## Practice Problems

# Chapter-wise Sheets

| Date : |  | Start Time : |  | End Time : |  |
|--------|--|--------------|--|------------|--|
|--------|--|--------------|--|------------|--|

# CHEMISTRY (CC02)

**SYLLABUS:** Structure of Atom

Time: 60 min. Max. Marks: 120 **Marking Scheme:** + 4 for correct & (-1) for incorrect

INSTRUCTIONS: This Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

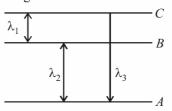
- Among the following groupings which represents the 3. collection of isoelectronic species?
  - (a)  $NO^+$ ,  $C_2^{2-}$ ,  $O_2^-$ , CO (b)  $N_2$ ,  $C_2^{2-}$ , CO, NO
- - (c)  $CO, NO^+, CN^-, C_2^{2-}$  (d)  $NO, CN^-, N_2, O_2^-$
- The compound in which cation is isoelectronic with anion is:
  - (a) NaCl
- (b) CsF
- (c) NaI
- (d)  $K_2S$

- The de-Broglie wavelength of an electron in the ground state of hydrogen atom is: [K.E. = 13.6 eV; 1eV =  $1.602 \times 10^{-19} \,\mathrm{J}$ 
  - (a) 33.28 nm
- (b) 3.328 nm
- (c) 0.3328 nm
- (d) 0.0332 nm
- The frequency of light emitted for the transition n = 4 to n = 2 of the He<sup>+</sup> is equal to the transition in H atom corresponding to which of the following?
  - (a) n = 2 to n = 1
- (b) n = 3 to n = 2
- (c) n = 4 to n = 3
- (d) n = 3 to n = 1

RESPONSE GRID

1. (a) (b) (c) (d)

2. abcd


3. (a) b) c) d)

4. (a) b) c) d)

Space for Rough Work

- 5. The first emission line in the atomic spectrum of hydrogen in the Balmer series appears at
  - (a)  $\frac{9R}{400}$  cm<sup>-1</sup>
- (b)  $\frac{7R}{144}$  cm<sup>-1</sup>
- (c)  $\frac{3R}{4}$  cm<sup>-1</sup>
- (d)  $\frac{5R}{36}$  cm<sup>-1</sup>
- **6.** In hydrogen atomic spectrum, a series limit is found at 12186.3 cm<sup>-1</sup>. Then it belong to
  - (a) Lyman series
- (b) Balmer series
- (c) Paschen series
- (d) Brackett series
- 7. Two fast moving particles X and Y are associated with de Broglie wavelengths 1 nm and 4 nm respectively. If mass of X in nine times the mass of Y, the ratio of kinetic energies of X and Y would be
  - (a) 3:1
- (b) 9:1
- (c) 5:12
- (d) 16:9
- 8. The ratio of magnetic moments of Fe(III) and Co(II) is
  - (a) 7:3
- (b) 3:7
- (c)  $\sqrt{7} : \sqrt{3}$
- (d)  $\sqrt{3}:\sqrt{7}$
- 9. The values of Planck's constant is  $6.63 \times 10^{-34}$  Js. The velocity of light is  $3.0 \times 10^8$  m s<sup>-1</sup>. Which value is closest to the wavelength in nanometres of a quantum of light with frequency of  $8 \times 10^{15}$  s<sup>-1</sup>?
  - (a)  $5 \times 10^{-18}$
- (b)  $4 \times 10^1$
- (c)  $3 \times 10^7$
- (d)  $2 \times 10^{-25}$
- 10. Li and a proton are accelerated by the same potential, their de Broglie wavelengths  $\lambda_{\text{Li}}$  and  $\lambda_p$  have the ratio (assume  $m_{\text{Li}} = 9m_p$ )
  - (a) 1:2
- (b) 1:4
- (c) 1:1
- (d)  $1:3\sqrt{3}$

11. Energy levels, A, B, C, of a certain atom correspond to increasing values of energy i.e.,  $E_A < E_B < E_C$ . If  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$  are the wave lengths of radiations corresponding to the transition from C to B, B to A and C to A respectively, which of the following statements is correct?



- (a)  $\lambda_3 = \lambda_1 + \lambda_2$
- (b)  $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$
- (c)  $\lambda_1 + \lambda_2 + \lambda_3 = 0$
- (d)  $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
- **12.** If uncertainty in position and momentum are equal, then uncertainty in velocity is :
  - (a)  $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$
- (b)  $\sqrt{\frac{h}{2\pi}}$
- (c)  $\frac{1}{m}\sqrt{\frac{h}{\pi}}$
- (d)  $\sqrt{\frac{h}{\pi}}$
- 13. The electrons, identified by quantum numbers n and l(i) n = 4, 1 = 1 (ii) n = 4, 1 = 0 (iii) n = 3, 1 = 2 (iv) n = 3, 1 = 1 can be placed in order of increasing energy, from the lowest to highest, as
  - (a) (iv) < (ii) < (iii) < (i)
- (b) (ii) < (iv) < (i) < (iii)
- (c) (i) < (iii) < (ii) < (iv)
- (d) (iii) < (i) < (iv) < (ii)
- 14. Ionisation energy of He<sup>+</sup> is  $19.6 \times 10^{-18}$  J atom<sup>-1</sup>. The energy of the first stationary state (n = 1) of Li<sup>2+</sup> is
  - (a)  $4.41 \times 10^{-16} \, \mathrm{J} \, \mathrm{atom}^{-1}$  (b)  $-4.41 \times 10^{-17} \, \mathrm{J} \, \mathrm{atom}^{-1}$
  - (c)  $-2.2 \times 10^{-15} \,\mathrm{J}\,\mathrm{atom}^{-1}$  (d)  $8.82 \times 10^{-17} \,\mathrm{J}\,\mathrm{atom}^{-1}$

RESPONSE GRID

- 5. **a b c d 10. a b c d**
- 6. abcd 7. abcd 11. abcd 12. abcd
- 8. abcd 13.abcd
- 9. (a) (b) (c) (d) 14. (a) (b) (c) (d)

#### DPP/CC02 -

c-7

- 15. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is  $[a_0$  is Bohr radius]:
  - (a)  $\frac{h^2}{4\pi^2 ma_0^2}$
- (b)  $\frac{h^2}{16\pi^2 ma_0^2}$
- (c)  $\frac{h^2}{32\pi^2 m a_0^2}$
- (d)  $\frac{h^2}{64\pi^2 ma_0^2}$
- 16. Energy of an electron is given by  $E = -2.178 \times 10^{-18} J \left( \frac{Z^2}{n^2} \right)$ .

Wavelength of light required to excite an electron in an hydrogen atom from level n = 1 to n = 2 will be:

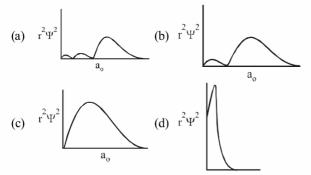
- $(h = 6.62 \times 10^{-34} \text{ Js and } c = 3.0 \times 10^8 \text{ ms}^{-1})$
- (a)  $1.214 \times 10^{-7}$  m
- (b)  $2.816 \times 10^{-7}$  m
- (c)  $6.500 \times 10^{-7}$  m
- (d)  $8.500 \times 10^{-7}$  m
- 17. If the nitrogen atom had electronic configuration 1s<sup>7</sup> it would have energy lower than that of the normal ground state configuration 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup> because the electrons would be closer to the nucleus. Yet 1s<sup>7</sup> is not observed. It violates
  - (a) Heisenberg's uncertainty principle
  - (b) Hund's rule
  - (c) Pauli exclusion principle
  - (d) Bohr postulate of stationary orbits
- **18.** In a hydrogen atom, if energy of an electron in ground state is 13.6. ev, then that in the 2<sup>nd</sup> excited state is
  - (a) 1.51 eV
- (b) 3.4 eV
- (c) 6.04 eV
- (d) 13.6 eV.
- **19.** Of the following sets which one does NOT contain isoelectronic species?

- (a)  $BO_3^{3-}$ ,  $CO_3^{2-}$ ,  $NO_3^{-}$
- (b)  $SO_3^{2-}$ ,  $CO_3^{2-}$ ,  $NO_3^{-}$
- (c)  $CN^-, N_2, C_2^{2-}$
- (d)  $PO_4^{3-}, SO_4^{2-}, CIO_4^{-}$
- **20.** The ionization enthalpy of hydrogen atom is  $1.312 \times 10^6 \,\mathrm{J}\,\mathrm{mol}^{-1}$ . The energy required to excite the electron in the atom from n=1 to n=2 is
  - (a)  $8.51 \times 10^5 \,\mathrm{J}\,\mathrm{mol}^{-1}$
- (b)  $6.56 \times 10^5 \,\mathrm{J}\,\mathrm{mol}^{-1}$
- (c)  $7.56 \times 10^5 \,\mathrm{J}\,\mathrm{mol}^{-1}$
- (d)  $9.84 \times 10^5 \,\mathrm{J}\,\mathrm{mol}^{-1}$
- 21. The limiting line in Balmer series will have a frequency of (Rydberg constant,  $R_{\infty} = 3.29 \times 10^{15}$  cycles/s)
  - (a)  $8.22 \times 10^{14} \, \text{s}^{-1}$
- (b)  $3.29 \times 10^{15} \,\mathrm{s}^{-1}$
- (c)  $3.65 \times 10^{14} \,\mathrm{s}^{-1}$
- (d)  $5.26 \times 10^{13} \,\mathrm{s}^{-1}$
- **22.** The energy required to break one mole of Cl Cl bonds in Cl<sub>2</sub> is 242 kJ mol<sup>-1</sup>. The longest wavelength of light capable of breaking a single Cl Cl bond is

$$(c = 3 \times 10^8 \text{ ms}^{-1} \text{ and } N_A = 6.02 \times 10^{23} \text{ mol}^{-1}).$$

- (a) 594 nm
- (b) 640 nm
- (c) 700 nm
- (d) 494 nm
- **23.** The de Broglie wavelength of a car of mass 1000 kg and velocity 36 km/hr is:
  - (a)  $6.626 \times 10^{-34}$  m
- (b)  $6.626 \times 10^{-38}$  m
- (c)  $6.626 \times 10^{-31}$  m
- (d)  $6.626 \times 10^{-30} \,\mathrm{m}$
- **24.** If the radius of first orbit of H atom is  $a_0$ , the de-Broglie wavelength of an electron in the third orbit is
  - (a)  $4\pi a_0$
- (b)  $8\pi a_0$
- (c)  $6\pi a_0$
- (d)  $2\pi a_0$

RESPONSE GRID


| 15. (a) (b) (c) (d) |
|---------------------|
| 20. (a) (b) (c) (d) |

16. a b c d 21. a b c d 17. a b c d 22. a b c d 18. a b c d 23. a b c d 19. (a) (b) (c) (d) **24.** (a) (b) (c) (d)

Space for Rough Work

#### c-8 - DPP/ CC02

Which of the following radial distribution graphs correspond to  $\ell = 2$  for the H atom?



26. If the kinetic energy of an electron is increased four times, the wavelength of the de-Broglie wave associated with it would become

- (a) one fourth
- (b) half
- (c) four times
- (d) two times

27. The correct set of four quantum numbers for the valence electrons of rubidium atom (Z=37) is:

- (a)  $5,0,0,+\frac{1}{2}$  (b)  $5,1,0,+\frac{1}{2}$  (c)  $5,1,1,+\frac{1}{2}$  (d)  $5,0,1,+\frac{1}{2}$

If  $\lambda_0$  and  $\lambda$  be threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is:

- (a)  $\sqrt{\frac{2h}{m}(\lambda_o \lambda)}$  (b)  $\sqrt{\frac{2hc}{m}(\lambda_o \lambda)}$  (c)  $\sqrt{\frac{2hc}{m}(\frac{\lambda_o \lambda}{\lambda\lambda_o})}$  (d)  $\sqrt{\frac{2h}{m}(\frac{1}{\lambda_o} \frac{1}{\lambda})}$

If m and e are the mass and charge of the revolving electron in the orbit of radius r for hydrogen atom, the total energy of the revolving electron will be:

- (b)  $-\frac{e^2}{r}$
- (d)  $-\frac{1}{2}\frac{e^2}{r}$

The dissociation energy of  $H_2$  is 430.53 KJ mol<sup>-1</sup>. If hydrogen is dissociated by illumination with radiation of wavelength 253.7 nm the fraction of the radiant energy which will be converted into kinetic energy is given by

- (a) 100%
- (b) 8.76%
- (c) 2.22%
- (d) 1.22%

| RESPONSE |  |
|----------|--|
| Grid     |  |

25. (a) (b) (c) (d) **30.** (a) (b) (c) (d)

26. (a) (b) (c) (d)

Net Score = (Correct  $\times$  4)

27. (a) (b) (c) (d) 28. (a) (b) (c) (d)

(Incorrect ×

29. (a) (b) (c) (d)

| DAILY PRACTICE PROBLEM DPP CHAPTERWISE 2 - CHEMISTRY |    |                  |     |  |  |  |  |
|------------------------------------------------------|----|------------------|-----|--|--|--|--|
| Total Questions                                      | 30 | Total Marks      | 120 |  |  |  |  |
| Attempted                                            |    | Correct          |     |  |  |  |  |
| Incorrect                                            |    | Net Score        |     |  |  |  |  |
| Cut-off Score                                        | 37 | Qualifying Score | 51  |  |  |  |  |
| Success Gap = Net Score - Qualifying Score           |    |                  |     |  |  |  |  |
| Not Cooks (Cokset 4) (Incompat 4)                    |    |                  |     |  |  |  |  |

Space for Rough Work