Donason Deen Desearch Centre
Centre for Educational Research \& Academic Excellence
Elementary Mathematics Tutorial

Topic 17: Trigonometry I

1. Angle $A \hat{B} C=90^{\circ}, A C=5 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $B C D$ is a straight line.

Calculate
i. $A B$,
ii. $\sin A \hat{C} B$,
iii. $\cos A \hat{C} D$.

2. In the triangle $G H K, G H=2 \mathrm{~cm}, H K=5 \mathrm{~cm}$ and $K G=4 \mathrm{~cm}$ Calculate the value of $\cos \angle K$, giving your answer as a fraction.
3. $P Q R$ is a triangular region in which $P Q=5 \mathrm{~km}, \angle P Q R=36^{\circ}$ and $Q R=6 \mathrm{~km}$. Calculate
i. $\quad P R$,
ii. the area of the region, expressing your answer in hectares, correct to the nearest hectare,
[$1 \mathrm{~km}^{2}=100$ hectares]
4. a. In the diagram, $A C=8 \mathrm{~cm}, A D=9.6 \mathrm{~cm}, \angle A B C=90^{\circ}, \angle A C B=54^{\circ}$ and $\angle A C D=74^{\circ}$.

Calculate
i. $A B$,
ii. $\angle A D C$

Donason Deen Desearch Centre

b. In the triangle $P Q R, M$ is the midpoint of $P Q$. Given that $Q R=5.3 \mathrm{~cm}, \angle P Q R$ $=90^{\circ}$ and $\angle Q R P$ is 56°. Calculate $\angle M R Q$.

5. In the diagram, $\angle A B C=90^{\circ}, B C=3 \mathrm{~cm}$ and D is the point on $A B$ such that $D B=4 \mathrm{~cm}$.
i. Calculate $C D$.
ii. Write down, as a fraction, the value of $\tan \angle B D C$.
iii. Given also that $A D=\frac{1}{2} B D$, calculate the area of $\triangle A D C$.

6. The quadrilateral $A B C D$ represents a kite which is symmetrical about the line $B D$. Given that $A D=60 \mathrm{~cm}, B D=70 \mathrm{~cm}$ and $\angle A D B=23^{\circ}$.

Calculate
i. $A B$,
ii. $A C$.

D

Donason Deen Desearch Centre

Centre for Educational Research \& Academic Excellence

Elementary Mathematics Tutorial

7. In the diagram, $Q R S$ is a straight line. $P Q=12 \mathrm{~m}, Q R=5 \mathrm{~m}$ and $R P=13 \mathrm{~m}$.
a. Explain why $\angle P Q R$ is a right angle.
b. Expressing your answer as a fraction,

Write down
i. $\tan \angle Q P R$,
ii. $\cos \angle P R S$.

8. a. A surveyor is carrying out a survey on horizontal ground.

From a point O she observes a point A which is 80 m from O on a bearing 040°,

The surveyor also observes a point B which is 90 m from O and due south of the point A.

Calculate
i. the bearing of O from A,
ii. the angle $O B A$,
iii. $A B$.

b. The point C is 100 m due west of O.

The surveyor walks directly from C to A. How far does she walk?
c. The surveyor then walks from A towards B until she reaches a point P, where $C P$ is a minimum. Calculate $C P$.

Donason Deen Research Centre

Elementary Mathematics Tutorial

9. In the diagram, $P Q=24 \mathrm{~cm}, Q R=7 \mathrm{~cm}, R S=23 \mathrm{~cm}$, $P R=25 \mathrm{~cm}, \angle P Q R=90^{\circ}$ and $Q R S$ is a straight line.

Giving each answer as a fraction, find
i. $\quad \sin \angle Q P R$,
ii. $\tan \angle Q S P$,
iii. $\cos \angle P R S$,

10. In the right angled triangle $A B C, P$ is a point on the side $A B$. Given that $A P=4 \mathrm{~cm}, P B$ $=5 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $P C=13 \mathrm{~cm}$,

Calculate
i. $A C$,
ii. $\cos \angle B P C$,
iii. $\tan \angle P A C$,
iv. $\sin \angle A P C$.

11. In the diagram, $B C D$ is a straight line. $A B=90 \mathrm{~m}, A C=80 \mathrm{~m}, C D=120 \mathrm{~m}$ and $\angle B C A=116^{\circ}$.
a. Calculate i $\angle B A C$, ii. $A D$.

b. The point E, inside triangle $A C D$, is such that $C E=62 \mathrm{~m}$ and the area of triangle $C D E$ is $2200 \mathrm{~m}^{2}$. Calculate $\angle E C D$.

Donason Deen Desearch Centre

Elementary Mathematics Tutorial
12. In the diagram, A, B and C represent three islands.
B is 25 km from A on a bearing of 020°,
C is 36 km from A on a bearing of 075°.

a. Calculate the bearing of A from B.
b. Calculate the distance of C from B.
c. A ship leaves A at 1240 and sails directly to C at a steady speed of $20 \mathrm{~km} / \mathrm{h}$.
i. When the ship is at D, it is due south of B. Calculate the distance $A D$.
ii. Find the time to the nearest minute at which the ship is closest to B.
13. Ann stands at A, which is at the top of a vertical cliff $A C$. She sees a boat on a lake at B, which is 80 m from C. The angle of depression of B from A is 35°.

a. Using as much of the information given below as is necessary, calculate the height of the cliff.
b. A yacht is on the lake at D, where $C D B$ is a straight line.

The angle of elevation of A from D is 55°. Calculate the distance $B D$.
$\left[\sin 35^{\circ}=0.574, \cos 35^{\circ}=0.819, \tan 35^{\circ}=0.700\right]$

Donason Deen Research Centre

Centre for Educational Research \& Academic Excellence

Elementary Mathematics Tutorial

14. $A B, B C, C D, A D, A C$ and $C E$ are some of the beams supporting a roof. $A D$ and $B C$ are horizontal and $A C$ is vertical. $C E$ is perpendicular to $A B$.
$A C=3.9 \mathrm{~m}, C D=4.4 \mathrm{~m}$ and $\angle B A C=58^{\circ}$.
Calculate
a. the length of $C E$,
b. the length of $A B$,
c. $\angle A C D$.

15. $\quad P, Q$ and R are three points on level ground with P due north of R.

Angle $Q P R=40^{\circ}$ and $P Q=P R$,
Calculate the bearing of
a. $\quad Q$ from P,
b. $\quad P$ from Q,
c. $\quad Q$ from R.

16. a. The diagram represents a frame work.

Given that $\angle B A C=52^{\circ}$,
$\angle A B C=\angle C D E=\angle A C E=90^{\circ}$, $A C=3 \mathrm{~m}$ and $E C=1.2 \mathrm{~m}$.

Calculate
i. $B C$,
ii. $\angle E A C$,
iii. $C D$.

Donason Deen Desearch Centre

b. $\quad Q R$ is a diameter of a circle, centre O, and P is a point on its circumference,

Given that $\angle P Q R=25^{\circ}$, calculate
i. $\angle P O R$,
ii. $\angle O P R$.
iii. the value, correct to 2 significant figures, of $\frac{P R}{Q R}$
17. $A B C D$ represents a building with a vertical flagpole $A P$ on the roof. The point O is on the same level as C and D. The angle of elevation of A from O is $15^{\circ}, O A=60$ metres and $\angle P O A=7^{\circ}$,
a. Calculate
i. the height $A D$ of the building,
ii. the height of the flagpole, $A P$.

b. Given also that $A B=10$ metres, calculate the angle of elevation of P from B.
18. In the diagram, $\angle B A D=\angle A C D=90^{\circ}, \angle A D B=23^{\circ}, A D=6 \mathrm{~cm}$ and $B C D E$ is a straight line.

Using as much of the information given below as is necessary, calculate
i. $A C$,
ii. $C D$,
iii. $A B$,
iv. $\sin \angle A D E$.
$\left[\sin 23^{\circ}=0.391 ; \cos 23^{\circ}=0.921 ; \tan 23^{\circ}=0.424\right]$

Donason Deen Desearch Centre

19. In the diagram, $A D=2.8 \mathrm{~cm}, A X=5.5 \mathrm{~cm}$ and $B X=4.1 \mathrm{~cm} . \angle A D C=90^{\circ}, \angle D A X=$ $74^{\circ}, \angle A X B=123^{\circ}$ and $A X C$ is a straight line.
a. Calculate
i. $\quad A C$,
ii. $\quad A B$.

b. Given that Y is the point on $A X$ such that $D Y$ is parallel to $X B$, calculate $A Y$.
20. Villages B and C are each 5 kilometres from village A, and $\angle B A C=150^{\circ}$. The village C is due south of a point X and the villages A and B are both due east of X.

a. Calculate the bearing of C from A.
b. Calculate the bearing of B from C.
c. Using as much of the information given below as is necessary, calculate
i. how far C is west of A,
ii. the area of he triangle $A B C$.
$\left[\sin 30^{\circ}=0.5 ; \cos 30^{\circ}=0.8660 ; \tan 30^{\circ}=0.5774\right]$
