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USUAL STIFFENING PRACTICES

• Most vibration analysts are familiar with methods of how to increase or 
decrease machine or structural stiffness in the horizontal, vertical, or axial 
directions.

• Typical methods include adding braces, gussets, etc to increase a machine’s 
stiffness in the direction and at the location(s) where vibration is excessive.

• Many times these stiffness changes are performed to modify a machine or 
structure’s natural frequency in an attempt to avoid a destructive 
resonance problem.

• Many of these stiffening techniques are self-evident when performed to 
reduce vibration in the radial or axial directions, but what do we do when 
our machine or structure’s vibration isn’t in any of these directions but 
instead is in the twisting or torsional direction?



TORSIONAL OR TWISTING VIBRATION

• So what do we mean when we speak of torsional or twisting 
vibration?

• Torsional shaft vibration is not the topic of this discussion.  We are 
discussing torsional or twisting vibration of the entire machine, base, 
or structure.

• It essentially means vibration seen as rotation about an axis along a 
machine or structure.

• How do we go about stiffening against this sort of twisting vibration?



TWO EXAMPLES OF TWISTING VIBRATION

Vertical Agitator
Twisting vibration occurring at 1x rpm motor 
(1,790 cpm) about the Z axis (vertical).

Roll Drive Motor
Twisting vibration occurring at 2x rpm motor 
(~ 3,200 cpm) about the Z axis (vertical).
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TORSIONAL SPRING CONSTANT (STIFFNESS)

• Just like the linear springs most of us are familiar with, there are 
torsional springs we use in things like clocks, clothes pins, vehicle 
suspensions, door hinges, and many other applications.

• Increasing a structure’s torsional stiffness will usually involve 
increasing a quality known as its polar moment of inertia or J.

• The polar moment of inertia (J) is often thought of as a measure of a 
structure’s or object’s resistance to twisting.

• Object’s or structure’s with high polar moment of inertia will have 
high resistance to twisting and high torsional stiffness.



LINEAR & TORSIONAL VIBRATING SYSTEMS

Formulas for the natural 
frequency & period of a simple, 
single degree of freedom, linear 
vibrating system.  Linear 
stiffness “k”.

Formulas for the natural frequency 
& period of a simple, single degree 
of freedom, torsional vibrating 
system (torsional pendulum).  
Torsional stiffness G*J/L.

Source:  “Mechanical Engineering Reference Manual”, Lindeburg, Michael R., 
1998, Professional Publications

Shear Modulus
(“Material Stiffness”)

Polar Moment Of Inertia
(“Geometric Stiffness”)

LINEAR SPRING

TORSIONAL SPRING



FORMULAS FOR POLAR MOMENT OF INTERTIA (J)
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The common conclusion from all four of these shapes is that in general the bigger 
their diameter or size the higher their torsional stiffness will be.  In the case of the 
hollow beams, it is also true that the greater the thickness, the higher the torsional 
stiffness, but to a lesser degree.

So as the diameter (d) of the beam increases, its 
polar moment of inertia increases as does its 
torsional stiffness. 

So as either the base (b) or the height (h) of the 
beam increases, its polar moment of inertia 
increases as does its torsional stiffness. 



POLAR MOMENT OF INERTIA COMPARISON (SIMILARLY SIZED SHAPES)

• A solid circular beam of 8” diameter:  Polar Moment Of Inertia (centroid), J = 402 𝑖𝑛4.

• A hollow circular tube of 8” outer diameter and 6” inner diameter (1” wall):  J = 275 𝑖𝑛4

• A hollow circular tube of 8” outer diameter and 7” inner diameter (0.5” wall):  J = 166 𝑖𝑛4

• An 8” solid square beam:  J = 683 𝑖𝑛4

• A square tube of 8” outer and 6” inner dimensions (1” wall):  J = 467 𝑖𝑛4

• A square tube of 8” outer and 7” inner dimensions (0.5” wall):  J = 283 𝑖𝑛4

• A channel with an 8” web, 8” flange & 1” wall:  J = 375 𝑖𝑛4

• An 8” x 8” angle with 1” wall:  J = 258 𝑖𝑛4

• An I-beam (W) with a 8” web, 8” flange & 1” wall:  J = 385 𝑖𝑛4

So the morale of this story is that geometry matters. The geometry of both the solid and hollow square 
beams offer very high torsional stiffness for their size.  The solid and hollow circular beams offer good 
torsional stiffness as well.  The worst geometries for torsional stiffness were the channel, angle, and I-beams.



RULES OF THUMB
Good “rules of thumb” when looking for ways to effectively stiffen a machine or structure:

1) Work with the OEM if at all possible.  A solution to your problem may already be 
known and implemented somewhere else.  They also might have resources like 
structural engineers that can make solving your problem much easier.  

2) Try to connect or attach points of high deflection to points of low deflection.

3) Make sure the new “attachments” (bracing, gussets, etc) offer above average strength 
in the direction the vibration is dominant (ie:  if you’re dealing with horizontal 
vibration, ensure that any bracing or gussets are attached either in the horizontal 
direction or as close to it as you can get).

4) For torsional or twisting vibration problems, try moving towards a square or circular 
structure if possible.  Eliminate any voids that might exist along the structure or install 
bolted metal doors instead of plastic ones.  If possible connect discrete columns 
together into a much larger continuous support.  If possible, shorten the structure’s 
height.  Avoid channels or I-beam structures.  If you have channel or I-beam 
structures, try “boxing them in” by welding plate between the flanges.  Beware of the 
torsional “weak link” along a structure or machine (voids, couplings, etc); this weak 
point will dictate the torsional stiffness of the whole. 


