Mastering Chemistry With Ravi Arora

aily Practice Problems

Chapter-wise Sheets

Date :		Start Time :		End Time :	
--------	--	--------------	--	------------	--

CHEMISTRY (CC18)

SYLLABUS: Chemical Kinetics

Max. Marks: 180 Marking Scheme: + 4 for correct & (-1) for incorrect Time: 60 min.

INSTRUCTIONS: This Daily Practice Problem Sheet contains 45 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- 1. The decomposition of a substance follows first order kinetics. Its concentration is reduced to 1/8th of its initial value in 24 minutes. The rate constant of the decomposition process is

 - (a) $1/24 \,\mathrm{min^{-1}}$ (b) $\frac{0.692}{24} \,\mathrm{min^{-1}}$
 - (c) $\frac{2.303}{24} \log \left(\frac{1}{8}\right) \min^{-1}$ (d) $\frac{2.303}{24} \log \left(\frac{8}{1}\right) \min^{-1}$
- Consider the reaction, $2A+B \rightarrow products$. When concentration of B alone was doubled, the half-life did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is
 - (a) s^{-1}
- (b) $L \text{ mol}^{-1} \text{ s}^{-1}$
- (c) no unit
- (d) $\text{mol } L^{-1} s^{-1}$.
- A reaction involving two different reactants can never be
 - (a) bimolecular reaction (b) second order reaction
- (c) first order reaction
- (d) unimolecular reaction
- 4. Select the rate law that corresponds to the data shown for

the following reaction $A+B \longrightarrow C$

Expt. No.	(A) (B)	Initial Rate	
1	0.012	0.035	0.10

- 0.070 0.80 0.024 0.024 0.035 0.10 0.070 0.80
- (a) Rate = $k[B]^3$
- (b) Rate = $k [B]^4$
- (c) Rate = $k[A][B]^3$
- (d) Rate = $k [A]^2 [B]^2$
- Consider the reaction

$$N_2(g) + 3H_2(g) \rightarrow 2 NH_3(g)$$

The equality relationship between $\frac{d[NH_3]}{dt}$ and $-\frac{d[H_2]}{dt}$ is

(a)
$$+\frac{d[NH_3]}{dt} = -\frac{2}{3}\frac{d[H_2]}{dt}$$
 (b) $+\frac{d[NH_3]}{dt} = -\frac{3}{2}\frac{d[H_2]}{dt}$

b)
$$+\frac{d[NH_3]}{dt} = -\frac{3}{2}\frac{d[H_2]}{dt}$$

(c)
$$\frac{d[NH_3]}{dt} = -\frac{d[H_2]}{dt}$$
 (d) $\frac{d[NH_3]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt}$

(d)
$$\frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$$

Diazonium salt decomposes as

$$C_6H_5N_2^+Cl^- \to C_6H_5Cl + N_2$$

At 0°C, the evolution of N₂ becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is

- (a) a first order reaction
- (b) a second order reaction
- (c) independent of the initial concentration of the salt
- (d) a zero order reaction

RESPONSE GRID

- 1. (a)(b)(c)(d) 6. (a)(b)(c)(d)
- 2. (a)(b)(c)(d)
- 3. (a)b)c)d) 4. (a)b)c)d)

5. (a) (b) (c) (d)

- Space for Rough Work -

Mastering Chemistry With Ravi Arora						
c-7	0		——————————————————————————————————————			
7.	$CHCl_3 + Cl_2 \longrightarrow CCl_4 + HCl$ Rate law for above reaction will be	13.	Consider a reaction $aG + bH \rightarrow$ Products. When concentration of both the reactants G and H is doubled, the rate increases by eight times. However, when concentration			
	Rate = $k[CHCl_3][Cl_2]^{\frac{1}{2}}$		of G is doubled keeping the concentration of H fixed, the rate is doubled. The overall order of the reaction is			
	On the basis of information provided which of the following option will be correct?	14.	(a) 0 (b) 1 (c) 2 (d) 3			
	(a) Rate law for any chemical reaction can be predicted accurately by looking at balanced chemical equation.	17.	of A changes from 0.1 M to 0.025 M in 40 minutes. The rate of reaction when the concentration of A is 0.01 M is:			
	(b) Rate law for a chemical reaction has to determine experimentally.(c) Either determined experimentally or obtained from		(a) 1.73×10^{-5} M/min (b) 3.47×10^{-4} M/min (c) 3.47×10^{-5} M/min (d) 1.73×10^{-4} M/min			
	balanced chemical reaction, rate law will be same. (d) None of the above is correct.	15.	The given reaction $2\text{FeCl}_3 + \text{SnCl}_2 \longrightarrow 2\text{FeCl}_2 + \text{SnCl}_4$			
8.	Which of the following statements is incorrect?		is an example of			
	(a) Activation energy for the forward reaction equals to activation energy for the reverse reaction		(a) first order reaction(b) second order reaction(c) third order reaction(d) None of these			
	(b) For a reversible reaction, an increase in temperature increases the reaction rate for both the forward and the	16.	In a first-order reaction $A \rightarrow B$, if k is rate constant and inital concentration of the reactant A is 0.5 M, then the half-life is			
	backward reaction (c) The larger the initial reactant concentration for a second		(a) $\frac{\log 2}{k}$ (b) $\frac{\log 2}{k\sqrt{0.5}}$			
	order reaction, the shorter is its half-life.					
	(d) When Δt is infinitesimally small, the average rate equals		(c) $\frac{\ln 2}{k}$ (d) $\frac{0.693}{0.5k}$			
9.	the instantaneous rate In a reaction $A \rightarrow \text{Products}$, when start is made from	17.	The integrated rate equations can be determined for			
•	8.0×10^{-2} M of A, half-life is found to be 120 minute. For the		(a) zero order reactions (b) first order reactions			
	initial concentration 4.0×10^{-2} M, the half-life of the reaction		(c) second order reactions (d) Both (a) and (b)			
	becomes 240 minute. The order of the reaction is: (a) zero (b) one (c) two (d) 0.5	18.	The rate constant, the activation energy and the arrhenius parameter of a chemical reaction at 25°C are 3.0×10^{-4} s ⁻¹ ,			
10.			104.4 kJ mol ⁻¹ and 6.0×10^{14} s ⁻¹ respectively. The value of			
	(i) energy is always released		the rate constant as $T \to \infty$ is			
	(ii) energy is always absorbed		(a) $2.0 \times 10^{18} \mathrm{s}^{-1}$ (b) $6.0 \times 10^{14} \mathrm{s}^{-1}$			
	(iii) energy does not change (iv) reactants may be formed	10	(c) Infinity (d) $3.6 \times 10^{30} \mathrm{s}^{-1}$			
	(a) (i), (ii) and (iii) (b) (i) and (iv)	19.	According to the adsorption theory of catalysis, the speed of the reaction increases because			
	(c) (ii) and (iii) (d) (ii), (iii) and (iv)		(a) in the process of adsorption, the activation energy of			
11.	Which of the following statements is incorrect?		the molecules becomes large			
	(a) Energy is always released when activated complex decomposes to form products.		(b) adsorption produces heat which increases the speed of the reaction			
	(b) Peak of the energy distribution curve corresponds to the most probable potential energy.		(c) adsorption lowers the activation energy of the reaction(d) the concentration of product molecules at the active			
	(c) Peak of the energy distribution curve corresponds to	20.	centres of the catalyst becomes high due to adsorption.			
	the most probable kinectic energy.	20.	Consider a general chemical change $2A + 3B \rightarrow \text{products}$. The rate with respect to A is r_1 and that with respect to B is			
	(d) When the temperature is raised maximum of energy distribution curve moves to higher energy value and		r_2 . The rates r_1 and r_2 are related as			
	broadens out.		(a) $3 r_1 = 2r_2$ (b) $r_1 = r_2$			
12.	A catalyst increases rate of reaction by					
	(a) decreasing enthalpy	21	(c) $2r_1 = 3r_2$ (d) $r_1^2 = 2r_2^2$			
	(b) decreasing internal energy	21.	In a first order reaction, the concentration of the reactant, decreases from 0.8 M to 0.4 M in 15 minutes. The time taken			
	(c) decreasing activation energy		for the concentration to change from 0.1 M to 0.025 M is			

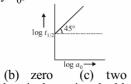
(a) 7.5 minutes

(b) 15 minutes

(d) increasing activation energy

Mastering Chemistry With Ravi Arora

DPP/ CC18 -


c-71

- **22.** Activation energy (E_a) and rate constants $(k_1 \text{ and } k_2)$ of a chemical reaction at two different temperatures $(T_1 \text{ and } T_2)$ are related by:
 - (a) $\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \frac{1}{LT_1} \frac{1}{T_2}$
 - (b) $\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \frac{1}{k_1} \frac{1}{T_1} \frac{1}{k_2}$
 - (c) $\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \frac{1}{t_2} + \frac{1}{T_1} t$
 - (d) $\ln \frac{k_1}{k_2} = \frac{E_a}{R} \frac{1}{k_1} \frac{1}{T_2}$
- t₁ can be taken as the time taken for the concentration of a 23.

reactant to drop to $\frac{3}{4}$ of its initial value. If the rate constant for a first order reaction is k, the $\frac{t_1}{4}$ can be written as

- (a) 0.75/k (b) 0.69/k (c) 0.29/k (d) 0.10/kThe decomposition of ammonia on tungsten surface at 500 K follows zero order kinetics. The half-life period of this 24. reaction is 45 minutes when the initial pressure is 4 bar. The half-life period (minutes) of the reaction when the initial pressure is 16 bar at the same temperature is
- (b) 60 (c) 240 In a 1st order reaction, reactant concentration C varies with
 - (a) 1/C increases linearly with t
 (b) log C decreases linearly with t

 - (c) C decreases with $\frac{1}{2}$
 - (d) $\log C$ decreases with $\frac{1}{2}$
- For a reaction $A \to \text{Product}$, a plot of $\log t_{1/2}$ versus $\log a_0$ is shown in the figure. If the initial concentration of A is represented by a_0 , the order of the reaction is

- (a) one (d) three The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about:
 - (a) 10 times (b) 24 times (c) 32 times (d) 64 times
- For a first order reaction $t_{0.75}$ is 1368 seconds, therefore, the specific rate constant in \sec^{-1} is (a) 10^{-3} (b) 10^{-2} (c) 10^{-9} (d) 10^{-5}
- The integrated rate equation is $Rt = \log C_0 - \log C_t.$

The straight line graph is obtained by plotting

- (a) time $Vs log C_t$
- (b) $\frac{1}{\text{time}} V_S C_t$
- (c) time Vs C_t
- 30. The energies of activation for forward and reverse reactions for $A_2 + B_2 \implies 2AB$ are 180 kJ mol⁻¹ and 200 kJ mol⁻¹ respectively. The presence of a catalyst lowers the activation energy of both (forward and reverse) reactions by 100 kJ mol⁻¹. The enthalpy change of the reaction $(A_2 + B_2)$ fi 2AB) in the presence of a catalyst will be $(in kJ mol^{-1})$
- (a) 20 (b) 300 (c) 120 (d) 280 The half-life period of a first order reaction is 15 minutes. The amount of substance left after one hour will be:
 - $\frac{1}{4}$ of the original amount
 - (b) $\frac{1}{8}$ of the original amount
 - (c) $\frac{1}{16}$ of the original amount
 - (d) $\frac{1}{32}$ of the original amount
- Reaction rate between two substance A and B is expressed as following:

 $rate = k[A]^n[B]^m$

If the concentration of A is doubled and concentration of B is made half of initial concentration, the ratio of the new rate to the earlier rate will be:

- (a) m+n (b) n-m (c) $\frac{1}{2^{(m+n)}}$ (d) $2^{(n-m)}$
- The reaction of ozone with oxygen atoms in the presence of chlorine atoms can occur by a two step process shown below:

$$\begin{array}{c} \text{O}_3(g) + \text{Cl}^*(g) \to \text{O}_2(g) + \text{ClO}^*(g) & \text{...(i)} \\ \text{[K_i = $5.2 \times 10^9 \, \text{L} \, \text{mol}^{-1} \, \text{s}^{-1}$]} \\ \text{ClO}^*(g) + \text{O}^*(g) \to \text{O}_2(g) + \text{Cl}^*(g) & \text{...(ii)} \\ \text{[K_{ii} = $2.6 \times 10^{10} \, \text{L} \, \text{mol}^{-1} \, \text{s}^{-1}$]} \end{array}$$

The closest rate constant for the overall reaction

- $\begin{array}{lll} O_3(g) + O^*(g) \to 2O_2(g) \ is : \\ (a) & 1.4 \times 10^{20} \ L \ mol^{-1} \ s^{-1} \ \ (b) & 3.1 \times 10^{10} \ L \ mol^{-1} \ s^{-1} \\ (c) & 5.2 \times 10^9 \ L \ mol^{-1} \ s^{-1} \ \ (d) & 2.6 \times 10^{10} \ L \ mol^{-1} \ s^{-1} \end{array}$
- The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation, $k = A \cdot e^{-E_a}$ Activation energy (E_a) of the reaction can be calculated by plotting
 - (a) k vs. $\frac{1}{\log T}$ (b) $\log k \text{ vs } \frac{1}{T}$
 - (c) $\log k \text{ vs. } \frac{1}{\log T}$
- (d) k vs. T

RESPONSE **GRID**

- 22. a b c d 27. (a) (b) (c) (d)
- 23. (a) (b) (c) (d) 28. (a) (b) (c) (d)
- 24. (a) (b) (c) (d) 29. (a) (b) (c) (d)
- 25. (a) (b) (c) (d) **30.** (a) (b) (c) (d)
- 26. (a) (b) (c) (d) 31. (a) (b) (c) (d)

- 32.(a)(b)(c)(d) **33.** (a) (b) (c) (d)
- **34.** (a) (b) (c) (d)

Mastering Chemistry With Ravi Arora

- DPP/ CC18 c-72

35. For the reaction system :

 $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ volume is suddenly reduced to half its value by increasing the pressure on it. If the reaction is of first order with respect to O₂ and second order with respect to NO, the rate of reaction will

- (a) diminish to one-eighth of its initial value
- (b) increase to eight times of its initial value
- (c) increase to four times of its initial value
- (d) diminish to one-fourth of its initial value
- In the reaction of formation of sulphur trioxide by contact process $2SO_2 + O_2 \rightleftharpoons 2SO_3$ the rate of reaction was measured as

$$\begin{split} \frac{d\left[O_2\right]}{dt} &= -2.5 \times 10^{-4} \text{mol } L^{-1} \text{s}^{-1} \text{. The rate of reaction is} \\ \text{terms of [SO_2] in mol } L^{-1} \text{ s}^{-1} \text{ will be:} \\ \text{(a)} &\quad -1.25 \times 10^{-4} \\ \text{(c)} &\quad -3.75 \times 10^{-4} \\ \end{split} \qquad \qquad \text{(d)} \quad -2.50 \times 10^{-4} \\ \text{(d)} \quad -5.00 \times 10^{-4} \end{split}$$

- **37.** A reactant (A) froms two products :

$$A \xrightarrow{k_1} B$$
, Activation Energy Ea_1

 $A \xrightarrow{k_2} C$, Activation Energy Ea_2 If $Ea_2 = 2 Ea_1$, then k_1 and k_2 are related as:

(a) $k_2 = k_1 e^{Ea_1/RT}$ (b) $k_2 = k_1 e^{Ea_2/RT}$ (c) $k_1 = Ak_2 e^{Ea_1/RT}$ (d) $k_1 = 2k_2 e^{Ea_2/RT}$

- **38.** Consider an endothermic reaction $X \rightarrow Y$ with the activation energies E_b and E_f for the backward and forward reactions, respectively. In general
 - (a) there is no definite relation between E_b and E_f
 - (b) $E_b = E_f$
 - (c) $E_b > E_f$
 - (d) $E_b < E_f$
- 39. Which of the following influences the rate of a chemical reaction performed in solution?

 - (a) Temperature(b) Activation energy
 - (c) Presence of a catalyst
 - (d) All of the above influence the rate
- The rate of a reaction quadruples when the temperature changes from 300 to 310 K. The activation energy of this reaction is: (Assume activation energy and pre-exponential factor are independent of temperature; $\ln 2 = 0.693$; $R = 8.314 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$
 - (a) $107.2 \text{ kJ mol}^{-1}$
- (b) $53.6 \,\text{kJ} \,\text{mol}^{-1}$
- (c) 26.8 kJ mol^{-1}
- (d) $214.4 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- **41.** Consider the reaction :

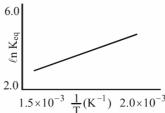
$$\operatorname{Cl}_2(aq) + \operatorname{H}_2\operatorname{S}(aq) \to \operatorname{S}(s) + 2\operatorname{H}^+(aq) + 2\operatorname{Cl}^-(aq)$$

The rate equation for this reaction is

 $rate = k[Cl_2][H_2S]$

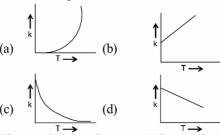
Which of these mechanisms is/are consistent with this rate equation?

A.
$$Cl_2 + H_2S \rightarrow H^+ + Cl^- + Cl^+ + HS^-$$
 (slow)


$$Cl^+ + HS^- \rightarrow H^+ + Cl^- + S$$
 (fast)

B.
$$H_2S \rightleftharpoons H^+ + HS^-$$
 (fast equilibrium)

$$Cl_2 + HS^- \rightarrow 2Cl^- + H^+ + S \text{ (Slow)}$$


- (a) Bonly
- (b) Both A and B
- (c) Neither A nor B
- (d) A only
- The slope in Arrhenius plot, is equal to:

- (d) None of these
- 43. A schematic plot of $\ln K_{eq}$ versus inverse of temperature for a reaction is shown below

The reaction must be

- (a) highly spontaneous at ordinary temperature
- one with negligible enthalpy change (b)
- (c) endothermic
- (d) exothermic
- **44.** Plots showing the variation of the rate constant (k) with temperature (T) are given below. The plot that follows Arrhenius equation is

- The reaction $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ follows first order kinetics. The pressure of a vessel containing only N₂O₅ was found to increase from 50 mm Hg to 87.5 mm Hg in 30 min. The pressure exerted by the gases after 60 min. will be (assume temperature remains constant):
 - 106.25 mm Hg
- (b) 150 mm Hg
- 125 mm Hg
- (d) 116.25 mm Hg

RESPONSE GRID

- 35. (a) (b) (c) (d)
- 36. (a) (b) (c) (d)
- 37. (a) b) (c) d)
- 38. (a) b) © (d)
- **39.** (a) (b) (c) (d)

- 40. (a) (b) (c) (d) 45. (a) (b) (c) (d)
- 41.(a)(b)(c)(d)
 - **42.** (a) (b) (c) (d)
- **43.** (a) (b) (c) (d)
- **44.** (a) (b) (c) (d)