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Precise spike times carry information and are important for synaptic
plasticity. Synchronizing oscillations such as gamma bursts could
coordinate spike times, thus regulating information transmission in
the cortex. Oscillations are driven by inhibitory neurons and are
modulated by sensory stimuli and behavioral states. How their power
and frequency are regulated is an open question. Using a model
cortical circuit, we propose a regulatory mechanism that depends on
the activity balance of monosynaptic and disynaptic pathways to
inhibitory neurons: Monosynaptic input causes more powerful
oscillations whereas disynaptic input increases the frequency of
oscillations. The balance of stimulation to the two pathways mod-
ulates the overall distribution of spikes, with stronger disynaptic
stimulation (e.g., preferred stimuli inside visual receptive fields) pro-
ducing high firing rates and weak oscillations; in contrast, stronger
monosynaptic stimulation (e.g., suppressive contextual stimulation
from outside visual receptive fields) generates low firing rates and
strong oscillatory regulation of spike timing, as observed in alert
cortex processing complex natural stimuli. By accounting for other-
wise paradoxical experimental findings, our results demonstrate
how the frequency and power of oscillations, and hence spike times,
can be modulated by both sensory input and behavioral context,
with powerful oscillations signifying a cortical state under inhibitory
control in which spikes are sparse and spike timing is precise.

cerebral cortex | inhibitory interneurons | visual cortex model |
gamma oscillations

Individual neurons can precisely time their spikes when driven
by temporally fluctuating synaptic inputs (1). Narrowband

oscillations mediated by inhibitory neurons are thought to be a key
source of coordinated fluctuating discharges from input neurons,
and they vary in power and frequency during wakeful behavior and
sleep. Oscillations in the gamma range (30–80 Hz), thought to be
mediated by fast-spiking inhibitory neurons expressing the cal-
cium-binding protein parvalbumin (2, 3), are modulated by the
sensory environment (4–6), attention (7), and volition (8), as well
as by specific memory tasks, causing changes in sensory responses
(2) and information transfer (3) in the cortex. The modulation is
observed both in the oscillation power, which we define as the
peak of a distinct “bump” in the power spectrum of the local field
potential (LFP), as well as the oscillation frequency, which is the
frequency at this peak in the power spectrum (5, 6). In current
models of oscillations in neuronal networks, oscillations are regu-
lated by stimulation of inhibitory neurons such that increasing
stimulation mainly increases their frequency (9–11) or power (12). In
the visual cortex, both the contrast and size of visual stimuli increase
the stimulation to local inhibitory neurons (13, 14), but the former
increases the frequency of gamma-range oscillations (6), and the
latter decreases it (5). The power of gamma oscillations increases in
the somatosensory, medial temporal (15), motor (8), olfactory (16),
and primary visual cortex (5) with increased stimulation to local
inhibitory neurons. However, the peak power of oscillations
decreases with increased stimulation of inhibitory neurons with at-
tention (17) in some cortical areas (7). In a third scenario, whereas
the broadband power in the LFP signal increases with increasing
visual contrast (6, 18), peak narrowband power shows no significant

trend in response to increasing contrast (8), which is thought to in-
crease the stimulation to the local inhibitory neurons (13).
We show that these diverse experimental observations can be

explained by the following hypothesis: The balance of two distinct
pathways that activate local inhibitory neurons mediates bi-
directional regulation of oscillations (Fig. 1A). We classify these
pathways as monosynaptic (MS), those that make direct excit-
atory synaptic connections to the inhibitory neurons, and disy-
naptic (DS), those that act through the local excitatory neurons.

Results
To test the hypothesis, we simulated a network of 800 excitatory
and 200 inhibitory neurons with all-to-all connections (Fig. 1A).
Individual neurons spiked stochastically with a probability de-
termined by the integrated input from external sources and from
other neurons in the network. Although stochastic spiking elimi-
nated the potential for intrinsic oscillations in individual neurons,
it allowed us to observe their spike trains in relation to the oscil-
lating network. In addition to their synaptic action, the two types
of neurons differed in how they responded to their integrated
input, mimicking the excitatory pyramidal and inhibitory fast-
spiking neurons that form the primary gamma-generating circuit
in the cortex. To observe purely emergent fluctuations in the
network, external excitation to the network was kept fixed in time.

Relative Strength of MS and DS Stimulation Determines the Power
and Frequency of Oscillations. In response to sufficient stimulation
of both the MS and DS pathways to inhibitory neurons, the
fluctuations in the total spike rate of the network model showed
robust narrowband oscillations (Fig. 1 A and B). As expected,
individual neurons spiked irregularly, showing only a weak bias
in their preferred spiking phase with respect to an oscillation
cycle (Fig. S1). Oscillation frequency range in such a network
depends on the strength of excitatory and inhibitory connections
(19), and the network for the data shown here was tuned to
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oscillate in the 30- to 80-Hz range. The power of oscillations was
modulated by each stimulation pathway, but in opposite direc-
tions: It increased with increasing stimulation of the MS pathway
and decreased with that of the DS one (Fig. 1 B and C). When
the power of network oscillations increased, it was accompanied
by a small but increased bias in the preferred phase of spiking for
individual neurons (Fig. S1). The power of oscillations could be
modulated bidirectionally over a range of external stimulation
strengths (Fig. 1D), although the precise range was sensitive to
the response properties of the two types of neurons (Methods). In
addition, each pathway modulated the oscillation frequency, also
in opposite directions: It decreased with increasing stimulation of
the MS pathway and increased with that of the DS one (Fig. 1 B–
D). When the pathways were comodulated, bidirectional control
of both power and frequency was determined by the balance—
both in its extent and direction of change—of stimulation to
the two pathways; the repertoire of the model’s behavior con-
sisted of power-only (constant frequency lines in Fig. 1D) and
frequency-only (constant power lines in Fig. 1D) as well as power-
and-frequency modulations. In general, an increase in the ratio of
MS-to-DS stimulation strengths resulted in more powerful but
slower oscillations, and vice versa (Fig. 1E). Recent experiments
suggest that slower gamma-range oscillations are induced by the
recruitment of a spatially extended neural population (5, 20), an
observation at odds with experimental evidence emphasizing the
local nature of these oscillations (6, 21); our network demon-
strates how a spatially limited neural population can generate both
fast and slow oscillations.

Average Firing Rate Is Proportional to the Ratio of MS and DS
Stimulation. Irregularity in the spiking of cortical neurons has
been attributed to a balanced operating regime (22) wherein the
net excitation and inhibition to an individual neuron varies in
tandem. To characterize the operating regime of our network

when driven by external input, we determined the mean excit-
atory and inhibitory spike rates for the entire range of MS and
DS inputs that allowed bidirectional modulation of oscillations.
When MS stimulation was increased, although the peaks of the
fluctuating spike rates changed little (Fig. 1B), the mean spike
rate for both excitatory and inhibitory population was reduced
(Fig. 2A). However, when DS stimulation was increased, the
mean spike rate for all the subpopulations went up. The extent of
reduction or increase in the mean spike rates depended on the
strength of the MS and DS pathways, respectively (Fig. 2B).
Modulations of the excitatory and inhibitory spike rates had
different sensitivities, but they were qualitatively similar (i.e.,
bidirectional across the entire range of stimulation strengths over
which the network showed bidirectional regulation of oscillations).
When the pathways were comodulated, change in mean spike rate
was determined by the extent and direction of change in the
balance of the stimulation to the two pathways (Fig. 2C).

Modulation of Oscillations Is Correlated with the Average Firing Rate
of the Neuronal Population. The previous results demonstrated a
regime of oscillatory regulation wherein increase in oscillation
power is correlated with the reduction in average output spiking in
the network, even for the inhibitory neurons (Fig. 3A): The larger
the reduction of spike rate, the greater the increase in oscillatory
power. Multiple studies of oscillations in the brain show a similar
trend: stronger narrowband oscillations accompanied by sparser
spiking activity (Fig. 3B, but see ref. 7), such as gamma-range
oscillations in the medial temporal (15) and the primary visual
cortices (5). In the motor cortex, which controls voluntary move-
ment, amplification of gamma-range power through behavioral
conditioning co-occurs with a weak reduction in local spike rates (8).
The results also demonstrated a regime of oscillatory regulation

wherein the oscillation frequency is correlated with the output
generated by the network, rather than the input to the inhibitory
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Fig. 1. Relative strength of MS and DS stimulation
to inhibitory neurons determines the power and fre-
quency of oscillations in spiking activity. (A) Schematic
of local network and the monosynaptic (solid black)
and disynaptic (dotted black) pathways for stimulating
the local inhibitory neurons. The model network ar-
chitecture featured both excitatory (E) and inhibitory
(I) neurons, with recurrent connections between and
within E and I populations. (B) Example evolution of
population oscillatory activity (thick traces in green
palette) from baseline (1) by increasing stimulation to
MS (2) and DS (3) pathways in a model network
oscillating in the gamma range (30–80Hz). The data
shown are for first 200 ms of an example trial. The
relative strengths of individual pathways are in-
dicated at the top of each panel. Raster plots show
the spike times of all inhibitory (inside rectangle) and
excitatory neurons. (C) Power spectrum of average
population activity for the three cases shown in B
(mean across 10 trials of 2-s duration). Dotted lines
indicate the peak power and corresponding fre-
quency of narrowband oscillations. (D) Variation in
peak power and frequency of narrowband oscil-
lations with the strength of MS and DS stimulation of
inhibitory neurons. The stimulation strengths are
normalized to the range of interest. (E) Modulation
of peak power and frequency of oscillations with the
relative strength of MS-to-DS stimulation. The power
and frequency data were normalized to the range of
values shown in D. The MS-to-DS stimulation ratios
were calculated from the absolute values of the two
inputs used in the simulation experiments.
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neurons (Fig. 3A). The awake cortex indeed demonstrates such
correlations: Peak frequency of gamma-range oscillations increases
or decreases with a concomitant increase or decrease in the mean
spike rate, respectively, in response to changes in sensory in-
formation (5, 6) or attention (6) (Fig. 3B).

Contrast-Dependent Modulation of Gamma Frequency and Local
Network Activity. To corroborate these observations and also as-
say the effect of novel changes in the sensory environment on
oscillation frequency, we simulated our network as a local neu-
ronal network in the primary visual cortex (V1) with the following
assumptions (Fig. 4A):

i) Visual stimuli in the classical receptive field (center)—the
part of visual space that elicits maximal spikes at a V1 re-

cording site when appropriately stimulated—strongly excite
the DS pathway to the local inhibitory neurons; and

ii) Stimuli outside the classical receptive field (surround) strongly
excite the MS pathway.

Assuming uniform selectivity of all the neurons for features of
the visual input such as orientation, spatial frequency, and position
in space, the input to the model V1 network was the visual contrast
of a stimulus of fixed orientation (one preferred by the center) and
fixed size. We increased the contrast of this visual input in three
ways: (i) increase the contrast of the entire stimulus uniformly, (ii)
increase the contrast of only the surround stimulus, with a fixed
contrast at the center, and (iii) increase the contrast of the center
stimulus to a lesser extent than that of the surround stimulus (Fig.
4B). In each case, the local V1 network showed oscillations in spike
rates that were differently modulated by each contrast enhance-
ment scenario. In the first case, frequency of oscillations increased
with contrast (Fig. 4C). For the second case, the oscillations got
slower as the contrast of visual stimulus increased. In the third case,
the oscillation frequency remained unchanged when the contrast of
visual stimulus increased. In all cases, the mean spike rate of the
network changed in the general direction of change of the oscil-
lation frequency. The predictions for only the first scenario of
contrast modulation have experimental confirmation (6); the

IE

MSDS

 I spikes/s

E spikes/s

0 1
0

1

 

 
2013

M
S

 s
tim

.

DS stim.

4530
E spikes/s  I spikes/s

40 64
All spikes/s

 

 

50 ms

DS
MS

All spikes/s

10 sp/s

baseline

B

C

A

0.6 1.2

0

1

S
pi

ke
s/

s 
(n

or
m

.)

MS-to-DS stim. ratio
0.6 1.2

0

1

0.6 1.2

0

1

Fig. 2. The average firing rate is proportional to the ratio of MS-to-DS
stimulation of inhibitory neurons. (A) Schematic on top left illustrates the MS
and DS excitatory pathways to the inhibitory neurons in the network. The
height of rectangles indicates the relative strength of stimulation to each
pathway with respect to baseline. For the three cases indicated here, solid lines
show the mean spike rate (spikes per second, calculated over 2 s of simulation)
for the entire network (green), excitatory subpopulation (red), and inhibitory
subpopulation (blue), with respect to baseline. Light-colored traces in the
background show sample fluctuation of population spike rate for a trial of
each scenario. (B) Heat plots of average spike rates as a function of the
strength of MS and DS stimulation to inhibitory neurons. The mean activity
was calculated by averaging over a 2-s trial. The data in the panel are average
over 10 trials. (C) Modulation of mean spike rate of the network with the ratio
of MS-to-DS stimulation. The spike rates for the total population (green) and
the subpopulations (red and blue) were normalized to their respective ranges
shown in B. The MS-to-DS stimulation ratios were calculated from the absolute
values of the two inputs used in the simulation experiments.

A B

V1

MT

50 ms

10 sp/s

baseline

spikes/s

E
xp

er
im

en
ts

M
od

el

sp
ik

es
/s

 (
no

rm
.)

 

0

1

0

4

0 4
Stimulus size (deg)

50

%

spikes/s 

-50 0

30

60

Excitatory

Excitatory

0 0.5 1

0

0.5

1

P
ow

er
 (

no
rm

.)

0 0.5 1
0

0.5

1

F
re

qu
en

cy
 (

no
rm

.)

spikes/s (norm.)

Inhibitory

Inhibitory

power

re
wo

p 

power

All

frequency

fr
eq

ue
nc

y 
(H

z)

All

Fig. 3. Modulation of narrowband oscillations is correlated with the aver-
age spiking activity of the neuronal population. (A) Scatter plot of power
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Frequency data were not available.
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model provides experimentally testable predictions for the other
contrast modulation scenarios (SI Notes: Predictions for Contrast
Enhancement on Gamma-Range Frequency in Visual Cortex).

Discussion
Oscillations are a signature of cortical information processing and
their regulation is a reflection of the resulting neuronal code.
Gamma-range oscillations recorded in vivo are modulated not only
by the salience of the sensory input (6), but also by contextual in-
formation in the environment as well as internal brain state (5) and
by volitional control (8). This suggests that the oscillations reflect the
integration of bottom-up, lateral, and top-down information. A
specific implication of this, for example, is that oscillation frequency
in the sensory cortices will depend not only on the stimulus prop-
erties (6), but also on the sensory and behavioral context. The ex-
ploration shown here (Fig. 4) is a simpler version of such scenarios
and illustrates the following point: Increasing just one aspect of
sensory information (visual contrast in this case) can have a variety
of effects on the oscillation frequency in a context-dependent way.
Population oscillations also narrow the spike times of individual

neurons to specific phases in their cycle and improve spike synchrony
(4, 8). Spikes are sparse and more precisely timed in our network
when oscillations are more powerful (Fig. 3 and Fig. S1). In
recordings from primary visual cortex, sparse and precisely timed
spikes occur when wide-field dynamical natural movie stimuli are
shown, but the spiking is more frequent and spike timing less precise
when the same movie is restricted to the classical receptive field of

a neuron (23). Thus, the same framework we propose for oscillatory
regulation could address the regulation of spike synchrony, one of
the coding strategies used in cortical function.
Normalization, a type of rescaling of neuronal spike rates, is

considered a canonical computation in brain function and is im-
plicated in several aspects of efficient neuronal coding (24), such
as sparse representation of rich bottom-up sensory information
(25, 26). Reduction in excitatory spiking by direct stimulation of
local inhibitory neurons is one of the proposed neural mechanisms
of this computation. A hallmark of this mechanism in the cortex is
the paradoxical reduction in spiking of the inhibitory population
(27), potentially those of the fast-spiking parvalbumin+ basket
cells (28). In addition, electrophysiological recordings from several
cortical areas show that normalizing sensory stimulation protocols
that cause sparse spiking also results in more powerful oscillations
(5, 15). Our work is the first demonstration to our knowledge of all
three empirical observations within a single framework—sparse
spiking of excitatory population, reduced spiking of inhibitory
population, and more powerful network oscillations (Fig. 3 and
Fig. S3)—in response to direct stimulation of the inhibitory pop-
ulation; it also provides the network mechanism that underlies
these phenomena. Our work, along with electrophysiological data,
suggests that power in oscillations codes the strength of normali-
zation and powerful oscillations signify a sparse representation re-
gime. Functional implications of such oscillations in the context of
current theories of the role of normalization in information pro-
cessing (25) need further investigation. Importantly, the predictions
here pertain to regulation of cortical oscillations in general, and
not specifically to gamma-range oscillations; the frequency in our
model is strongly tied to the local connection strengths (19, 29),
which can vary greatly between brain areas, causing oscillations with
the same underlying mechanism but in different frequency bands.
Indeed, experiments in the primary olfactory cortex show sparse
neuronal responses, co-occurring with strong beta-range (20–30 Hz)
oscillations during odor coding (16). Given the relatively sparse
responses in motor cortex during volitional amplification of
gamma-range synchrony, our work predicts that the amplifica-
tion is mediated by a top-down normalizing pathway (8).
Our study offers a mechanism for the effect of attention on

oscillation frequency and power in some cortical areas. Both spike
rates and gamma-range oscillation frequency increase (6), whereas
oscillation power decreases (7) in the primary visual cortex when
attention is directed to sensory stimuli. Because such comodula-
tion of firing rates, oscillation power, and oscillation frequency is
also demonstrated by our network (Fig. 3A), it suggests that either
an effective increase in the disynaptic input or an effective de-
crease in the monosynaptic one could mediate attention in such
areas (Fig. 1D), the former being implicated by recent experi-
mental data (30). In other cortical areas, such as visual area V4,
a qualitatively different effect of attention on oscillation power in
the same frequency range could be explained by fundamental
differences between areas in terms of how attention is mediated
(31) or the regulatory mechanism of oscillations itself.
Detectable stimulus-induced oscillations appear with a delay

(∼100 ms) in multiple cortical areas (5–7, 15). The experimental
protocols in these studies involve simultaneous presentation of
preferred and contextual stimuli that are necessary to induce
oscillations. Our study proposes a simple relationship between the
experimental protocol and latency of oscillations. Recurrent or
top-down information flow in the cortex typically has longer latency
than the feed-forward or bottom-up flow. If such information also
happens to drive theMSpathwaymore effectively in the cortex, our
network predicts a delay in powerful oscillations (Fig. 5). Indeed, in
multiple cortical areas, contextual information can activate both
recurrent and top-down pathways. The action is thought to be
mediated byMS pathways to inhibitory neurons and is essential for
observing powerful yet delayed oscillations (5, 6). The delay is
comparable to the time it takes the local spiking activity to evolve in
response to the additional contextual information (32). Our model
predicts that when the contextual information is presented earlier,
powerful oscillations should be detected earlier (Fig. 5). Because

Center contrast

S
ur

r.
 c

on
tr

as
t  

20%

100%

SurroundCenter

20% 100%

−5

0

5

∆F
re

qu
en

cy
 (H

z)
 

−20

−10

0

10

∆ s
pi

ke
s/

s 
(%

) 

-

-

-

C

B

A

visual stimulus

Fig. 4. Visual contrast-dependent modulation of gamma frequency and
network activity in a model of the local network in the primary visual cortex
(V1). (A) The schematic indicates the model assumptions for contribution
(indicated by thickness of lines) of the visual contrast of different parts of
a stimulus to the MS (solid) and DS (dotted) pathways to local inhibitory
neurons in the V1. Red circle denotes boundary of the classical receptive field
(visual space whose stimulation causes strongest spiking at a site in V1 tissue)
of a V1 site. The cell labels PC (excitatory pyramidal cells) and FS (inhibitory
fast spiking basket cells) denote cell types in the cortex with strong feedback
connectivity and a role in gamma frequency oscillations (9, 10). They were
implemented in the model as cells with different maximum spike rates. The
model was tuned for gamma-range (30–100 Hz) oscillations. Visual contrast
values were translated to MS and DS stimulation strengths using a linear
transformation (Methods and Fig. S2). (B) Three types of contrast modulation
of visual input were tested in the model: (i) uniform contrast modulation of
the entire stimulus (circle), (ii) contrast modulation of surround only (star),
and (iii) contrast modulation of the entire stimulus, but with center contrast
increasing gradually compared to the surround (square). (C) Summary of
oscillatory and average network activity in response to center and surround
contrast modulation in the model. The panels show gamma-frequency and
ratemodulation for the scenarios described in B. The results show an increase,
decrease, or no change in gamma frequency in response to increasing visual
contrast depending on how it changes in different parts of the visual field.

Jadi and Sejnowski PNAS | May 6, 2014 | vol. 111 | no. 18 | 6783

N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405300111/-/DCSupplemental/pnas.201405300SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405300111/-/DCSupplemental/pnas.201405300SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405300111/-/DCSupplemental/pnas.201405300SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405300111/-/DCSupplemental/pnas.201405300SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405300111/-/DCSupplemental/pnas.201405300SI.pdf?targetid=nameddest=SF2


the natural sensory environment consists of rich contextual in-
formation at all times, earlier oscillations are more likely in such
sensory experiences than in commonly used experimental proto-
cols. Given that perception can take up to 150 ms after stimulus
presentation (33), earlier emergence of oscillations could imply
a functional role; the temporal order of sensory information could
thus influence perception and other brain functions through its
effect on narrowband oscillations (34).
Oscillations such as those in our model network arise from the

interaction of local excitatory and inhibitory neural population,
a mechanism referred to as PING (Pyramidal-Inhibitory neuron-
Network-Gamma) (35). Although multiple phenomena may un-
derlie the PING architecture itself (29), the noisy oscillations in our
model are based on the phenomenon of limit cycles in an unstable
regime of an inhibition-stabilized network (27). Elsewhere, we have
used a rate model to further analyze the basis of the observed
behavior in our spiking model from a dynamical systems perspec-
tive (36). An alternatemodel of narrowband increase in LFP power
is based on quasi-cycles, which involve noise amplification of
damped oscillations in the stable regime of the network (18, 29, 37,
38) andmerits further investigation in the context of recent data on
visual gamma. Predictions from multiple models such as those
discussed in this study will be helpful in driving the next round of
experiments on stimulus-induced oscillations.
Models of gamma oscillations based on synaptic delays (12)

might not be ideal candidates for sensory areas given the evidence
for highly localized circuitry involved in gamma generation (6):
rapidly changing oscillation frequency following dynamic stimuli
and different oscillation frequencies at nearby cortical sites. A
model based on single neuron oscillations (39, 40) conflicts with the
weak evidence for oscillations in neuronal spiking in pyramidal
neurons (PN) (41) and mixed evidence for both regular and
irregular spiking in inhibitory neurons (IN) (42). Although our

model does not involve INs behaving as neuronal oscillators,
given the much smaller proportion of INs in the cortex, it does
suggest INs skipping fewer cycles of the network oscillations
compared with the PNs. The fact that INs involved in the oscillations
in our model, as well as in vivo (2, 3), fire at a higher rate than PNs
could also explain the differential evidence for regularity of spiking
of the two types of neurons during gamma. What we propose here
was constrained primarily by stimulus-induced gamma as recorded
in the visual cortex of primates. Gamma oscillations observed in
different brain areas, in different species, and under different ex-
perimental conditions—in vivo vs. in vitro or stimulus-induced vs.
pharmacologically induced—might not involve the same un-
derlying phenomena. For example, it is possible that pharmaco-
logically induced gamma in a slice recruits a different mechanism
and is a different phenomenon than what is responsible for in-
creased power in the LFP in the intact network in response to
a sensory stimulus.
In conclusion, the regulatory mechanism explored in this study

explains a wide range of data on the regulation of oscillations in
the alert cortex interacting with the sensory world. It emphasizes
the importance of contextual information, both sensory and be-
havioral, in addition to the signals that drive the classical re-
ceptive fields, in shaping these oscillations.

Methods
Network Description. A network of NE excitatory and NI inhibitory neurons
was set up with connectivity depending only on the cell type. The synaptic
weights between neuron types were as follows:

E-to-E: wEE =WEE
NE

I-to-E: wEI =WEI
NI

E-to-I: wIE =WIE
NE

I-to-I: wII =WII
NI

In a model cortical network made up of stochastic spiking neurons, we
simulated NE = 800 excitatory and NI = 200 inhibitory neurons. In the sim-
ulations shown here, WEE = 16, WEI = 26, WIE = 20, andWII = 1. Although the
connectivity for the results shown here was all-to-all, detailed treatment of
general robustness of oscillations to a sparser connectivity pattern can be
found elsewhere (29).

Stochastic Spiking Neurons. Individual neurons in the network were treated as
coupled, continuous-time, two-state (active and quiescent) Markov processes
(29) (SI Methods). The active state modeled a neuron’s initiation of a spike
followed by a refractory period, whereas the quiescent state modeled the
neuron at rest. For the data shown here, the probability of excitatory and
inhibitory neurons to transition to active state depended on the neuronal
response functions described in Eq. 1:

GEðxÞ=
8<
:

0
mEðx − θEÞ
1

 for x < θE
 for θE < x < θE + 1=mE

 for x > θE + 1=mE

GIðxÞ=
8<
:

0
mIðx − θIÞ3
1

 for x < θI

 for GI > 1:

[1]

In Eq. 1, x is the integrated synaptic input to a neuron. This includes input
from other neurons in the network as well as external input (see SI Methods
for details). The external input is the disynaptic pathway in case of excitatory
neurons and monosynaptic pathway in case of inhibitory neurons (Fig. 1A).
Also in Eq. 1, mE = 0.25, mI = 0.005, θE = 1, and θI = 12. The results were
qualitatively unchanged when the network was simulated with different
sensitivitiesmE andmI for these response functions. The range of inputs over
which the network showed bidirectional modulation of power and fre-
quency varied with the choice of response functions.

Simulation Environment. Network simulations, data analysis, and visualization
were done in the MATLAB 2012a (The MathWorks) environment. An event-
driven method was used for all simulations of the master equation (29). The
simulation software was based on modification of a previously published
method (29).
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Fig. 5. Relative timing of DS and MS stimulation of inhibitory neurons
determines onset of strong oscillations. (A and B) The top row indicates latency
of MS stimulation relative to DS stimulation to the inhibitory neurons in the
network. Light blue bar highlights the temporal offset between the two
pathways. Colored traces show the fluctuations in population firing rates for
an example trial (red, excitatory; blue, inhibitory; green, all). Horizontal arrows
indicate the steady state average population activity before (left) and after
(right) the onset of monosynaptic stimulation. Time-frequency plots below
show spectral contents of the overall population activity for the example trial.
Vertical lines mark the onset of DS stimulation. Black vertical arrows indicate
the approximate onset of narrowband increase in power. Early activation of
MS pathway resulted in earlier onset of powerful oscillations.
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Data Analysis. The average activity was calculated from the simulation data by
counting spikes in time bins of width 1 ms and convolving with a Gaussian of
width 5 ms. The power spectrum of the average activity signal was calculated
after removing the mean. The average power spectrum was estimated by
taking a mean of power spectrum for 10 runs.

Data Visualization. The heat plots in Figs. 1D and 2B were visualized by linear
interpolation for better visualization of the global trends in the simulation data.

Mapping Visual Contrast to MS and DS Drives. For simulation of the local E-I
network in the primary visual cortex (Fig. 4), we mapped the effect of
stimulus contrast on the drive to the MS and DS pathways as follows:

MS stim=
0:01C + :3S

160
+ 0:4

DS stim=
1:5C + :01S

200
+ 0:05,

where C and S were the visual contrast (in percentage) of the stimulus in the
classical receptive field and surround, respectively.
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