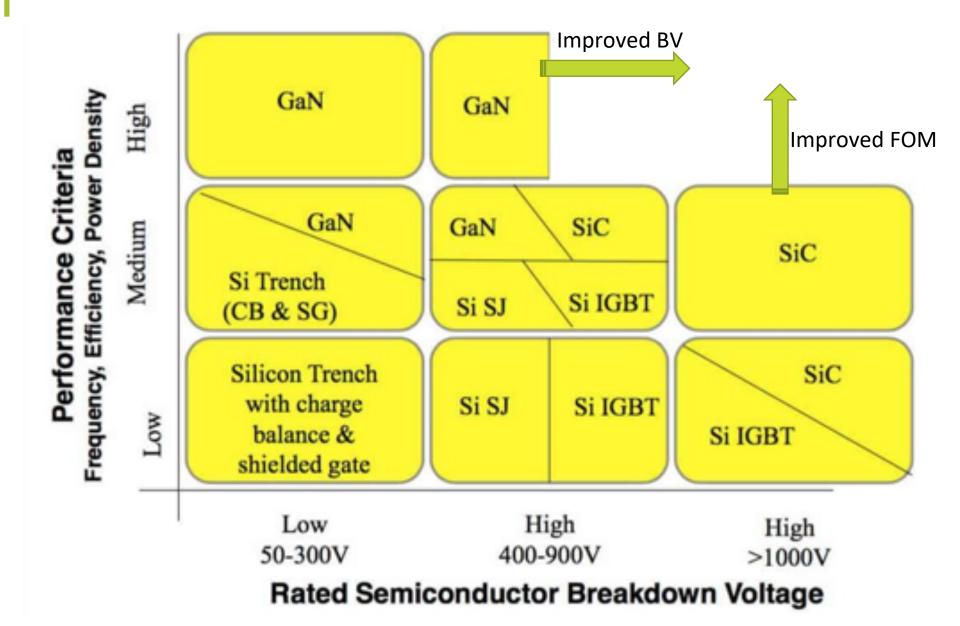
"Moore's Law" for Power Electronics

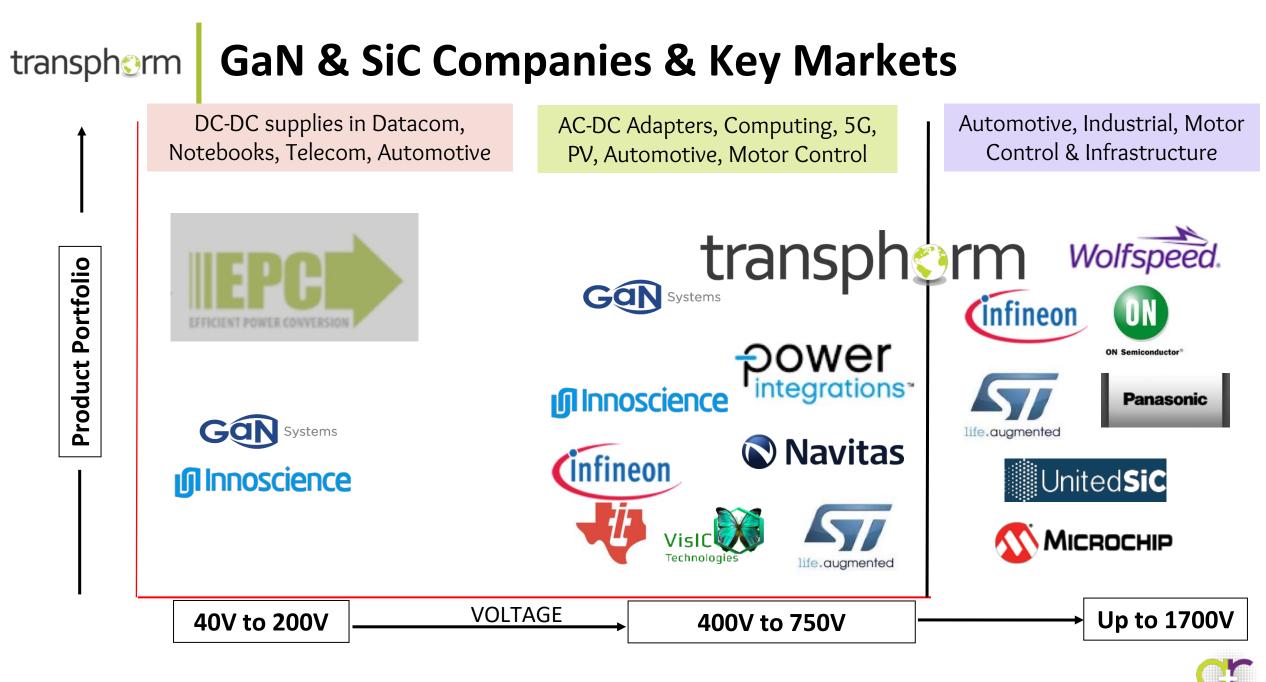

GaN vs. Silicon & Silicon Carbide

Intrinsic Performance Advantages

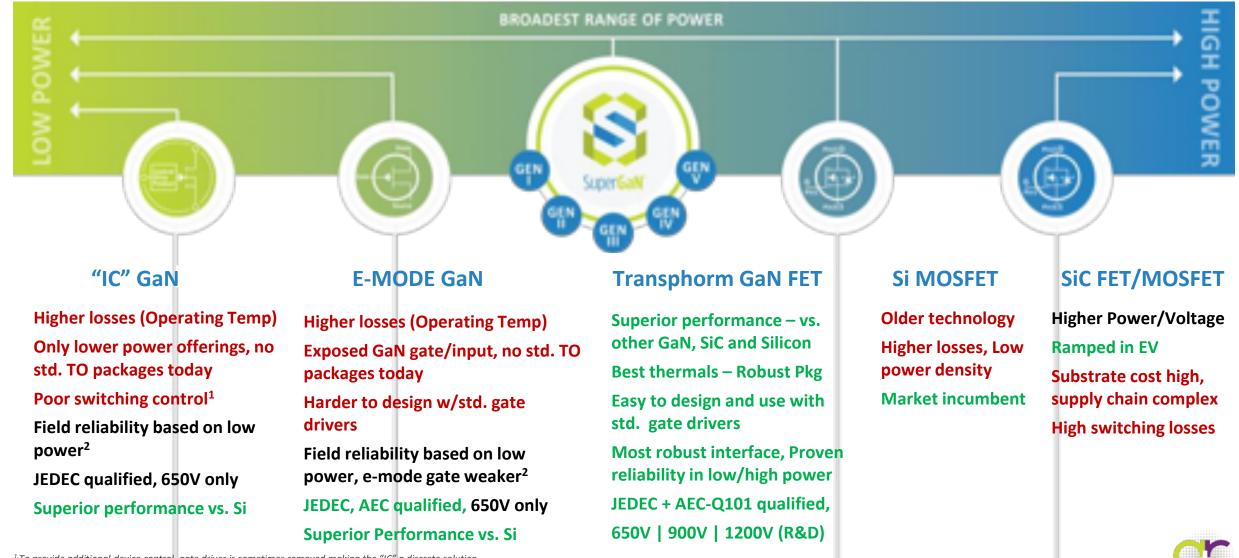
- GaN offers higher efficiencies with lower losses in power conversion at the relevant voltage range
- GaN can operate at much higher frequency than Si and SiC

Relative Cost Advantages


- GaN on Silicon less expensive than Silicon Carbide
- GaN offers lower system cost than Silicon in many applications
- Roadmap for GaN to approach cost parity with Silicon at device-level

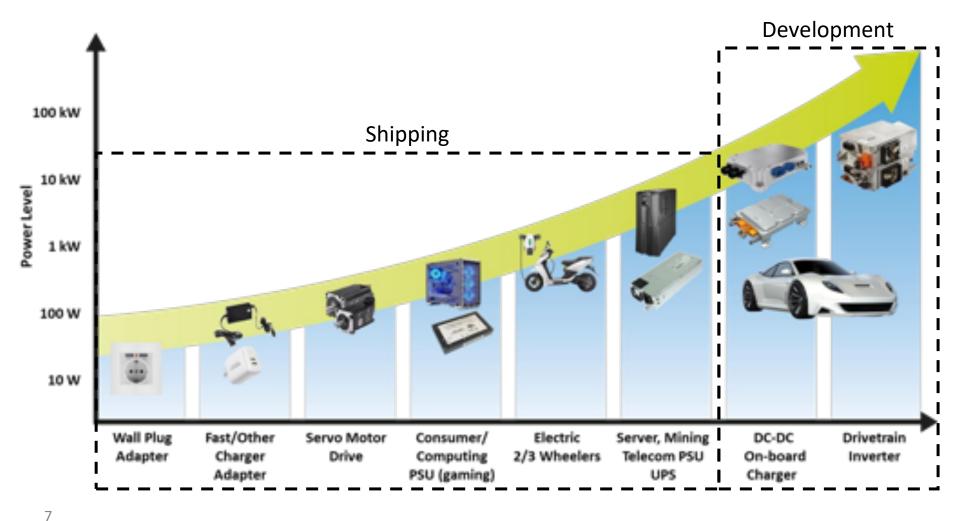

Smaller, Lighter, and Cooler Power Systems Drives Increased Functional Value

transphorm **Device Comparison – Silicon, GaN and SiC**



* Disclaimer: Some companies may have been missed; companies not shown in any order

transphorm Competitive Landscape –TGAN FET, vs. Other GaN, SiC, Si



¹. To provide additional device control, gate driver is sometimes removed making the "IC" a discrete solution ²Impact of OFF-state Gate Bias on Dynamic R, on of p-GaN Gate HEMT (33rd ISPSD, 2021), Currently available reliability statements based on lower power consumer applications for which failures are not typically reported.

6

transphorm 45W to 10+ kW markets served by Transphorm GaN

Transphorm offers breadth of 650V, 900V JEDEC/AEC-Q101 Qualified Products New developments include 1200V and FQS Platforms

transphorm | Transphorm in Adapters & Chargers - 30W to 240W

Shipping GaN into Kilowatt-class Power Supplies

GaN Power for Data Center | Comms Infrastructure | Crypto-Mining Applications

GaN Offers Substantial Systems Cost Savings within Data Centers

- 40% of total operational costs come from energy to power and cool server racks
- GaN enables ~2x increase in power density, 98%+ efficiency
- GaN enables 80+ Titanium class efficiency certification in a simpler manner

"Titanium" Server Power Supply Solutions (1.5 kW to 3.2 kW), Powered by TGAN Smaller Faster Cooler Cooler AC Line (208 Vac) to 400 Vdc to 48 Vdc \$103K saved / year⁽¹⁾ 397 tons reduced carbon footprint⁽²⁾ Regulation: The European Union's Ecodesign Directive⁽³⁾ on Jan

Near- and Intermediate-Term Market Drivers

Crypto-Mining Demand – building systems requiring Titanium efficiency

- Power hungry process consumes ~120 TWHr, equivalent to small country⁽⁴⁾
- Power supply component running 24/7 taking most stress in mining rig (5)
- Transphorm solutions can enable up to 1% higher efficiency at 230V AC

Highly Efficient Highly Reliable

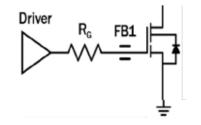
1, 2023 increases efficiency and power factor requirements

5 MW Data Center Example

4) Cambridge University research | BBC News, "Bitcoin consumes 'more electricity than Argentina'" 5) tom's Hardware, "Best Power Supply Units for Cryptocurrency Mining"

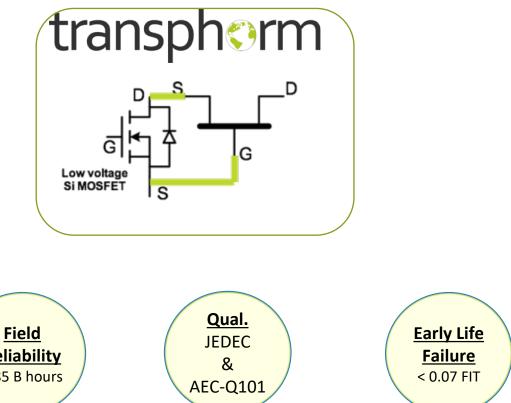
- 1) Based on company estimates done for a 5MW data center.
- 2) Based on existing rectifiers with 92% efficiency | Source: EPA estimated one kWh produces 1.52 pounds of carbon dioxide (excl. line-losses).
 3) European Union's Ecodesign Directive (Directive 2009/125/EC).

Notes:


Transphorm GaN Structure & Advantages

Highest Reliability, Simplest Driving, Higher efficiency & Easiest to Design

Low Power


Standard Controllers with integrated Driver

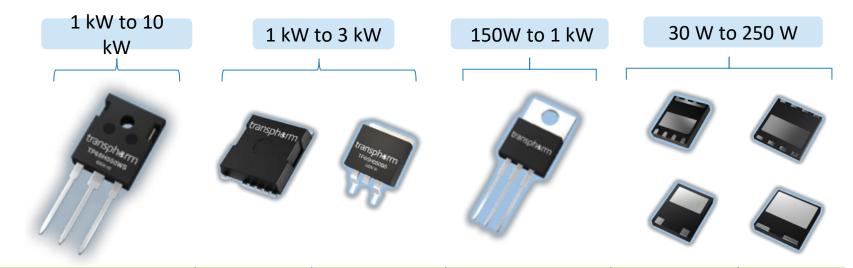
- On Semi, TI, NXP, ST
- Weltrend, Diodes
- Silanna, Infineon/Cypress

Simple to Drive GaN FET

High Performance, High Reliability in Multiple Packages

Hi Power

Standard Gate Driver

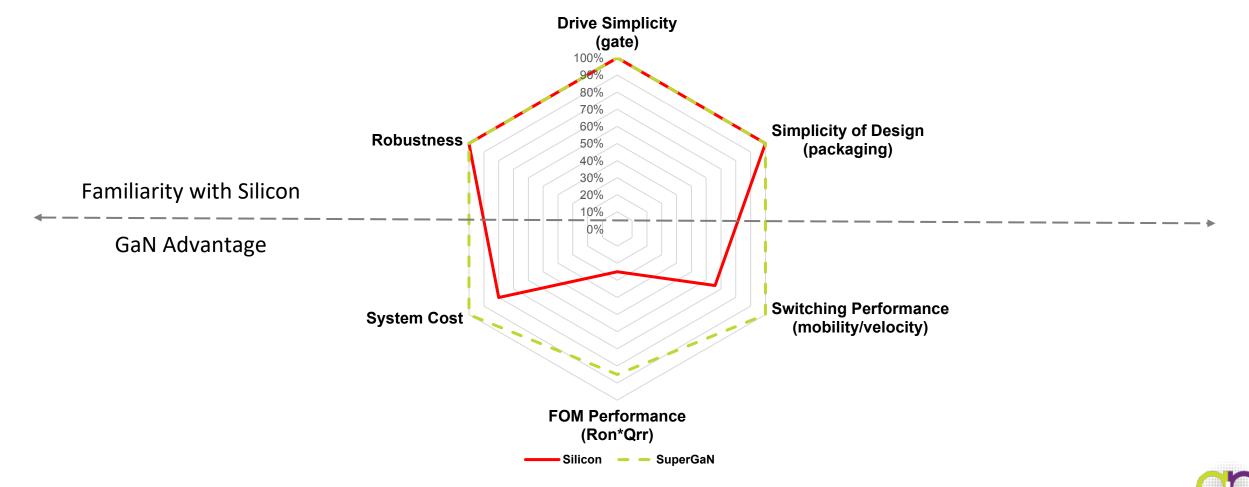

- Silicon Labs, MPS
- Analog Devices
- ON Semiconductor
- Texas Instruments

transphorm **Transphorm 650 V Packaged Device Offerings**

Widest GaN Package Offering in the Market

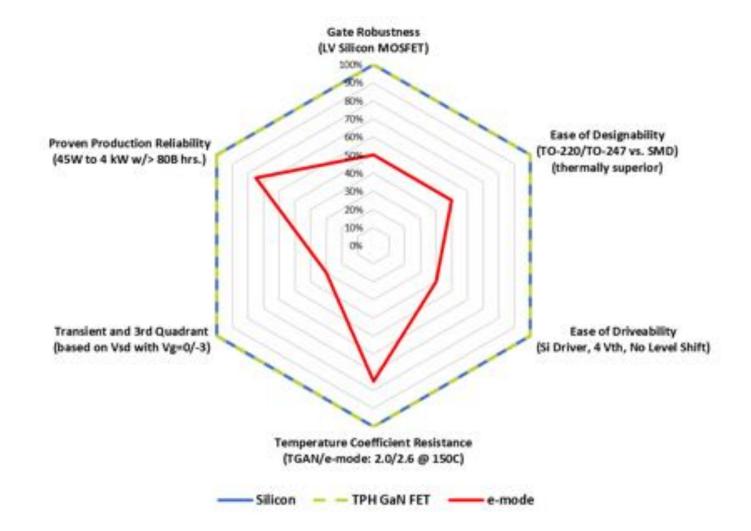
TO-247	TOLL	D ² PAK	TO-220	PQFN56	PQFN88
$50 \text{ m}\Omega^1$	50 mΩ ^{2,3}	50 mΩ	150 mΩ	480 mΩ	480 mΩ
$35 \text{ m}\Omega^1$	35 mΩ ^{2,3}		70 mΩ	240 mΩ	240 mΩ
15 mΩ²				150 mΩ	150 mΩ
					70 mΩ
¹ JEDEC and Q101					
² 2023 Q101 ³ Samples 10/E 2022					

transphorm Comparison of a TPH GaN-HEMT & SJ-MOSFET


	Parameters	Cool MOS IPB65R150CFD	GaN-HEMT TP65H150G4LSG	
	V _{DS}	650V @ 25 °C	650V (spike rating 800V)	
Static	R _{DS} (25°C) Rds (150°C)	0.135/0.15 ohm 0.351 ohm	0.15/0.18 ohm 0.307 ohm	Conduction Loss
	Qg	86 nC	8 nC	
	Qgd	47 nC	2nC	- Driving Loss
	C _{o(er)}	50 pF ^[1]	43 pF ^[1]	
Dynamic	C _{o(tr)}	512 pF ^[1]	85 pF ^[1]	- Switching Loss
	Qrr	700 nC ^[2]	40 nC ^[3]	j
Reverse Operation	trr	140 ns ^[2]	31 ns ^[3]	Reverse Recovery
operation				Loss

[1] $V_{GS} = 0V$, $V_{DS} = 0 - 480V$ [2] $V_{DS} = 400V$, $I_{DS} = 11.3A$, di/dt = 100A/µs [3] $V_{DS} = 480V$, $I_{DS} = 9A$, di/dt = 450A/µs

Transphorm GaN vs. SJ-MOSFET Comparison


SuperGaN Technology Offers Ease of use & Reliability of Silicon with Higher Performance

transphorm

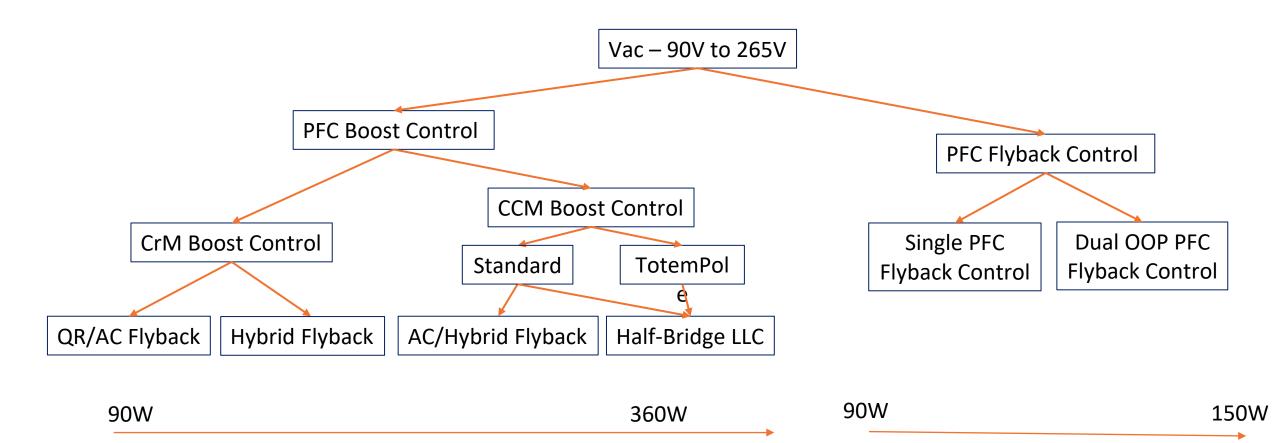
transphorm **Transphorm GaN vs. e-mode Comparison**

SuperGaN[®] Technology vs, e-mode GaN (Silicon as the Baseline), GaN IC uses e-mode

Super**GaN**

Transphorm GaN Technology vs. SiC (650V)

Simpler, more Efficient, Lower-cost and Robust Solutions


Key Factors	Transphorm GaN FET (650V Class)	SiC MOSFET and SiC CASCODE (750V – 1500V)
Leadership in Market Segment	33W to 10kW	5kW – 100kW
Gate Biasing	Simpler even compared to Si	Complex due to aux power supply
Gate Driver - Power Requirement	1x (0.4A)	Requires 20x more current (10A)
Cost & Availability of Gate Drivers	Up to 2A driver ok	Costly due to high current requirement
Peak Efficiency	High	Medium
Speed of operation (frequency)	Faster	Slower
Added BoM components (cost)	Lowest	High
Package (SMD/leaded/Module)	Both SMD & leaded	Leaded and Module
Reliability	Comparable	-
Leakage Current (IDSS) at 175C	30uA	150uA
Reverse Conduction Voltage Losses	1.8V	4
Total Cost	Lower (Si substrate)	Higher (SiC substrate)

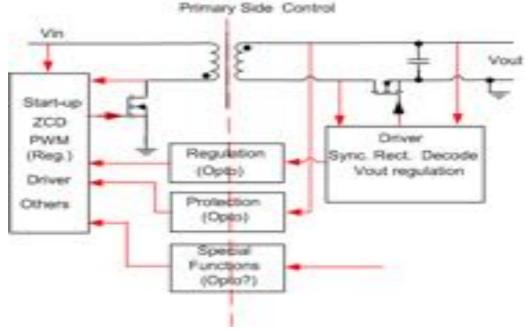
Considerations for 45W to **35**0W Power Supplies Mobile Devices, Notebooks, Gaming Consoles, Power Tools, LED lighting, Medical Supplies

Variations of the Flyback and Two-stage Topologies

transphorm USB-C Adapters/Computer Supplies (70W to 360W) Topology choices have expanded, just over the past year

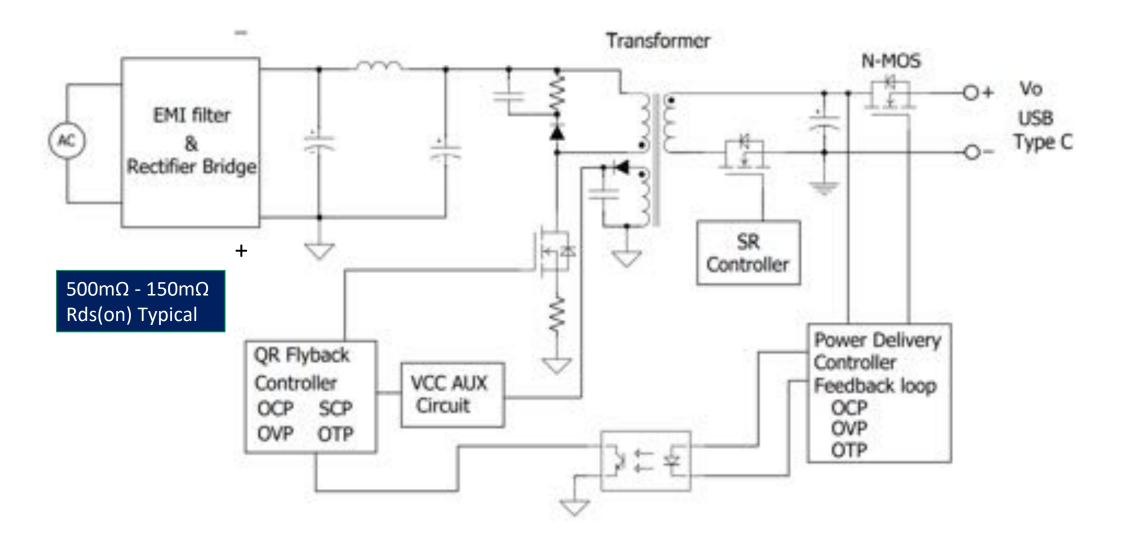
Pros: Smaller bulk cap and PFC O/P Cap Cons: Complex 2-stage design especially if multi-output

Pros: Lower Cost, great for multi-output Cons: Larger PFC O/P Cap if single output


transphorm GaN & Topologies for Power Adapters

Platform	Vout	Topology	Transphorm GaN Offering		
			Rds(on)	Package	Driver
45W	1C PD 3.0	QRF	240mΩ - 480mΩ	QFN5x6	
65W	1C PD 3.0	QRF or ACF	240mΩ	QFN5x6	Internal Gate
65W	2C PD 3.0	QRF or ACF	240mΩ	QFN8x8 / 5x6	Driver of Controller IC
100W	1C PD 3.0	PFC + ACF or PFC + QRF	150mΩ 240mΩ	QFN8x8 / 5x6 or TO-220	
118W	1C PD 3.1	PFC + ACF	150mΩ - PFC 150mΩ - ACF	QFN8x8 or TO-220	Internal
140W	1C PD 3.1	PFC + ACF	150mΩ - PFC 150mΩ - ACF	QFN8x8 or TO-220	Internal
250W	Fixed	PFC + HB-LLC	150mΩ - PFC 240mΩ * 2 – HB LLC	QFN8x8 or TO-220	
330W	Fixed	TTP PFC + HB-LLC	150mΩ * 2 - PFC 240mΩ * 2 – HB LLC	QFN8x8 or TO-220	Internal to Controller IC or Low-cost External
600W	Fixed	TTP PFC + HB-LLC	150mΩ * 2 - PFC 150mΩ * 2 – HB LLC	QFN8x8 or TO-220	

USB-C Adapters (<70W Considerations)


- Almost every power IC company has developed flyback controller ICs to address this market
 - Typical low-side flyback block diagram
 - Primary side controller and synchronous rectification (SR)
 - Simple and well understood implementation
 - Controller architecture, sensing of valleys, timing differs and gives the competitive advantage

30W-65W Adapter Block Diagram

(Using Quasi-resonant Flyback Topology)

2 0

transphorm **QR Flyback, ACF Designs from Transphorm**

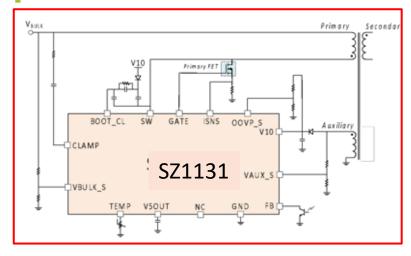
45W Single Board - QRF						
Input	lout	Eff %				
90 Vac @ 50 Hz	2.25A	92.53%				
115 Vac @ 60 Hz	2.25A	93.90%				
230 Vac @ 50 Hz	2.25A	93.78%				
265 Vac @ 50 Hz	2.25A	93.43%				
Density 24W/in ³						

65W Single Board - QRF					
Input	lout	Eff %			
90 Vac @ 50 Hz	3.25A	93.04%			
115 Vac @ 60 Hz	3.25A	94.04%			
230 Vac @ 50 Hz	3.25A	93.85%			
265 Vac @ 50 Hz	3.25A	93.46%			
Densit	v 🛛 25.4W/	′in³			

65W Multiple Boards - QRF

Vin	lout	Efficiency (%)
90 Vac @ 50 Hz	3.25A	92.21%
115 Vac @ 60 Hz	3.25A	93.14%
230 Vac @ 50 Hz	3.25A	92.66%
265 Vac @ 50 Hz	3.25A	92.36%
Den	sity 🛛 32W/i	n ³

65W Multiple Boards - ACF


Input	lout	Eff %
90 Vac @ 50 Hz	3.25A	93.05%
115 Vac @ 60 Hz	3.25A	94.06%
230 Vac @ 50 Hz	3.25A	94.53%
265 Vac @ 50 Hz	3.25A	94.36%

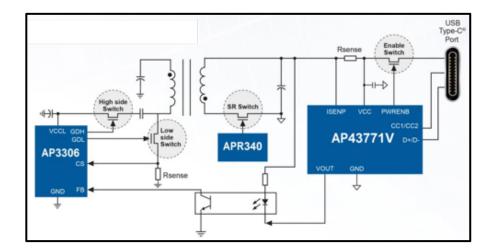
Density 29.8W/in³

Best-in-Class Active Clamp Flyback Solutions

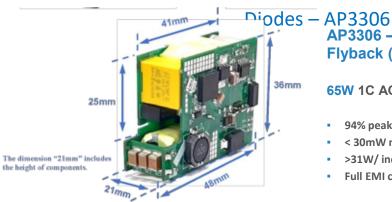
Silanna and Diodes Solutions deliver over 94% efficiency @ >30W/in³

Most Integrated AC Flyback Controller Improves efficiency, power density & EMI

Silanna – SZ1131

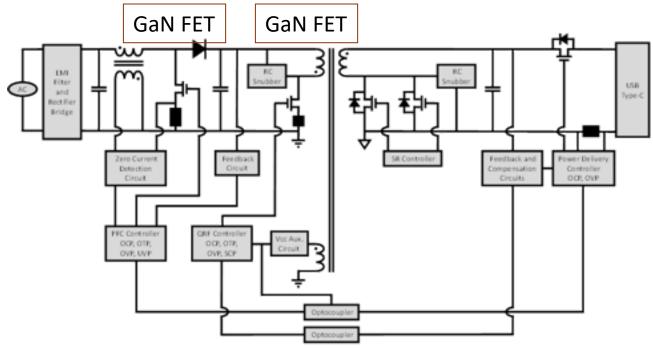

SZ1131 – Fully Integrated Active Clamp Flyback (ACF) Controller

65W 1C ACF + GaN Reference Design


- 94.5% peak efficiency
- < 25 mW no-load power</p>
- 30 W/ inch3 (uncased) power density
- Full EMI compliant design

High-side PFET based AC Flyback Controller, lowers cost & complexity

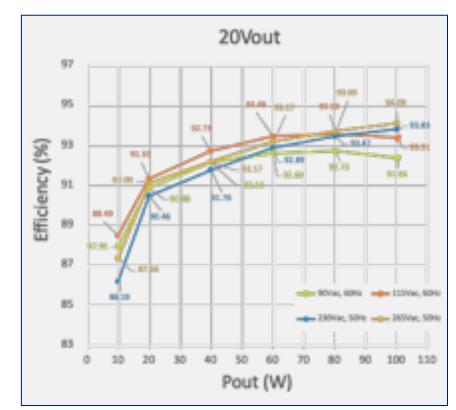
AP3306 – Flexible Active Clamp Flyback (ACF) Controller


65W 1C ACF + GaN Reference Design

- 94% peak efficiency
- < 30mW non-load power
- >31W/ inch3 (uncased) power density
- Full EMI compliant design

USB-C Adapters (>70W Considerations)

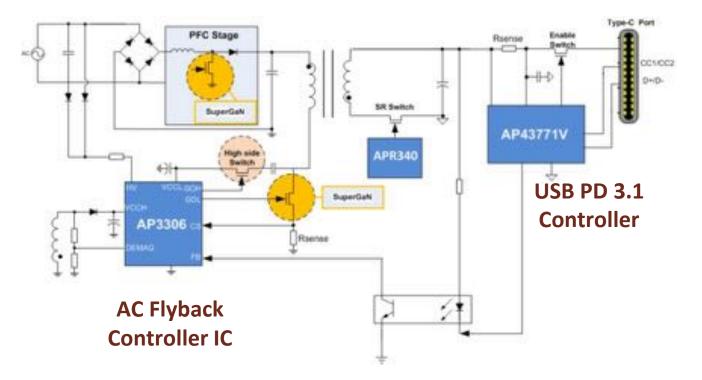
- Several different power levels 75W to 250W, especially with the new USB-C 3.1 extended range protocol
- IEC 61000-3-2 is mandatory (with exceptions)
- Only a single stage topology such as QR or AC Flyback used in <75W cannot be applied
- Two stage topology is most common as shown below variations discussed later


100W – Low-cost, High Efficiency Design

Using $150m\Omega \& 240m\Omega$ TPH GaN – $16W/in^3$

Highlights:

- Qualified to Qualcomm QC-5 fast charge standard
- CRM PFC Boost + QR Flyback Topology
- Passes conducted & Radiated EMI
- Can be modified for 1C + 1A or 2C...
- Turnkey design with case design



Excellent Efficiency vs. Line Voltage & Load 94% peak @ 265V & over 92% @ 90V

USB-C Adapters (90W to 150W Considerations)

- Active-clamp flyback following the PFC stage is preferred up to 140W, eg. shown below
- USB PD 3.1 pushes power to 140W and voltages to 28V max
- Allows wider voltage range adjustment compared to half-bridge LLC, especially with USB3.1
- This topology will be compared with an ultra-flexible digital control topology used in the Apple 140W USB-C adapter *(source: www.chargerlab.com)*

https://www.diodes.com/applications/ac-dc-chargers-and-adapters/quick-chargers/#accordion-second-item

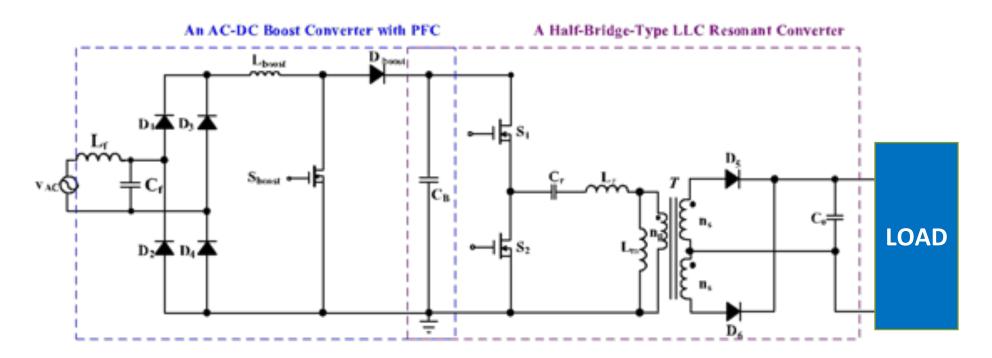
transphorm Transphorm 140W USB-PD 3.1 Design Performance

Diodes 140W 28V@5A Prototype Dimension:

- W:55mm, L: 87mm, H:29mm (139 C.C.) PCB only
- W:59mm, L: 91mm, H:33mm (177 C.C.) with Case (+2mm each side)

Diodes+TPH solution uses Bridge, can use SR MOSFET to improve low input line Efficiency

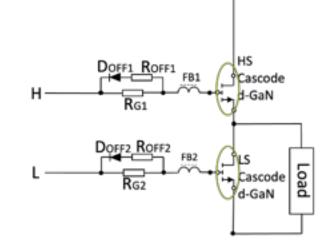
Vin (Vrms)	Input Freq. (Hz)	Pin (W)	Vout (V)	lout (A)	Pout (W)	Pd (W)	Effi. (%)	Avg. Effi. (%)
90Vac	60	154.21	28.74	5	143.69	10.525	93.17%	
		152.42	28.69	5.000	143.47	8.955	94.12%	
44E V	60	113.30	28.40	3.750	106.51	6.789	94.01%	93.31%
115 Vac	00	75.56	28.21	2.500	70.52	5.046	93.32%	
		38.23	28.08	1.250	35.10	3.134	91.80%	1
		150.89	28.75	5.000	143.75	7.145	95.26%	
220 1/22	50	112.24	28.49	3.750	106.84	5.403	95.19%	04.220
230 Vac 50	75.03	28.27	2.500	70.69	4.343	94.21%	94.27%	
		37.94	28.05	1.250	35.06	2.881	92.41%]
264	60	150.09	28.64	5	143.18	6.915	95.39%	

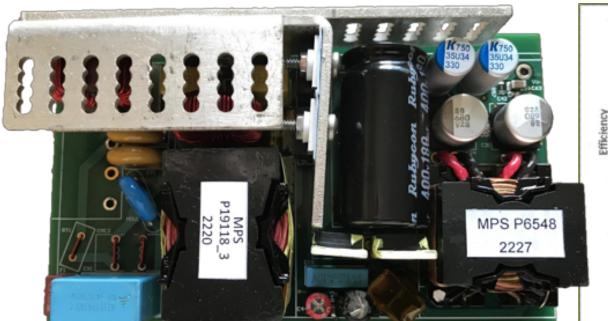

MacBook PRO 140W using two SR MOSEFT in Bridge to improve low input line Efficiency

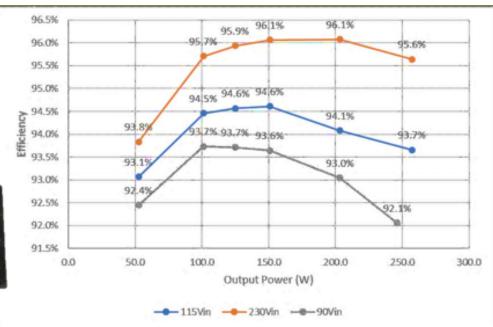
Vin (Vrms)	Input Freq. (Hz)	Pin (W)	Vout (V)	lout (A)	Pout (W)	Pd (W)	Effi. (%)	Avg. Effi. (%)
90Vac	60	149.15	27.99	5	139.94	9.210	93.83%	
		148.10	27.99	5.000	139.94	8.160	94.49%	
445 1/	0	111.15	28.02	3.750	105.07	6.083	94.53%	02.00
115 Vac	60	74.55	28.05	2.500	70.12	4.427	94.06%	93.66%
		38.34	28.08	1.250	35.10	3.241	91.55%	1
		147.14	27.99	5.000	139.96	7.185	95.12%	
000 1/	60	110.83	28.02	3.750	105.09	5.744	94.82%	02.476
230 Vac	230 Vac 50	74.80	28.05	2.500	70.14	4.665	93.76%	93.47%
	38.92	28.08	1.250	35.10	3.816	90.19%	1	
264Vac	50	147.32	27.99	5	139.95	7.370	95.00%	

Computer, Display Power Supplies & LED Drivers

- For >150W (or even lower levels) up to 1kW (or higher), power factor correction followed by a half-bridge resonant topology is implemented
- Advantages of LLC resonant topology include:
 - ZVS, which produces high efficiency and allows shrinking transformer
 - Limits dv/dt and di/dt, which reduces ringing, spikes and radiated EMI problems

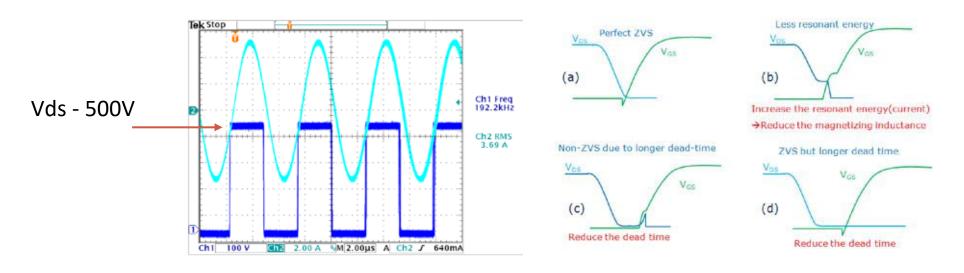


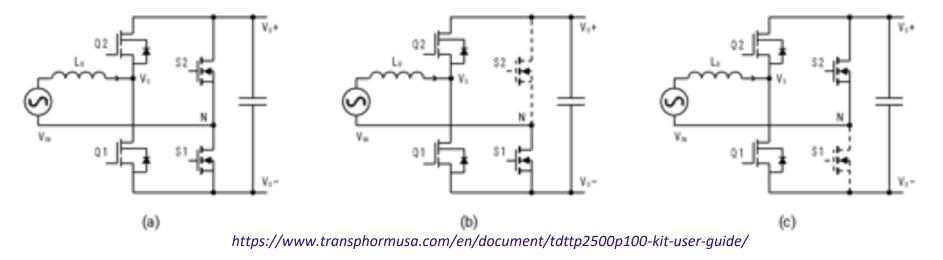



250W Solution & d-GaN Drive Considerations

Works with any controller with Si Gate Drivers

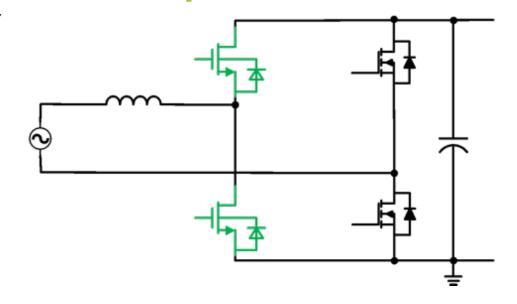
- Vin = 90 265Vac, Vo = 24V, Po = 250W
- Switching frequency: 133kHz(PFC), 172-180kHz(LLC)
- Board dimensions: 110mm*60mm*25mm (4.3" x 2.35" x 1")
- High Power density: 24.8W/in³ significantly higher than silicon
- Over 96% total system peak efficiency at 230V AC input




transphorm Notes & Results for a Half-Bridge LLC using GaN

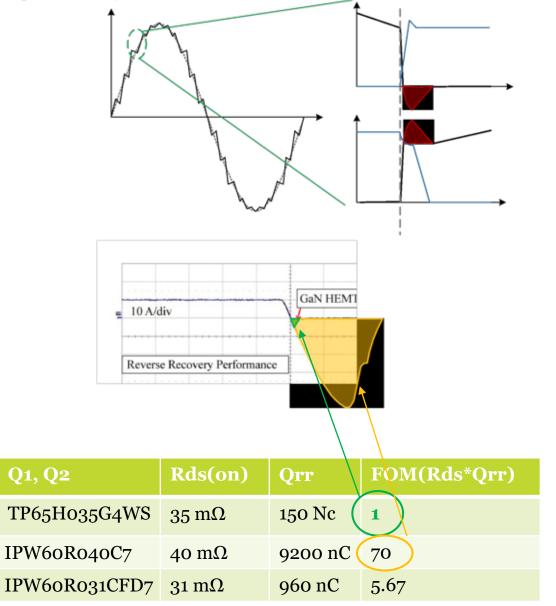
- Keeps stress on the bridge switches below 500V, compared to QR flyback and ACF flyback, thus making it is ideal for GaN
- Achieves ZVS switching, which begs the question, why is GaN preferred over Super Junction MOSFETs
- Both efficiency and size can be optimized by taking advantage of the superior reverse recovery Qrr and Coss of the GaN devices

transphorm GaN Totem Pole Bridgeless Boost PFC Notes

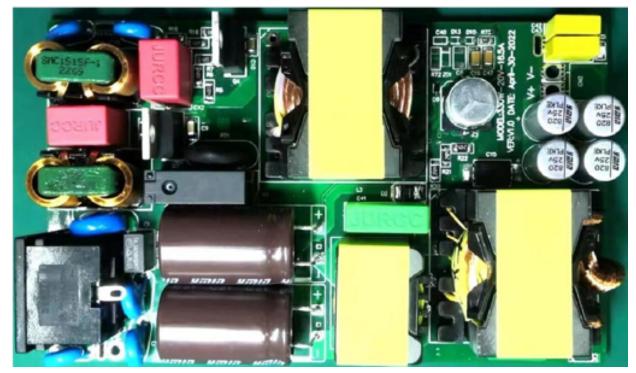


- Q1 & Q2 are two fast switching GaN FETs, operating at high PWM frequency
- S1 & S2 are low resistance MOSFETs operating at a slower line frequency
- The GaN Devices form a <u>synchronous boost converter</u> with one device acting as master to allow energy intake from the inductor and another to release energy to the DC output
- The roles of the GaN devices interchanges when AC polarity reverses

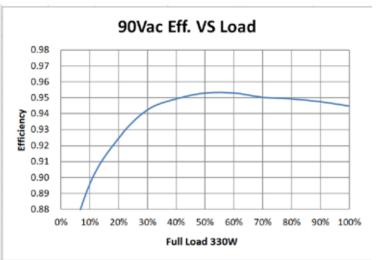
3 0 Low Qrr of GaN and body diode of D-mode Cascode devices allows for CCM operation and avoids abnormal spikes, instability and high losses of Silicon MOSFETs.

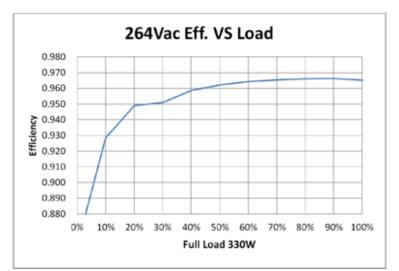

transphorm Totem Pole Bridgeless AC-DC PFC converter

Why Q1, Q2 must be GaN instead of SJ FETs?


Because for CCM(continuous current mode) PFC, Q1 and Q2 will be hard switched turn-on, the Qrr related loss is huge for Si-MOSFET.

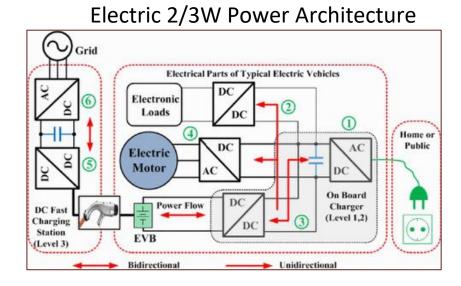
The Qrr in GaN HEMT is 20 times smaller than the state-of-the-art Si-MOSFETs, leading to much less power losses.

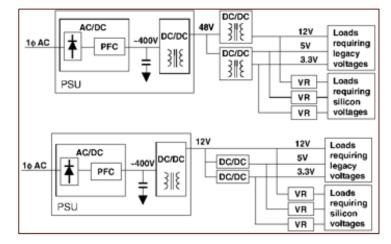


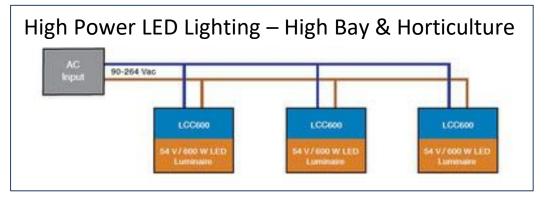

transphorm 330W Platform using Totempole PFC

Power Density ~ 23.11W/in³ (L=120mm, W=78mm, H=25mm;)

- 1) Small form-factor
- 2) Totem-Pole PFC and HB-LLC Topology
- 3) Over 96.5% peak efficiency
- 4) Improves efficiency at 90Vac by >1.5%

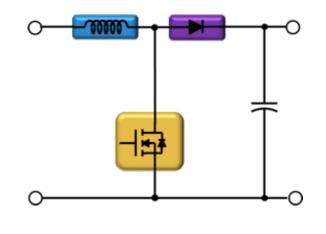


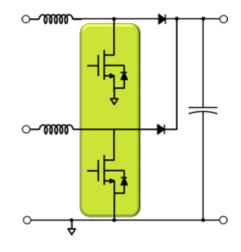

Solutions for 600W to 6.6kW Applications Servers, LED lighting, Telecom, EV 2/3 Wheelers, UPS Variations of the PFC and Bridge Topologies

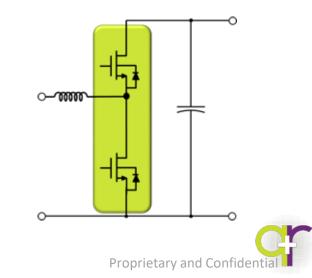


transphorm Powering Electric 2/3W, Servers and LED Lighting

Datacom Server Power Architecture

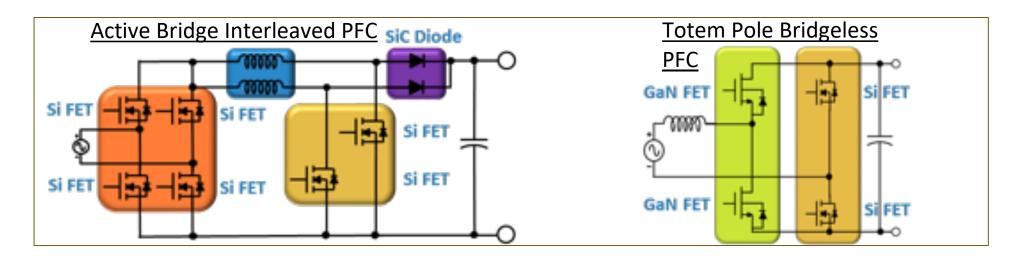






transphorm Strategies for Power Factor Correction

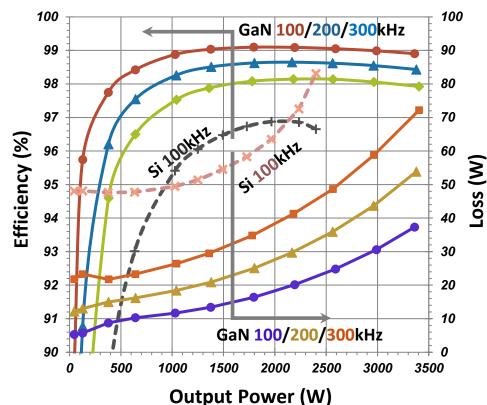
Standard Boost	CRM Interleaved	Synchronous Boost
Hard switching	Transition mode (soft switching)	Hard Switching (no diodes)
1 choke	2 chokes, FETs and diodes	1 choke
Requires SiC diode	Can use low-cost low Vf Si diodes	Uses hi-side syncFET as diode
Lower Efficiency	Higher Efficiency	Higher Efficiency
Lower Switching Frequency	Highest Switching Frequency	Higher Switching Frequency
Higher Output Ripple Current	Lower Output Ripple Current	Higher Output Ripple Current

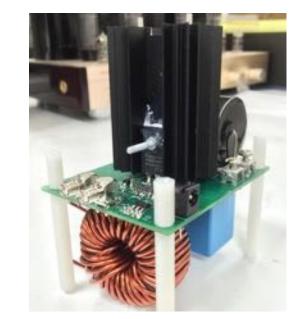


transphorm GaN Value Demonstration vs. Super Junction FETs

- **3.3**kW power supply
- Competition: Superjunction (silicon)
- Result: Higher efficiency, lower BOM cost
 - Reduction in part count, magnetics, EMI filter

Parameter Results	Interleaved PFC	Bridgeless Totem Pole PFC
Efficiency	98.5%	98.7%
Total cost	100%	60%


transphorm Cost and Performance Comparison (PFC)

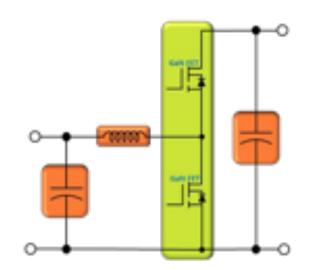

	Interleave PFC with Bridge	Totem pole PFC with Sync Rect	Totem Pole PFC w/Low Frequency Diodes	
PFC Components				
	Component Quantity	Component Quantity	Component Quantity	
MCU	0	0	0	
Control IC	1	0	0	
DSP	0	1	1	
iiC Diode	2	0	0	
MOSFET Bridge (active)	4	2	0	
MOSFET PFC	4	0	0	
SaN FETs	0	2	2	
PFC Boost Inductor	2	1	1	
Current sense device	2	0	0	
Current sensing	0	1	1	
qmA 90	1	1	1	
Sate driver PFC	2	1	1	
Sate Driver Sync Rect	4	1	0	
Total BOM Count	22	10	7	
Total Cost	0%	-13.1%	-32.5%	
Efficiency (Aux Power and EMI included)	98.50%	99.10%	98.70%	

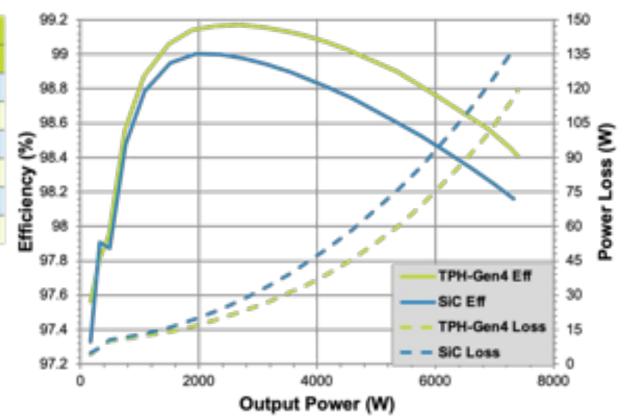
GaN vs. SuperJunction MOSFETs

(TPH 50mOhm vs. IPW65R041)

Half bridge boost converter, sync-rec, 240V:400V

2 device on 1 heat sink: R_{th} =1.27 C/W. Inductor: L=268uH dcr=20mohm

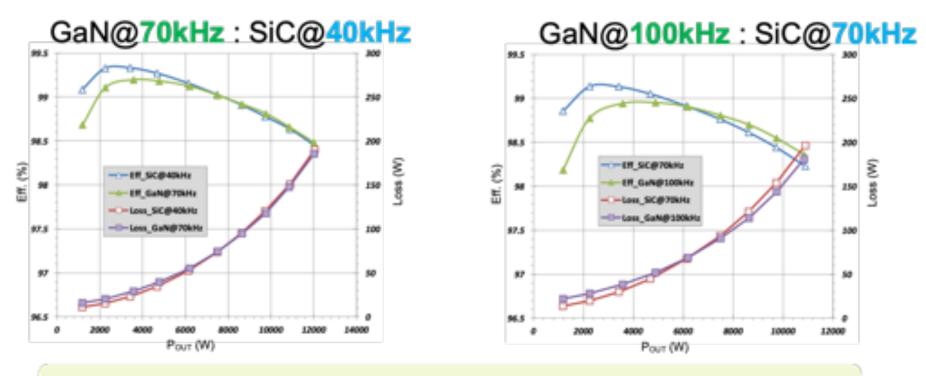

- CFD Si CoolMOS IPW65R041 and GaN TPH 50mOhm used
- Peak Efficiency at 100kHz: Si: 96.9% vs. GaN 99.1%
- Converter Loss at 2kW: Si 65W vs. GaN 18W (device loss: 60W vs. 13W)
- Si devices reach Tj of 150 °C at 2.4kW, cannot deliver 3.3kW at 100kHz



GaN vs. SiC MOSFET Comparison

GaN wins at <u>100 kHz</u>: up to <u>20% reduction</u> in power loss 3 kW to 7.2 kW

Half Bridge Synchronous Boost Converter				
Specification	GaN FET	SIC		
On resistance @ 25°C	35 mΩ	30 mΩ		
Input Voltage (V)	240	240		
Output Voltage (V)	400	400		
Operating Frequency (kHz)	100	100		
Gate drive voltage	0 to 12 V	0 to 18 V		
Gate drive resistor	30 Ω	0 0		

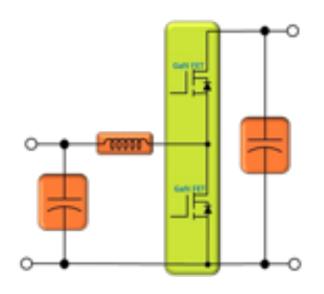


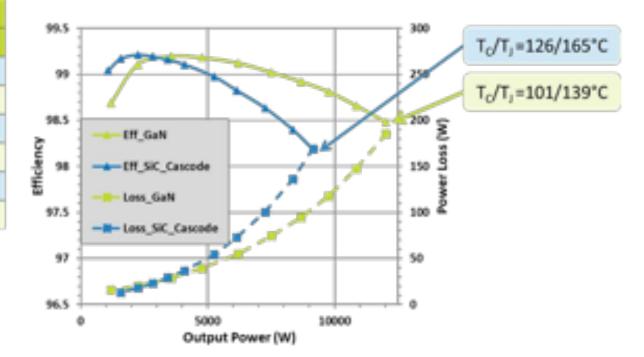
Comparable R_{DS(ON)} devices at 25°C

GaN vs. SiC at Various PWMs Able to drive > <u>40% faster Switching</u> and Achieve Similar Performance

12 kW: VIN: 240 V, VOUT: 400 V Half-bridge Synchronous Converter

- GaN at 70kHz matches SiC at 40kHz at high power levels (75% higher frequency) ٠
- GaN at 100kHz exceeds SiC at 70kHz at high power levels (43% higher frequency) ٠

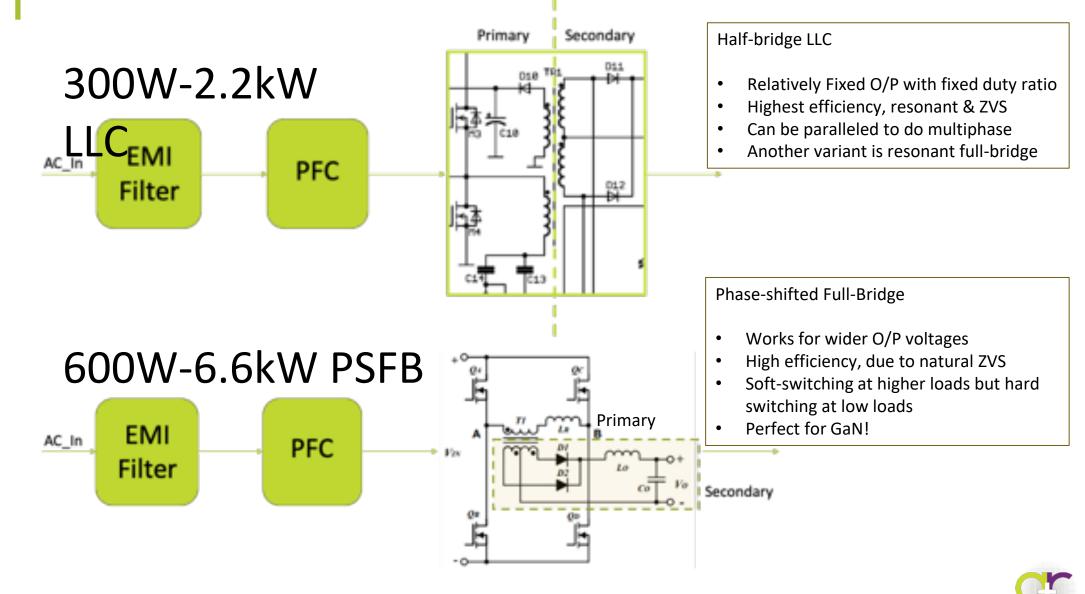

4


1

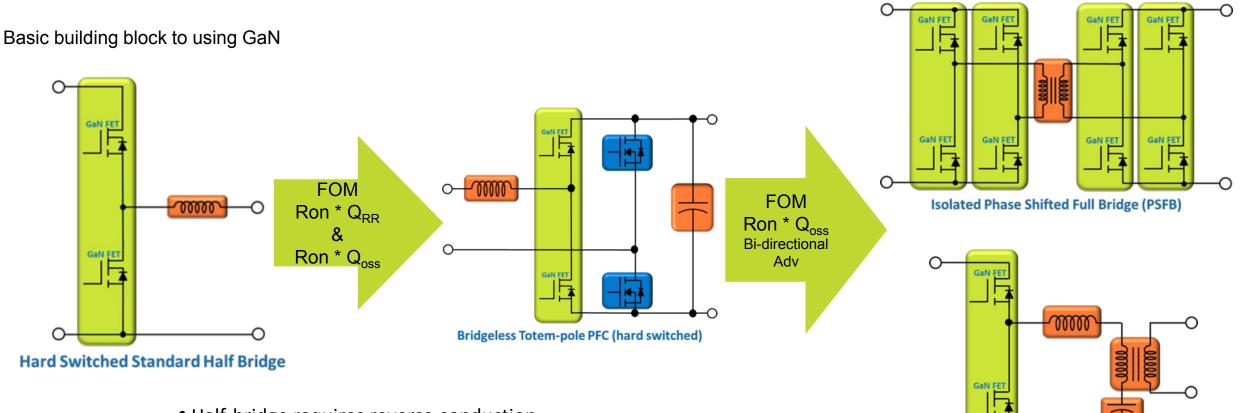
GaN vs. SiC Cascode FET

GaN shows up to <u>30% reduction</u> in power loss at 9.2 kW

Half Bridge Synchronous Boost Converter				
Specification	GaN FET	SIC		
On resistance @ 25°C	<u>15 mΩ</u>	<u>18 mΩ</u>		
Input Voltage (V)	240	240		
Output Voltage (V)	400	400		
Operating Frequency (kHz)	70	70		
Gate drive voltage	0 to 12 V	0 to 15 V		
Gate drive resistor	15 Ω	0/50 Ω		



Device Power Loss Comparison at *9.2 kW (*Limited due to SiC device junction temperature)


transphorm Strategies for Bridge Controllers in DC-DC

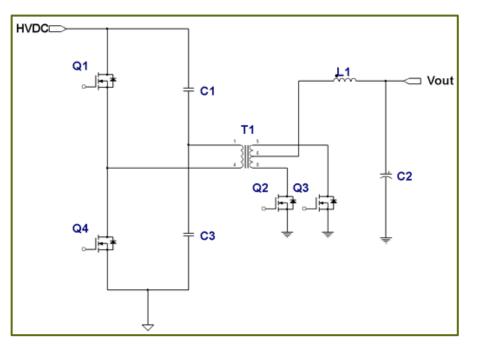
Proprietary and Confidential

GaN allows higher performance Half Bridge & Full Bridge Topologies

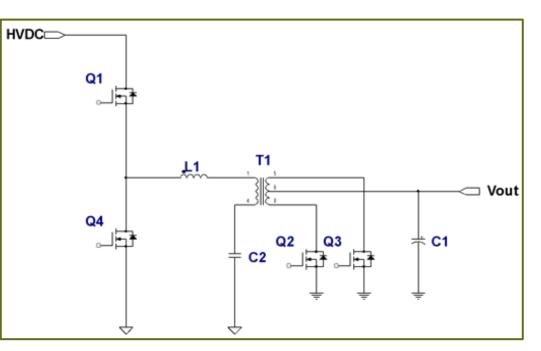
- Half-bridge requires reverse conduction
- IGBT has no reverse conduction capability, hence needs external parallel diode
- Si MOSFET has internal body diode but has high Qrr
- GaN FETs can reverse conduct and has low Qrr: Enables diode-free H bridge

Half Bridge (LLC)

transphorm High Voltage DC-DC Output Converter (Rdson Max for Each Topology)

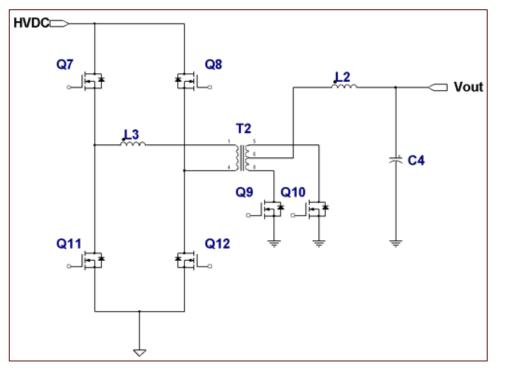

Topology (By Wattage)	Pros	Cons
Resonant Half Bridge LLC (300W to 2.2kW)	ZV Switching Fewer Power Devices (2) High Efficiency	Narrow input and output voltage range Higher stress on passive components Standby power is challenging
Phase Shifted Full Bridge (600W to 12kW)	ZV Switching Highest Power Density Lower Stress on Passive components Wider input and output voltage range High Efficiency	4 Power Devices
Resonant Full Bridge LLC (600W to 10kW)	ZV Switching Higher Power Density than Resonant Half Bridge High Efficiency	4 Power Devices Narrow input and output voltage range Higher stress on passive components Standby power is challenging

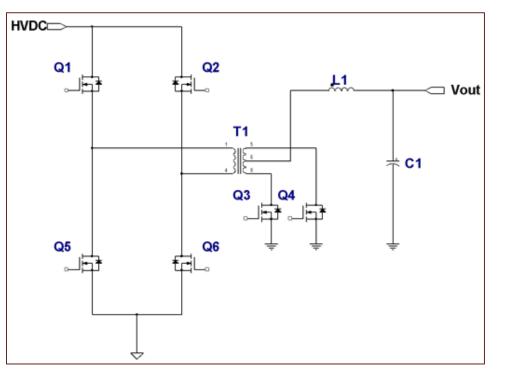
Rdson (mΩ) Max.	Half Bridge LLC Max Power	Full Bridge LLC Max Power	Phase-Shifted Full Bridge Max Power	Representative Part Number from Transphorm*
240	250W	500W	600W	TP65H300xxx
150	400W	800W	900W	TP65H150xxx
70	800W	1,600W	1,800W	TP65H070xxx
50	1,200W	2,400W	2,500W	TP65H050xxx
35	2,000W	4,400W	5,000W	TP65H035xxx
15	4,000W	8,000W	9,000W	TP65H015xxx



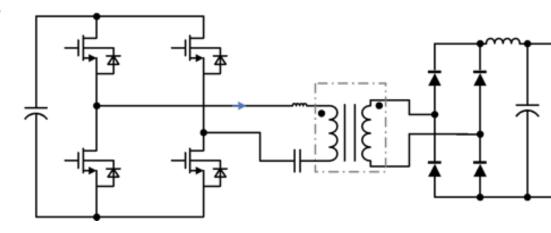
* GaN devices from various manufacturers are available as well

transphorm Half-Bridge (Hard-switching & Soft-switching LLC)

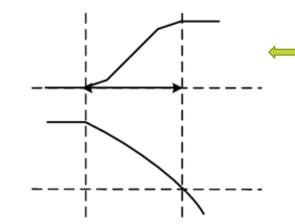

- Pros
 - Fewer power devices
- Cons
 - Higher current stress on power devices
 - Higher losses from hard switching
 - Voltage Mode control


- Pros
 - ZV Switching
 - Higher Efficiency
- Cons
 - Limited Voltage range, fixed 50% duty
 - Requires power passive components
 - Higher Current stress on power devices

transphorm Full-Bridge (Phase-shifted & Resonant LLC)

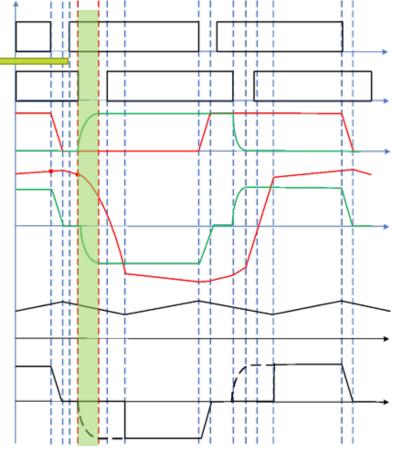

- Pros
 - o ZV Switching
 - Higher efficiency & power density
 - Lower stress on passives
 - Wider input and output voltage range
- Cons
 - o 4 switches

- Pros
 - ZV Switching
 - Higher Efficiency than HB with half the current stress
- Cons
 - o 4 switches
 - Limited input / output voltage range
 - Higher stress on passives


Design Example of a PSFB DC-DC Converter

Phase-shift Full Bridge DC-DC converter Vin=400V, Vo=250-450V battery

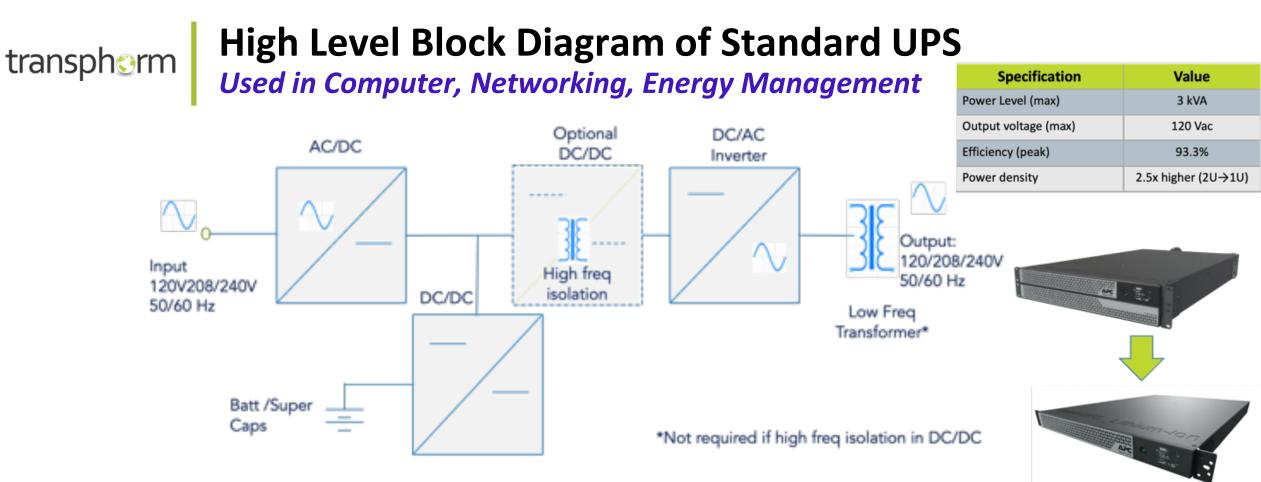
Q1-Q4	TP65H050G4	IPW60R070CFD7
Rds(on)	50 mΩ	57 mΩ
Co(tr)	142 pF	990 nC
Co(er)	142 pF	96 pF
t _{dead}	64.3 ns	115 ns
I _L (ZVS)	6.43 A	10.83 A


 $L_s = 2.7 \mu H$

ZVS condition for lagging leg:

$$\begin{cases} E = \frac{1}{2}L_s I_L^2 > 2C_{oss}V_{in}^2\\ 2Q_{oss} = 0.5 \cdot t_{dead}I_L \end{cases}$$

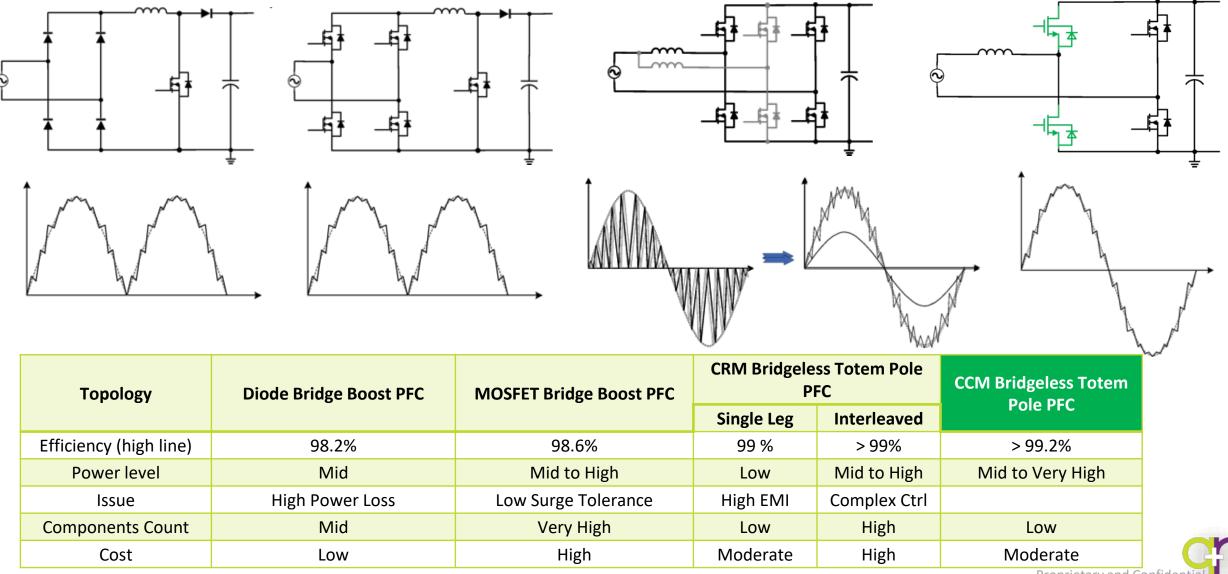
$$t_{dead} = \frac{T_{res}}{4} = \frac{\pi}{2} \sqrt{2L_s C_{o(tr)}}$$


Proprietary and Confidentia

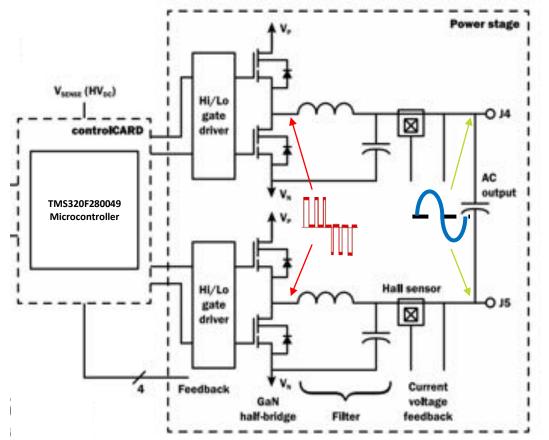
- GaN offers over 40% shorter dead time than Si-MOSFET to charge/discharge Qoss
- GaN offers over 40% lower inductance current than Si-MOSFET to achieve ZVS

7

Topology for Uninterruptible Power Systems (UPS)

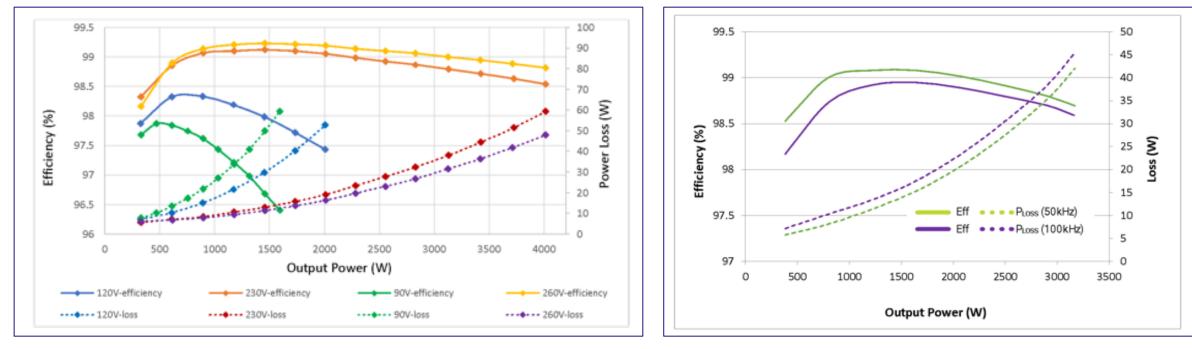


- DC/AC Inverters are crucial to on-line (depicted) and off-line UPS systems
- Most work as Voltage Source Inverters (VSI) with input PFC
- Most standard UPS systems use a Battery Back-up; Ultra capacitor or super capacitor driven inverters used for very short power backups



transphorm AC-DC PFC Converter Options (revisted)

Proprietary and Confidential


Inverter Implementation using a DSP Controller

- Already reviewed the operation of the PFC section
- A typical single-phase inverter consists of a full bridge inverter and an output filter.
- Goal of the controller is to maintain the output voltage constant, irrespective of the line and load disruptions.
- LC filters are commonly used as output filter
 - Single Phase(1PH) Inverter Vin = 0Vdc - 400Vdc, Vout = Vdc/V2 Vrms 60/50Hz Pmax = 3500W Switching frequency = 50 kHz (programmable in firmware)
- Voltage Source Inverter (VSI) for standalone operation with output voltage control
- Control law is implemented using an inner current loop and an outer voltage loop
- Proportional resonant controller is used for voltage loop to zero out the tracking error for the selected output AC frequency

Proprietary and Confidentia

transphorm UPS Efficiency Signature from PFC & Inverter

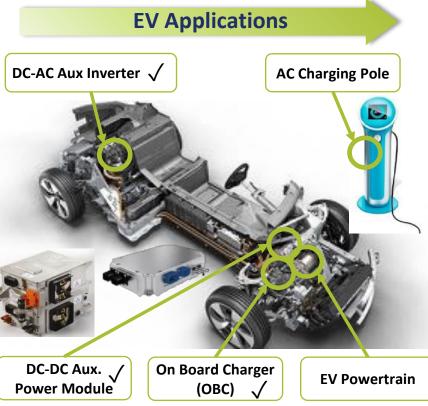
https://www.transphormusa.com/en/evaluation-kit/tdttp4000w066c-kit/

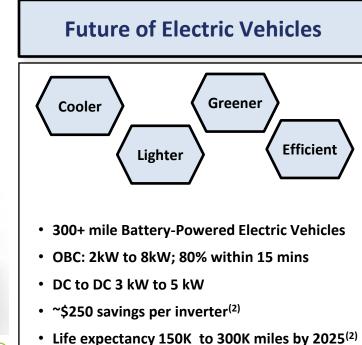
https://www.transphormusa.com/en/evaluation-kit/tdinv3000w050-kit/

- Excellent full-load and peak efficiency
- High frequency, hard switching operation with GaN

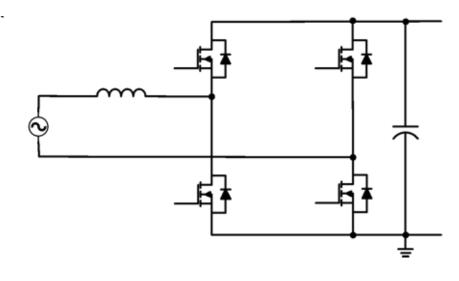
transphorm GaN Solutions for EV Applications

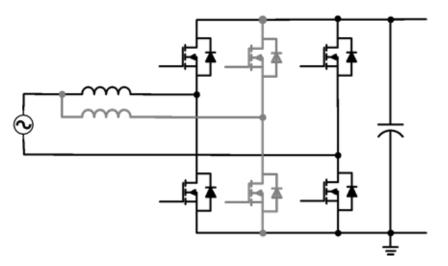
(Best Option for up to 650V)


DC-DC Aux. Power Module (APM) (1 kW - 7 kW)


GaN Solutions for Today's EV Challenges

- Possibly cuts total power-stage losses ~ 20% vs. SiC
- Up to ~40% OBC weight/volume savings vs. Si
- Range extension and design freedom
- Applicable to OBC, DC to DC, and DC to AC (non-drive) Today
- Future Possibility:
- Fast-charging support for AC Charging Pole (Level I & II) and fast DC charging (50+ kW)
- Inverter power density 25kW/L (today) to > 75kW/L (future)^(4,5), 50 => 150 kW Power




• Cost < 3 years gas savings⁽²⁾

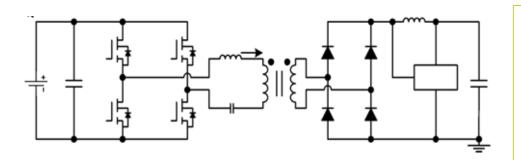
DC-AC Auxiliary Inverter (1.5 kW – 2 kW) AC-DC On Board Charger (OBC) (3.3 kW- 11 kW)

AC to DC Stage: 7- and 11-kW Onboard Charger Examples Input: 230Vac : Output: 400 Vdc : Power: 7 and 11 kW (single device solutions)

<u>Case Study</u> Input: 230 Vac : Output: 400 V : Output: 7 kW : Freq(sw.): 55 kHz				
Single Phase Bridgeless Totem-pole PFC using TP65H015G5WS				
IQ1, IQ2(RMS)	Conduction Loss on Q1 (100°C)	Switching Loss on Q1	Total Loss on Q1	Total Loss on Q1, Q2
25.4 A	15.4 W	9.96 W*	25.4 W	50.8 W
* The switching loss is an estimate				

Case Study
Input: 230 Vac : Output: 400 V : Output: 11 kW : Freq(sw.): 55 kHz

Single Phase Interleaved Bridgeless Totem-pole PFC using TP65H015G4WS


IQ1, IQ2(RMS)	Conduction Loss on Q1 (100°C)	Switching Loss on Q1	Total Loss on Q1	Total Loss on Q1, Q2
19.9 A	9.53 W	9.57 W	<u>19.1 W</u>	38.2 W

Absolute maximum power loss rating for TO-247 is 25 – 30 W

DC to DC Stage: 7 kW Uni-directional Onboard Charger Input: 400 Vdc : Output: 240 to 480Vdc : Output: 7kW

Phase Shift Full Bridge

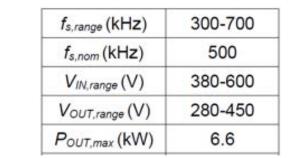
Key Points of the Full Bridge PSFB

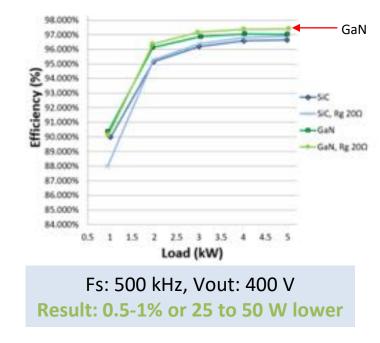
- Suitable for high power application > 1 kW •
- Wide conversion range with high efficiency
- ZVS operation at high power
- Hard switching at low power advantage GaN
- Runs at a constant frequency ٠
- Easy to parallel stages for higher power
- Synchronous rect. Easy due to constant frequency ٠

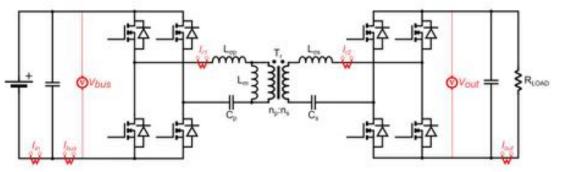
DC to DC Power Stage: PSFB

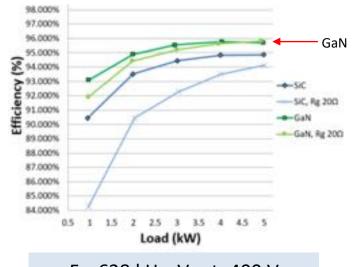
Project: •

- Input: 400 Vdc Output: 240 to 480 Vdc
- Topology:
 - Phase Shifted Full Bridge
- Device(s): •
 - TP65H035G4WSQA/QSQA
- Configuration:
 - 7 kW: Single Phase (TP65H035G4WSQA)


transphorm 6.6 kW CLLLC Bi-directional Resonant Converter




900V: GaN vs. SiC


Properties	Cree C3M0030090K (SiC)	Transphorm TP90H050WS (GaN Cascode)
Maximum V _{DS} (V)	900	900
Package	TO 247-4	TO 247-3
Maximum $V_{GS}(\vee)$	-8/+19	±20
Typ. R _{05(m)} @ 25 ^e C (mΩ)	30	50
Typ. R _{D5(ont} @ 150°C (mΩ)	37	105
Input Capaci- tance C _{ite} @ V _{DS} 600 V (pF)	1747	1000
Output Capaci- tance C _{cee} @ V ₀₅ 600 V (pF)	131	115
Reverse Transfer Capacitance C _{RSS} @ V _{DS} 600 V (pF)	8	3.5
Diode V ₈₀ (V)	4.8 @ 17.5 A	2.2 @ 22 A
Reverse Recov- ery O _{if} (nC)	545 (35 A, 600 V, di/dt 2680 A/µs)	156 (22 A, 600 V, di/dt 1000 A/µs)
Typ. Raic (°C/W)	0.62	1.05

TP90H050WS GaN FET Offers Higher Performance and Flatter Profile vs. C3M0030090K SiC MOSFET

Fs: 638 kHz, Vout: 400 V Result: 1% or 50 W lower

Table 2 Semiconductors used in this work

- Different applications at power levels addressed by GaN have been discussed
- Applications range from 45W to 10kW
- Approaches and topologies for different applications discussed
- Performance of GaN is compared and contrasted with Si and SiC power devices
- GaN improves efficiency and power density which is driving adoption of GaN in the addressable applications

-> Backup

USB-C Adapters – The Volume Driver for GaN-on-Si

- Fastest Adopter of GaN-on-Si products
 - Almost every mobile phone, notebook and accessory adapter maker has announced products and/or plans for replacing power MOSFETs with GaN
- Power Levels
 - 33W to 140W
 - 65W adapter most popular, but penetration growing in lower and higher wattages as well
- Topologies < 70W (no Power Factor Correction requirement)
 - Quasi-resonant flyback most popular, followed by active-clamp flyback
 - Frequencies still <300kHz for mainstream to mitigate EMI issues
- Topologies > 70W (Power Factor > 0.9 required, with exceptions)
 - Two-stage or three-stage topologies required due to Boost PFC in the front-end
 - QR Flyback, AC Flyback, Hybrid Flyback or Bridge topologies are deployed

transphorm Transphorm High Power Applications Examples

Over 50 design wins in high power markets, shipping to major customers WW

"The Corsair AX1600i is the **best PSU** that money can buy today, period." **tom'sHARDWARE**

"Transphorm's GaN in a totem-pole PFC configuration proved the **most reliable**, **highest performing** solution possible today," - 67. 9

"Ease of drivability and designability does not require custom drivers. Proven reliability— JEDEC and AEC-Q101"

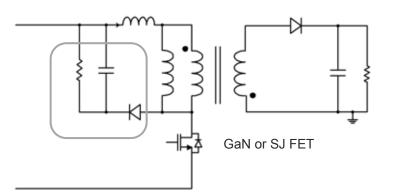
"Based largely on the power semiconductors' proven quality and reliability as well as the team's reputation for successful collaboration,"

"We're expanding the reach of **medical care**, and Transphorm's GaN is helping us do it"

NEW

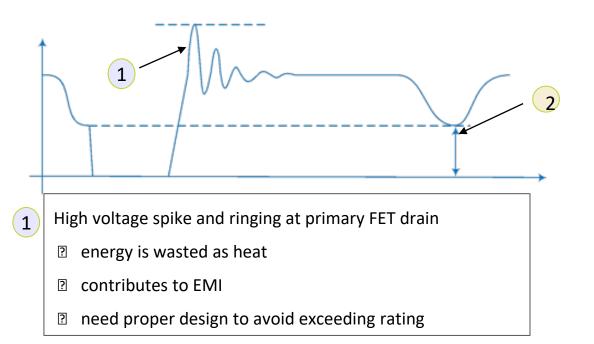
GaN benefit of low switching loss, 1st gaming psu with GaN in ASUS

NEW



6 0 transphorm Power Levels, Applications and Topologies, for 650V GaN

Power Level	Typical Applications	Dominant Topologies
<65W	Power adapters, USB PD Type-C, LED Lighting	QRF, ACF, SSR, PFC Flyback, PFC Buck, PFC Boost
75W to 150W	Adapters, Computer, TV, Appliances, LED Lighting	PFC Boost + QRF or ACF, PFC Flyback, Dual OOP PFC FB, PFC + Forward, PFC + HB-LLC
150W to 600W	Gaming consoles, Computer, TV, Servers, Appliances, eBikes, UPS, High Bay Lighting	PFC Boost + DC-DC, Totempole PFC + DC- DC, Inverters
>750W to 1.5kW	Computing, Electric 2-3 wheeler OBC, UPS, Residential MPPT & Inverters	Sync PFC Boost + HB-LLC, BL or Totempole PFC, HB/FB-LLC, PSFB, Inverters
>1.5kW to 10+kW	Computing, 5G, EV OBC & LBC, UPS, Industrial scale MPPT & Inverters	BL PFC/TTP PFC, PSFB, HB/FB-LLC, Multi- phase HB-LLC Inverters

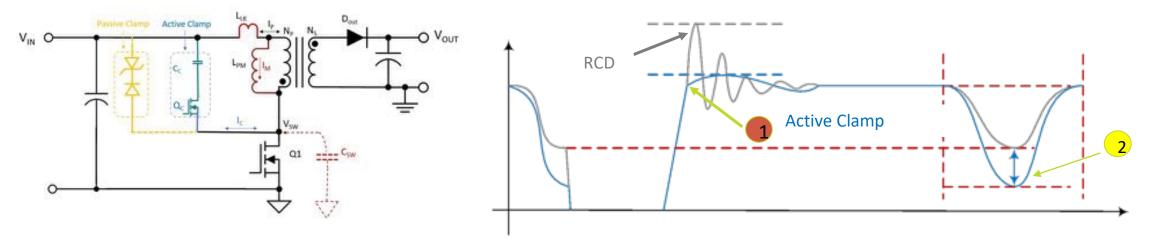

transphorm Conventional RCD Snubber in QR Flyback

Flyback Converter With RCD Snubber

- Transformer leakage energy is wasted as heat
- Power loss in snubber increases at higher sw. frequencies

$$\square P_{sn} = \frac{1}{2} \cdot L_{lk} \cdot I_p^2 \cdot \frac{V_{sn}}{V_{sn} - n \cdot V_{out}} \cdot f_{sw}$$

$$\square \text{ For } V_{sn} = 2 \cdot n \cdot V_{out}, P_{sn} = L_{lk} \cdot I_p^2 \cdot f_{sw} \text{ (2x leakage energy!)}$$



- 2 QR valley around or above 200V
 - ☑ switching losses can be mitigated with other approaches
 - Image: Provide the second s

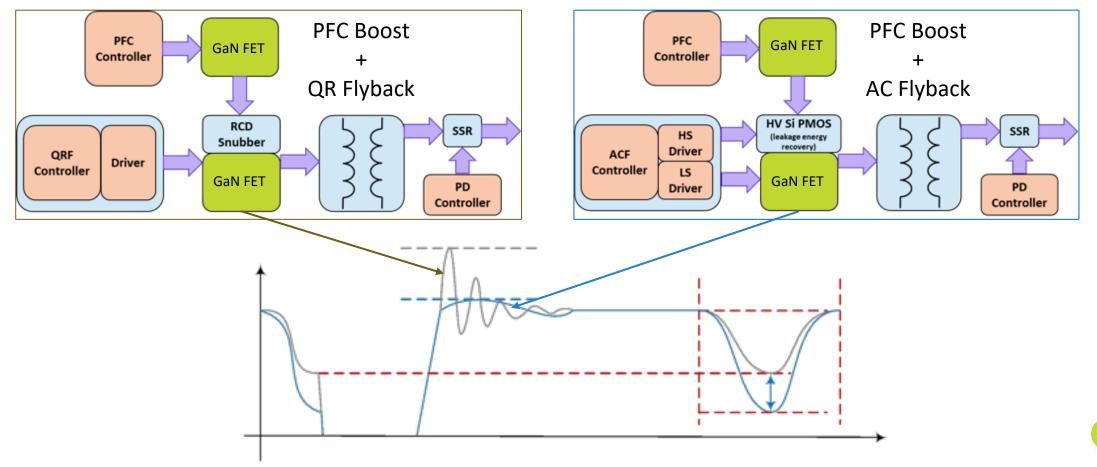
Specialized ICs with precise valley switching required to attain >92% efficiency

transphorm Active-Clamp Flyback Improves Performance

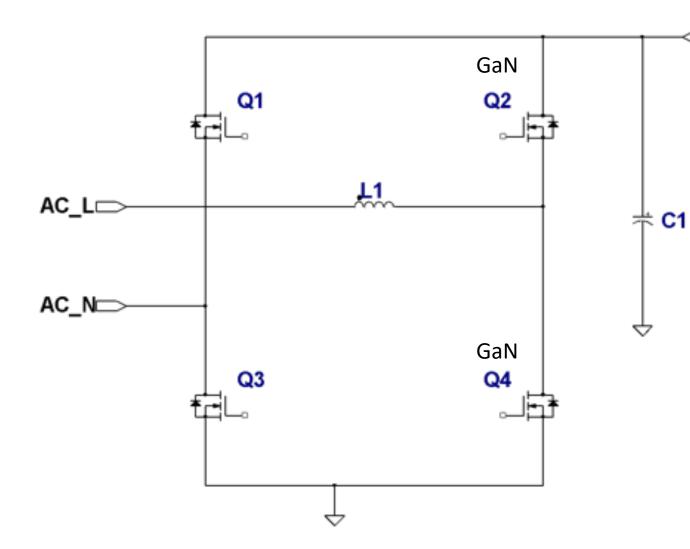
Active clamp operation

- Peak voltage is reduced, more aggressive transformer turns ratio is possible, lower SR FET voltage rating
- Recycles leakage energy, higher efficiency
- Soft switching of active clamp FET, lower EMI

Active Clamp 2 QR valley is well below 200V (near ZVS of main switch)


- Higher efficiency due to lower switching losses
- Lower EMI due to smaller switching voltage

Higher efficiency and lower EMI



Voltage Stress Considerations in 2-stage topologies

- PFC Boost Output voltage ~ 400V to 410V (accounting for duty cycle) on top of Vrms
- Proper transformer design and topology need to be considered to allow for headroom on the BVDSS of the GaN devices

transphorm Totem Pole Bridgeless PFC – Highest Efficiency

• Q1 & Q3 switch at the line rate conducting on alternate half cycles

Vboost

• Q2 & Q4 switch at high frequency and alternate between the main switch and SR boost diode depending on the phase of the AC line.

- Requires high and low side drivers
- Only 1 boost inductor needed

