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Photodynamic therapy (PDT) has received increased attention since the regulatory

approvals have been granted to several photosensitizing drugs and light applicators world-

wide.  Much progress has been seen in basic sciences and clinical photodynamics in recent

years.  This review will focus on new developments of clinical investigation and discuss the

usefulness of various forms of PDT techniques for curative or palliative treatment of malig-

nant and non-malignant diseases.
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Introduction

Photosensitive agents and light have been used for medical purposes for a very
long time.  However, photodynamic therapy (PDT) only began to form in the
1960s after Lipson and Baldes reported that neoplastic tissues containing photo-
sensitizer of porphyrin mixture could fluoresce under ultraviolet light irradiation
(1).  The porphyrin mixture, prepared by Schwartz, and formally named as
hematoporphyrin derivative (HpD), was found to have a better affinity for tumor
tissue and stronger phototoxicity than crude hematophorphyrin (2).  Early stud-
ies were quickly expanded to investigate the phototherapeutic potentials of HpD
in both preclinical and clinical studies in the 1970s (3-5).  An effort led by
Dougherty to prepare a drug grade HpD in large quantities following the US
FDA regulations produced the first approved photosensitizing drug, Photofrin,
for clinical use.  The early clinical studies using Photofrin for tumor ablation of
various malignant diseases quickly established a series of clinical protocols
around the world in the 1980s.  This laid an important milestone of modern pho-
totodynamic therapy.  Several light applicators were also developed to facilitate
clinical protocols.  This gradually progressed from noncoherent light sources
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(e.g., arc lamps) to laser/fiber optic systems that allow sig-
nificant light fluxes of specific wavelength delivered into
tumors.  A standardization on photosensitizer preparation led
to approvals of several PDT protocols for malignant and
non-malignant indications in several countries in the 1990s.

Regulatory approvals for the clinical use of photosensitizers
and PDT light applicators now exist in many countries around
the world though the total number of approved clinical indi-
cations is still limited.  The number of scientific articles on
PDT, clinical application as well as basic science, steadily
increases in both English language and non-English language
literatures.  Review articles on past work, new aspects and
future applications have been published regularly while new
technology and promising applications continue to be discov-
ered (2, 6-14).  This review article will focus on the clinical
investigations published in English language journals and
present the recent progress in PDT clinical applications.

Photosensitizing Drug

The majority of PDT photosensitizers possess a heterocyclic
ring structure similar to that of chlorophyll or heme in hemo-
globin.  Upon capturing light energy by the photosensitizer,
a transfer and translation of light energy into chemical reac-
tion in the presence of molecular oxygen produces singlet
oxygen (1O2) or superoxide (O2

-), and induces cell damage
through direct and indirect cytotoxicity.  Therefore, the pho-
tosensitizer is considered to be a critical element in PDT pro-
cedures.  Many photosensitizers were introduced in the
1980s and 1990s.  New ones are discovered and reported reg-
ularly.  Photosensitizers can be categorized by their chemical
structures and origins.  In general, they can be divided into
three broad families: (i) porphyrin-based photosensitizer
(e.g., Photofrin, ALA/PpIX, BPD-MA), (ii) chlorophyll-
based photosensitizer (e.g., chlorins, purpurins, bacteriochlo-
rins), and (iii) dye (e.g., phtalocyanine, napthalocyanine).
Most of the currently approved clinical photosensitizers
belong to the porphyrin family.  Traditionally, the porphyrins
and those photosensitizers developed in the 1970s and early
1980s are called first generation photosensitizers (e.g.,
Photofrin).  Porphyrin derivatives or synthetics made since
the late 1980s are called second generation photosensitizers
(e.g., ALA).  Third generation photosensitizers generally
refer to the modifications such as biologic conjugates (e.g.,
antibody conjugate, liposome conjugate) and built-in photo
quenching or bleaching capability (15).  These terms are still
being used although not accepted unanimously and dividing
photosensitizing drugs into such generations may be very
confusing.  In lot of cases, the claim that newer generation
drugs are better than older ones is unjustified (16).  The pre-
mature conclusions on novel or investigational photosensi-
tizers may send a misleading message to researchers or cli-
nicians by suggesting that the older drugs should be replaced

by the newer ones or wrongly imply to patients that newer
photosensitizing drugs are superior to older ones.

Clinicians and chemists have different views on what is the
ideal photosensitizer (16, 17).  For instance, chemists may
emphasize more on a high extinction coefficient and a high
quantum yield of singlet oxygen, whereas clinicians empha-
size on low toxicity and high selectivity.  Nonetheless, both
sides are in agreement that for clinical PDT an ideal photo-
sensitizer at least should meet some of the following criteria
that are clinically relevant: a commercially available pure
chemical, low dark toxicity but strong photocytotoxicity,
good selectivity towards target cells, long-wavelength
absorbing, rapid removal from the body, and ease of admin-
istration though various routes.  These criteria provide a gen-
eral guideline for comparison.  Although some photosensi-
tizers satisfy all of or some of these criteria, there are cur-
rently only a few PDT photosensitizers that have received
official approval around the world.  These include, but are
not limited to, Photofrin® (Porfimer sodium; Axcan Pharma,
Inc.), Foscan® (temoporfin, meta-tetrahydroxyphenylchlo-
rin, mTHPC; Biolitec AG), Visudyne® (verteporfin, benzo-
porphyrin derivative monoacid ring A, BPD-MA; Novartis
Pharmaceuticals), Levulan® (5-aminolevulinic acid, ALA;
DUSA Pharmaceuticals, Inc.), and most recently Metvix®

(methyl aminolevulinate, MLA or M-ALA; PhotoCure
ASA.).  Several promising photosensitizers are currently
under clinical trials.  These include HPPH (2-[1-hexy-
loxyethyl]-2-devinyl pyropheophorbide-a, Photochlor;
Rosewell Park Cancer Institute), motexafin lutetium (MLu,
lutetium(III) texaphyrin, Lu-Tex, Antrin; Pharmacyclics
Inc.), NPe6 (mono-L-aspartyl chlorin e6, taporfin sodium,
talaporfin, LS11; Light Science Corporation), SnET2 (tin
ethyl etiopurpurin, Sn etiopurpurin, rostaporfin, Photrex;
Miravant Medical Technologies).

Light Applicator and Light Delivery

The first light sources used in PDT were noncoherent light
sources (e.g., conventional arc lamps).  Noncoherent light
sources are safer, easy to use, and less expensive.  They can
produce spectra of wavelengths to accommodate various pho-
tosensitizers.  They can be used in conjunction with optical
filers to output selective wavelength(s).  The disadvantages of
conventional lamps include significant thermal effect, low
light intensity, and difficulty in controlling light dose.
However, nowadays, most of these drawbacks can be over-
come by a careful engineering design.  For instance, the
BLU-U light illuminator (DUSA Pharmaceuticals, Inc.), an
illumination system for ALA-PDT of actinic keratosis (AK)
of the face and scalp is a fairly simple timer-controlled switch
on-off unit.  The LumaCare™ lamp (MBG Technologies), a
compact portable fiber optic delivery system provides inter-
changeable fiber optic probes containing a series of lenses
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and optical filters.  It can generate light of specific bandwidth
between 350-800 nm in a variable power for a broad range of
photosensitizers.  Light emitting diode (LED) is another
emerging PDT light applicator.  LED can generate high ener-
gy light of desired wavelengths and can be assembled in a
range of geometries and sizes.  For intra-operative PDT of
brain tumor, LED-probe may be arranged in a cylinder tip to
fit into a balloon catheter (18), whereas, for minimally inva-
sive interstitial PDT, the small and flexible light delivery
LED catheter can be implanted into the tumor percutaneous-
ly (19, 20).  Large LED array may be more suitable for flat
surface illumination of wide-area superficial lesion (21, 22).

However, the most commonly used PDT light sources are
lasers.  They produce high energy monochromatic light of a
specific wavelength with a narrow bandwidth for a specific
photosensitizer.  The laser light can be focused, passed down
an optical fiber and directly delivered to the target site
through a specially designed illuminator tip, for example a
microlens or a cylindrical or spherical diffuser.  Argon dye,
potassium-titanyl-phosphate (KTP) dye, metal vapor lasers,
and most recently diode lasers have been used for clinical
PDT around the world.  The KTP-dye modular combination
system (Laserscope PDT Dye Module) was the most widely
used PDT laser prior to the approval of the portable, light-
weight, and less expensive diode lasers (e.g., DIOMED 630
PDT; Diomed Inc.).  One preferred advantage of the diode
laser is that it can be engineered into a multi-channel unit to
meet a highly sophisticated PDT procedure, which may
require multi-channel diode lasers and each independent
light output channel to simultaneously provide the light
sources of variable power (e.g., Ceralas PDT 762 nm;
CeramOptec GmbH of Biolitec AG).

Clinical Application

Dermatological Disease

Several types of skin conditions are among the first to be
studied due to their accessibility to photosensitizer and
external light.  Dougherty’s group pioneered skin cancer
PDT in the 1970s using HpD and red light from a xenon arc
lamp in patients who suffered primary or secondary skin
cancers.  This early study demonstrated that the primary
skin cancers that showed a complete response (CR) includ-
ed squamous cell carcinomas (SCCs, 20%), basal cell carci-
nomas (BCCs, 70-80%) and malignant melanomas (50%),
and the secondary cancers originated from primary breast
cancer, colon cancer, and endometrium cancer (80%) (5).
Interstitial PDT might be an option for subcutaneous and
cutaneous tumors of a larger volume (23).

Since the discovery of endogenous protoporphyrin IX
(PpIX) photosensitization induced by exogenous administra-

tion of ALA (24) skin premalignant and malignant lesions
also become a favorite target of ALA-PDT with the excep-
tion of the pigmented malignant melanomas due to a limited
light penetration.  AK, a premalignant lesion became the first
approved dermatologic indication of PDT.  Early multicenter
clinical studies showed that a combination of Levulan and
blue light resulted in 63-69% CR and approximately 5-fold
higher than the control.  With one or two treatments, 88% of
patients had over 2/3 of lesions cleared.  The long-term fol-
low-up also showed ALA-PDT to be beneficial with a pro-
jected disease-free rate of 71% (25, 26).  These studies
demonstrated ALA-PDT to be effective, safe, and well toler-
ated by patients, and led to the US FDA approval in 2000
which marked another historic event for PDT.  Recently,
MLA-PDT has also been approved for AK in several coun-
tries.  ALA-PDT was also approved for moderate inflamma-
tory acne vulgaris in US in 2003.  A number of other non-
malignant conditions (e.g., psoriasis, viral warts, and hair
removal) are currently under clinical investigation world-
wide (27-30).  Clinical investigational studies of ALA-PDT
have also extended to BCCs, basaloid follicular hamartomas,
SCC in situ (Bowen’s disease), cutaneous T-cell lymphoma,
and sebaceous gland hyperplasia in recent years (31-38).
PDT may be a promising treatment modality for both
Mediterranean and HIV-related Kaposi’s sarcomas since it
can be repeated and will not cause immunosuppression (39).
SnET2 (Miravant Medical Technologies, formerly PDT Inc.)
was also underwent clinical trials for the potential treatment
of basal cell carcinoma and HIV-related Kaposi’s sarcoma in
the late 1990s.  But some of these studies have been discon-
tinued because of business considerations (40).

Photofrin-PDT has also been used off-label to treat locally
recurrent breast carcinoma on the chest wall.  Such recur-
rence occurs in 5-20% of breast cancer patients.  Several
reports suggest that PDT can offer 14-73% complete response
and 14-45% partial response, but the duration of response
was variable (6 weeks - 8 months) (41-43).  It is expected that
the photosensitizer acting at longer wavelengths could
achieve deeper tissue penetration and thereby greatly expand
the patient population for which this modality is useful.

Ophthalmic Disease

Verteporfin (BPD-MA, benzoporphyrin derivative monoacid
ring A) was synthesized in the mid-1980s with an intention
of cancer treatment.  However, it has been used primarily for
ocular PDT and approved for age-related macular degenera-
tion (AMD) worldwide since 2000.  Verteporfin in photody-
namic therapy involves intravenous administration of
Visudyne® (verteporfin) followed by activation through an
ophthalmoscope equipped with a 690 nm diode laser while
the photosensitizer is still in the general circulation.  Several
well designed clinical studies in North America and Europe
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showed that AMD patients treated with verteporfin-PDT
were more likely to experience stabilized vision than those
given a placebo (44-46).  Verteporfin therapy should be con-
sidered as a first-line therapy in these difficult-to-manage
conditions such as subfoveal choroidal neovascularisation
secondary to AMD, pathological myopia or presumed ocular
histoplasmosis syndrome.  Therefore, the Verteporfin
Roundtable Participants have published guidelines on the
role of verteporfin therapy in the management of CNV due
to AMD and other causes in 2002 and 2005, respectively.
Photodynamic therapy with visudyne for choroidal neovas-
cular disease (CNV) has proved effective at preventing mod-
erate to severe visual loss in eyes with subfoveal predomi-
nantly classic CNV or occult-only CNV caused by age-relat-
ed macular degeneration (AMD) and in eyes with subfoveal
CNV caused by pathologic myopia.  PDT is not meant to
improve visual acuity.  It should, therefore, be used in eyes
with potentially useful macular vision.  Several clinical trials
are currently under way to evaluate the efficacy of AMD
PDT for use with other photosensitizers.  These include
SnET2, motexafin lutetium, and Npe6 (44).  SnET2
(Photrex, Miravant) has completed two phase III placebo-
controlled, double-masked clinical trials and a New Drug
Application (NDA) has been filed recently.

Several case reports have demonstrated that verteporfin-
PDT could resolve the exudative retinal detachment associ-
ated with a diffuse choroidal haemangioma.  For circum-
scribed choroidal haemangioma, a 10-case study showed
evidence of regression with flattening of tumor, resolution of
subretinal fluid, and reduction of choroidal vasculature on
angiograms.  The visual acuity either improved or remained
stable in eight patients.  Visual loss due to delayed choroidal
atrophy was seen in two patients (47).

Head and Neck Cancer

Head and neck cancer is the term given to a variety of malig-
nant tumors that develop in the oral cavity, the pharynx, the
nasal cavity, and the larynx.  The most extensively studied
photosensitizers for SCCs of head and neck are Photofrin
and Foscan (temoporfin, meta-tetrahydroxyphenylchlorin,
mTHPC).  Biel reported the largest series of Photofrin-PDT
for head and neck cancers of 107 patients in 1998.  Cure for
early cancer of the vocal cords (T1 and in situ disease) was
achieved with a single treatment.  There was only one recur-
rence in 79 months in a follow-up of 25 patients.  The cure
rate for early oral cavity tumors was 80% after 70 months,
but all patients responded initially.  For patients with
advanced disease the use of PDT as an adjunct with radio-
therapy or surgery could also improve cure rates (48).
Another Photosan-3 PDT study showed that for superficial
tumors of the larynx and oropharynx the cure rate was 89%
over a follow-up period of 13-71 months of 19 patients (49).  

Foscan-PDT was approved in Europe in 2001 for the pallia-
tive treatment of patients with advanced head and neck can-
cer who have exhausted other treatment options.  PDT is par-
ticularly well suitable for head and neck cancer because it
has little effect on underlying functional structures and has
an excellent cosmetic outcome (50).  A recent multicenter
study of 128 patients with recurrent/refractory SCCs showed
that by use of WHO criteria, 38% of evaluable patients
achieved an overall tumor response, and 16% achieved a
complete tumor response, 43% of assessable lesions
achieved 100% tumor mass reduction, and 58% achieved
50% or greater tumor mass reduction.  Fifty-three percent of
evaluable patients experienced a significant clinical quality-
of-life benefit.  Subset analyses revealed two subgroups in
which significantly better responses were seen in patients
with tumors of 10 mm or less in depth and patients with fully
illuminated lesions.  In patients fulfilling both categories,
overall tumor response was 54%, CR was 30% and 61%.
This demonstrates that Foscan-PDT can achieve significant
clinical benefits and improvement in the quality of life of
patients (51).  A long-term study (37 months) shows a cure
rate of 86% with 4 recurrences in 25 patients (52).

Brain Tumor

Intracranial tumors are poor prognosis diseases and treatment
options are few.  Glioblastomas and astrocytomas also tend to
form foci of tumor that spread beyond the main tumor site.
Therefore, conserving healthy brain tissue while effectively
killing cancerous cells remains a major challenge in the treat-
ment of these diseases.  Muller and Wilson introduced an
intra-operative Photofrin-PDT procedure (cavitary illumina-
tion) in the 1990s, which utilizes an optical fiber in a light-
diffusing medium, to irradiate the surgical bed immediately
following resection to treat patients with malignant glial
tumors, particularly glioblastoma, and anaplastic astrocy-
toma.  The multicenter studies have shown prolongation of
survival in patients with malignant gliomas.  With surgery
alone the median survival was only 20 weeks, PDT raised
survival to 30, 44 and greater than 61 weeks for patients with
recurrent glioblastoma, malignant astrocytoma, and astrocy-
toma-oligodendroglioma, respectively.  In patients with
newly diagnosed tumors, PDT after subtotal resection
appears to be safe and can prolong survival (53).  Optimizing
photosensitizer uptake, elevating light dose, and fluerescence
guided resection might further improve the efficacy of intra-
operative PDT mediated with Photofrin or Foscan (54-59).

Stummer et al. have demonstrated in the late 1990s that ALA-
induced porphyrin fluorescence may label malignant glioma
tissue for better visualization and accurately enough to
enhance the completeness of tumor removal (60).  ALA
mediated intra-operative photodynamic diagnostics (PDD) of
tumor tissue and post-resection PDT may be a beneficial
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combination (61).  Recent preclinical study has demonstrated
an interesting phenomenon which was named as “metronom-
ic PDT or mPDT” and might be clinically relevant.  This term
is analogous to continuous metronomic low-dose chemother-
apy, in which both the photosensitizer and light are delivered
continuously at low rates for extended periods of time to
increase selective tumor cell killing through apoptosis and
meanwhile minimize surrounding normal tissue damage.
Prototype light applicator uses LED coupled to an implanted
optical fiber or a directly implanted LED (62).  LED-based
PDT is not new.  Schmidt et al. have shown that LED array
could achieve a similar therapeutic effect as laser in brain
tumor PDT mediated with Photofrin or verteporfin (18, 63).

Photofrin-PDT for pituitary adenomas is currently under
clinical investigation.  A Phase I/II trial of 12 patients with
recurrent pituitary adenomas has shown encouraging out-
comes, such as long term improvement of visual acuity or
field defects in most patients, complete recovery of visual
fields in 3 patients, reduction in hormone levels in func-
tional adenoma patients, and tumor volume reduction up to
46% within 2 years (64).

Pulmonary and Pleural Mesothelial Cancer

Kato et al. began using HpD-PDT for bronchogenic carcino-
ma treatment in Japan in the 1980s (65).  The worldwide data
now show that bronchoscopic PDT appears to be effective as
a curative therapy for small (<1 cm), superficial and early
stage non-small cell lung cancer (NSCLC) (e.g., SCCs) and
as palliative therapy in obstructive cancers of the tracheo-
bronchial tree (66, 67).  Bronchoscopic PDT has now
achieved the status of a standard protocol for centrally locat-
ed early-stage lung cancer in Japan (68).  PDT of endo-
bronchial metastatic tumors effectively decreased the amount
of endobronchial obstruction, and improved quality of life
(69).  Recently, a new protocol using percutaneous insertion
and intra-tumoral illumination has been developed for the
curative treatment of localized peripheral lung cancer (<
1cm) unfit for surgery or radiotherapy.  Preliminary results
have shown a partial response in the majority of patients (70).
The same Japanese group also extensively studied another
photosensitizer mono-L-aspartyl chlorin e6 (NPe6, also
known as talaporfin sodium and LS11) for SCCs.  Clinical
trials of 41 patients have shown an 83% CR.  NPe6 has less
significant skin photosensitivity due to its rapid clearance
(71).  However, some clinicians argue that in the absence of
a formal comparative study, it is still uncertain whether PDT
is better than other endobronchial therapies (72).

Malignant pleural mesothelioma (MPM), generally linked to
asbestos exposure, responds poorly to conventional therapies.
There is a need to develop more aggressive local therapies.
Photofrin-PDT has been tested as an adjuvant intra-operative

modality in several countries.  The data demonstrates the safe-
ty and feasibility of intrapleural PDT which offers good sur-
vival results for stage I or II pleural mesothelioma.  However,
for patients of stage III or IV, PDT does not significantly pro-
long survival or increase local control (73-76).  Nonetheless,
the advent of newer photosensitizers and PDT technology has
led to a renewed interest in evaluating intrapleural PDT (77).
Hyperoxygenation is an effective means to enhance PDT
cytotoxicity (78, 79).  Therefore, it is logical to carry out the
intrapleural PDT under hyperbaric oxygenation (HBO)
breathing to improve the therapeutic effect (80).

Cardiovascular Disease

Recent preclinical studies show Antrin (motexafin lutetium,
MLu, lutetium(III) texaphyrin, Lu-Tex; Pharmacyclics, Inc.)
could be taken up by atherosclerotic plaque and concentrated
within macrophages and vascular smooth muscle cells (81).
This leads to an effort to develop a motexafin lutetium-medi-
ated endovascular photoangioplastic modality for the manage-
ment of cardiovascular diseases such as intimal hyperplasia,
and atherosclerosis or vulnerable plaque, and prevention of re-
stenosis.  Several Phase I trials suggest a future role for the
treatment of flow-limiting coronary atherosclerosis or vulner-
able plaque while sparing normal, surrounding vascular tis-
sues (82, 83).  A recent animal study suggests that PDT may
be beneficial in reducing intimal hyperplasia (84).  Miravant
Cardiovascular Inc., a subsidiary of Miravant Medical
Technologies, is also developing new photoensitizers for the
treatment of vascular graft intimal hyperplasia, atheroclerotic
vulnerable plaque and the prevention of restenosis.

Gastroenterological Cancer

In gastroenterology, endoscopically accessible premalignant
or malignant lesions located within the esophagus, the stom-
ach, the bile duct, or the colorectum with a high surgical risk
have become suitable targets of endoscopic PDT (85-88).
Photofrin-PDT has been approved for obstructing esophageal
cancer, early-stage esophageal cancer, and Barrett’s esopha-
gus in several countries.  PDT assisted with a longer diffuser
tip and the light centering balloon (e.g., Xcell PDT Balloon;
Wilson-Cook Medical Inc.) can treat large amounts of
esophageal mucosa in a single application.  It is suggested
that optimizing light dose and re-treating small areas of resid-
ual or untreated Barrett’s mucosa may reduce the post-PDT
stricture formation and improve the overall efficacy (89, 90).

Recent pilot studies have demonstrated that endoscopic
Photofrin-PDT is also effective in the palliative treatment of
hilar cholangiocarcinoma (91).  A Phase III trial compared
stenting plus PDT (n=20) with stenting alone (n=19) and
showed a prolongation of survival by almost a year in stent-
ing plus PDT group (92).  The most recent study of eight
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patients, who underwent 1-5 treatments, showed that median
survival from the date of the first PDT treatment was 276
days, whereas median survival times were 45 and 127 days
for bismuth type III and IV tumors treated with stenting
alone (93).  The five-year follow-up data of 23 patients
showed that median survival after treatment was 11.2
months for M0 patients and 9.3 months for all patients.  The
1-year, 2-year, 3-year, and 4-year survival rates were esti-
mated to be 47%, 21%, 11%, and 5%, respectively, for M0
patients and 39%, 17%, 9%, and 4%, respectively, for all
patients (94).  Preliminary results confirm that endoscopic
illumination of the biliary tract is safe and effective for inop-
erable cholangiocarcinoma and can improve cholestasis, per-
formance, and quality of life for an extended period.  Since
endoscopic PDT appears to be the first approach leading to
an improvement in prognosis, it should be offered to patients
with inoperable cholangiocarcinoma.  Preliminary studies
suggest that operative PDT might also improve survival for
those patients undergoing surgical resection (95, 96).

Due to advances in light applicators, the interstitial PDT is
now becoming a practical option for solid lesions, includ-
ing those in parenchymal organs such as the liver and pan-
creas (97).  A new approach has been developed based on
intratumoral placement of a LED array that may expand
the use of PDT to treat locally advanced refractory tumors.
An earlier pilot study utilized LED to activate photosensi-
tizer LS11 (NPe6, Light Sciences Corporation) for the
treatment of radiation-resistant or chemotherapy-resistant
or inoperable malignancies.  An overall observed tumor
response rate was 33% (19).  This leads to a Phase II trial
to treat colorectal liver metastases.

Pancreatic cancer is one of the leading causes of cancer deaths.
A more aggressive treatment capable of local destruction of
pancreatic cancer with low morbidity is needed.  Several ani-
mal experiments undertaken in the 1990s, on cancers trans-
planted into the hamster pancreas, were shown to produce
necrosis in the cancer and result in a significant increase in sur-
vival (98).  These preclinical studies lead to the first pilot study
of 16 patients by Bown et al. in UK.  The effectiveness of
Foscan-PDT on inoperable pancreatic cancer has been demon-
strated under dose levels of 20-40 J per site and a total of 40-
480 J per tumor.  The percutaneous interstitial protocol, of mul-
tiple diffuser fiber illumination, could produce 1.4 to 5.1 cm3

necrosis per fiber per site, which corresponds to 340%-40%
tumor volume.  Survival time ranges from 5 months (tumor
diameter prior to PDT=5 cm) to > 31 months (tumor diameter
prior to PDT=3.5 cm).  In most cases, the necrotic area of the
treated tumor healed safely without changing in size.  There
was no sign of a pseudocyst, abscess, or pancreatic duct leak.
These promising results justify larger trials to further assess the
feasibility and efficacy of PDT either as a single procedure or
in combination with chemotherapy and/or radiotherapy (99).

Urological Disease

Photofrin obtained its first regulatory approval for recur-
rent papillary tumors in Canada in 1993.  Intravenous
Photofrin administration followed by transurethrally
intravesical illumination became an option for patients with
refractory tumors.  The initial responses to a single treat-
ment of the whole bladder tend to be good, but side effects
such as bladder contraction and bladder irritation are
noticeable and the incidence of relapse within a year is rel-
atively high (70-80%) (100-102).  Since the side effects are
dose dependent, Nseyo suggests that by fractionating drug
and light doses in a sequential PDT mode might subside
cancerous cells and meanwhile reduce local toxicity (see
report by Gail McBride) (103).  Although Photofrin-PDT
has been suggested as a second line or immediate therapy
for Bacille Calmette-Guerin (BCG) or chemotherapy fail-
ures, it has not gained wide acceptance yet.

Bladder cancer tends to be a superficial condition, and for
this reason it is proposed that a superficial treatment mediat-
ed with ALA or its ester derivatives may be a preferable
means for local therapy.  Nonetheless, an advantage of the
intravesical instillation of photosensitizer is to eliminate
cutaneous phototoxicity.  Several clinical investigations
show that ALA-PDT is an effective treatment option for
patients with superficial bladder cancer who have failed
transurethral resection and/or intravesical BCG immunother-
apy (104, 105).  It has been shown that with repeated PDT
treatments, it is possible to further inhibit the progression of
the disease (106).  White light has been proven to be an
effective light source for ALA-PDT in destroying flat lesions
without causing major side effects (107).  However, some
clinicians are concerned that ALA-PDT can cause pain and
it would require some form of local anesthesia (108).

Prostate cancer is still a significant health problem mainly
due to its high incidence, mortality, and cost associated with
its diagnosis and treatment, and the lack of effective treat-
ment for advanced disease.  An attempt to develop an inter-
stitial Photofrin-PDT procedure was made in the early 1990s
(109).  In following years, several preclinical studies in
canine models demonstrated that, combined with interstitial
light applicators, PDT-mediated with newer photosentitizers
seems to have a great potential in the treatment of prostate
cancer (110).  Recent clinical trials of Foscan-PDT and
ALA-PDA on patients who had failed radiotherapy showed
a post-PDT decrease in prostate specific antigen (PSA) lev-
els (111, 112).  The preliminary results from two ongoing
clinical trials of motexafin lutetium-PDT and Tookad-PDT
designed to totally ablate the entire prostate gland are also
encouraging (113, 114).  The total ablation approach of inter-
stitial PDT involves the implantation of multiple diffuser
fibers into the prostate gland through a transperineal
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brachytherapy template under trans-rectal ultrasound guide.
It should be fully recognized that characterization of light
penetration and distribution in prostate PDT is important due
to the significant inter- and intra-prostatic differences in the
tissue optical properties.  Several recent studies suggest that
a real-time drug/light dosimetry measurement and feedback
systems for monitoring drug concentrations and light flu-
ences during interstitial PDT should be considered to ensure
that sufficient drug and light fluence are delivered to the
treatment area (115-118).  It is also important that the possi-
ble side effects of the interstitial PDT on adjacent structures
of the prostate gland be further investigated in order to pre-
serve prostate nerve and minimize adverse effect on sexual
and urinary functions in the process of total ablation (119).

In contrast to other photosensitizers currently being investi-
gated clinically for prostate cancer, a new photosensitizing
drug Pd-bacteriopheophorbide (Tookad, also known as
WST09; Negma Lerads/Steba Biotech) is believed to be
purely vascularly mediated.  The clearance of Tookad from
the circulation is very fast.  For interstitial prostate PDT this
has the significant practical advantage that the light may be
delivered during, or shortly after, photosentitizer administra-
tion to complete PDT as a single operative session in a short
period.  Another advantage of Tookad-PDT is its capability
of being activated at a relatively long wavelength (763 nm),
with corresponding greater light attenuation depth (∼ 4 mm)
in prostatic tissue, and therefore inducing much larger
prostate lesions than other photosensitizers (120-122).  This
supports the approach being used in current Phase I/II clini-
cal trials of Tookad-PDT for recurrent prostate cancer (114).

Benign prostatic hyperplasia (BPH) is a common condition of
aging males.  Transurethral PDT was proposed for BPH in the
1990s (123), but it was never fully explored.  There has been a
renewed interest in transurethral PDT in recent years and there
is an ongoing Phase I/II dose escalation study to assess the fea-
sibility of transurethral PDT with lemuteporfin (formerly
known as QLT0074; QLT Inc.) for the management of BPH.

Gynecological Cancer

Prior to and after Photofrin obtained regulatory approval in
Japan in 1994, it has been used successfully to treat carci-
noma in situ and dysplasia of the uterine cervix.  Several
Japanese studies have shown that colposcopic-assisted cer-
vical canal illumination after intravenous Photofrin admin-
istration can achieve a high CR (< 94%) (124).  Although
this modality is clinically useful for the treatment of early
cervical cancer to preserve fertility, it has not gained wide
acceptance in Western countries.

A modified protocol that combined topical administration of
Photofrin and superficial illumination demonstrated that CR

was light dose dependent for cervical intraepithelial neopla-
sia (CIN).  An average of 73% CR (n=11) was obtained at
light dose levels of 100-140 J/cm2 (125).  Several in vivo
studies have demonstrated selective absorption of ALA by
dysplastic cervical cells.  This led to the presumption that
ALA therefore represents a promising photosensitizing pro-
drug for the treatment of CIN with ALA-PDT.  However,
several randomized, double-blind, placebo-controlled clini-
cal trials showed that ALA-PDT was well tolerated by
patients but the general consensus is that ALA-PDT has min-
imal effect in the treatment of CIN 2 and CIN 3 (126-128).

Summary

Photodynamic therapy is a unique treatment modality in
which a systemically or locally administered photosensitizer
is activated locally by irradiating the lesion site with light of
a suitable wavelength and power through a specially
designed light applicator.  PDT offers various treatment
options in cancer management and has been used for local-
ized superficial or endoluminal malignant and premalignant
conditions.  Its application has also been recently expanded
to solid tumors.  The antitumor efficacy of PDT might be
enhanced through an effective immunoadjuvant to further
expand its usefulness for a possible control of distant metas-
tases (129).  The non-invasive or minimally invasive nature
of PDT also offers great promise in some non-malignant
conditions in dermatology, ophthalmology, and cardiology.
Although photodynamic diagnostics (PDD) is beyond the
scope of this article, it needs to be pointed out that compared
to X-ray, ultrasound, MRI, and other tomographic tech-
niques, contrasting and visualizing lesions by fluorescent
markers provide an innovative, non-invasive and safer imag-
ing technology.  Some of the fluorescent photosensitizers
(e.g., ALA) discussed in this article have shown a selective
absorption by malignant cells, and their fluorescent signals
can be a powerful tool for diagnostic purpose.  There is no
doubt that the duel function nature of these photosensitizers
will play an important role in future clinical photodynamics.
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