Inductance of Capacitor Connections

Jay Diepenbrock, SIRF Consultants, LLC sirfconsultants@gmail.com Bruce Archambeault, PhD, MST bruce@brucearch.com

Using EMC test boards designed at University of Twente

1

EMC Test Boards

10 PCBs designed by the University of Twente for EMC education

- (Self) Inductance of a Wire
- Inductance of Capacitor connection

(Self) Inductance of a Wire

AWG 14 stranded wire

AWG 13.3 Tinned braid

(Self) Inductance of a Wire

— nanoma-h4_2022-07-28_16-41-26_Lwire.s2p_Magn(\$21) — nanoma-h4_2022-07-28_16-41-57_Lbraid.s2p_Magn(\$21)

4

Inductance Definition • Faraday's Law $\oint \overline{E} \cdot dl = -\iint \frac{\partial \overline{B}}{\partial t} \cdot d\overline{S}$

• For a simple rectangular loop

Via Configuration Can Change Inductance

Inductance of Capacitors

Cap. #1 – Vias and Value

1 mm trace to via

Multiple vias

No via

Inductance of Capacitors

Cap. #1 – Distance to Via

Inductance

- Current flow through metal = inductance!
- Fundamental element in EVERYTHING
- Loop area first order concern
- Inductive impedance increases with frequency and is MAJOR concern at high frequencies

$$X_L = 2\pi f L$$

Given the Definition of Inductance

• Do these have inductance?

SMT Capacitor

"Ground Strap"

Not until return path for current is identified!

PCB Via

Current Loop = Inductance

Courtesy of Elya Joffe

Self Inductance

• Isolated circular loop $L \approx \mu$

$$=\mu_0 a \left(\ln \frac{8a}{r_0} - 2 \right)$$

a= loop radius r_o= wire size radius

• Isolated rectangular loop

$$L = \frac{2\mu_0 a}{\pi} \left(\ln \frac{p + \sqrt{1 + p^2}}{1 + \sqrt{2}} + \frac{1}{p} - 1 + \sqrt{2} - \frac{1}{p} \sqrt{1 + p^2} \right)$$

Note that inductance is directly influenced by loop <u>**AREA**</u> and less influenced by conductor size!

 $p = \frac{length \ of \ side}{wire \ radius}$

How much magnetic flux is induced in loop #2 from a current in loop #1?

Flux from Current in Loop #1

Dr. Bruce Archambeault

Flux from Current in Loop #1

Dr. Bruce Archambeault

Dr. Bruce Archambeault

Example Decoupling Capacitor Mounting

• Keep vias as close to capacitor pads as possible!

0603 Size Cap Typical Mounting

0402 Size Cap Typical Mounting

Connection Inductance for Typical Capacitor Configurations

Distance into board to planes (mils)	0805 typical/minimum (148 mils between via barrels)	0603 typical/minimum (128 mils between via barrels)	0402 typical/minimum (106 mils between via barrels)
10	1.2 nH	1.1 nH	0.9 nH
20	1.8 nH	1.6 nH	1.3 nH
30	2.2 nH	1.9 nH	1.6 nH
40	2.5 nH	2.2 nH	1.9 nH
50	2.8 nH	2.5 nH	2.1 nH
60	3.1 nH	2.7 nH	2.3 nH
70	3.4 nH	3.0 nH	2.6 nH
80	3.6 nH	3.2 nH	2.8 nH
90	3.9 nH	3.5 nH	3.0 nH
100	4.2 nH	3.7 nH	3.2 nH

Connection Inductance
for Typical Capacitor
Configurations with 50
mils from Capacitor
Pad to Via Pad

Distance into board to planes (mils)	0805 (208 mils between via barrels)	0603 (188 mils between via barrels)	0402 (166 mils between via barrels)
10	1.7 nH	1.6 nH	1.4 nH
20	2.5 nH	2.3 nH	2.0 nH
30	3.0 nH	2.8 nH	2.5 nH
40	3.5 nH	3.2 nH	2.8 nH
50	3.9 nH	3.5 nH	3.1 nH
60	4.2 nH	3.9 nH	3.5 nH
70	4.5 nH	4.2 nH	3.7 nH
80	4.9 nH	4.5 nH	4.0 nH
90	5.2 nH	4.7 nH	4.3 nH
100	5.5 nH	5.0 nH	4.6 nH

Layout Options(mils, KEMET)

Drill size: 8mils, anti-pad size: 25.5mils, pad: 16mils, min Space :5mils

Decap layout	Decap size	X	Υ	Keep out region	
Alternating / Regular	0201	132	85	2*(antipad+minSpace) ² 2*(pad+minSpace) ²	
	0402	148	101		
	0603	219	171	=> 2* 930 mil ² + 2* 441 mils ² = 2742 mils ² = 1.76mm ²	
	0805	235	211		
Doublet	0201	96.5	71		
	0402	104.5	87	(1.5*antipad_D+pad_R+minSpace) ² => 2627 mils ² = 1.69mm ²	
	0603	139.5	158		
	0805	159.5	174		
	0805	159.5 159.5	174		

L_{Decap} comparison (h=10mils, 0201) Normalized

L_{Decap} comparison (h=10mils, 0402) Normalized

L_{Decap} comparison (h=10mils, 0603) Normalized

L_{Decap} comparison (h=10mils, 0805) Normalized

Summary

- Loop area is most important
- Via distance to capacitor pad MATTERS
- Wire size is a minor factor
- Capacitor physical size matters