

Centre for Educational Research & Academic Excellence

Elementary Mathematics Tutorial

Topic 17: Trigonometry I

1. Angle $A\hat{B}C = 90^\circ$, AC = 5 cm, BC = 4 cm and BCD is a straight line.

- 2. In the triangle *GHK*, GH = 2 cm, HK = 5 cm and KG = 4 cm Calculate the value of $\cos \angle K$, giving your answer as a fraction.
- 3. *PQR* is a triangular region in which PQ = 5 km, $\angle PQR = 36^{\circ}$ and QR = 6 km. Calculate
 - i. *PR*,
 - ii. the area of the region, expressing your answer in hectares, correct to the nearest hectare, $[1 \text{ km}^2 = 100 \text{ hectares}]$
- 4. a. In the diagram, AC = 8 cm, AD = 9.6 cm, $\angle ABC = 90^{\circ}$, $\angle ACB = 54^{\circ}$ and $\angle ACD = 74^{\circ}$.

Page -	1
--------	---

Centre for Educational Research & Academic Excellence

Elementary Mathematics Tutorial

b. In the triangle *PQR*, *M* is the midpoint of *PQ*. Given that *QR* =5.3cm, $\angle PQR$ =90° and $\angle QRP$ is 56°. Calculate $\angle MRQ$.

5. In the diagram, $\angle ABC = 90^\circ$, BC=3 cm and D is the point on AB such that DB = 4 cm.

A

- i. Calculate *CD*.
- ii. Write down, as a fraction, the value of tan $\angle BDC$.
- iii. Given also that $AD = \frac{1}{2}BD$, calculate the area of $\triangle ADC$.

6. The quadrilateral *ABCD* represents a kite which is symmetrical about the line *BD*. Given that AD = 60 cm, BD = 70 cm and $\angle ADB = 23^{\circ}$.

Page	-	2
------	---	---

Centre for Educational Research & Academic Excellence

- *Elementary Mathematics Tutorial* 7. In the diagram, *QRS* is a straight line. PQ = 12 m, QR = 5 m and RP = 13 m.
 - a. Explain why $\angle PQR$ is a right angle.
 - b. Expressing your answer as a fraction,

Write down i. $\tan \angle QPR$, ii. $\cos \angle PRS$.

8. a. A surveyor is carrying out a survey on horizontal ground.

From a point O she observes a point A which is 80 m from O on a bearing 040°,

The surveyor also observes a point B which is 90 m from O and due south of the point A.

Calculate

- i. the bearing of O from A,
- ii. the angle OBA,
- iii. AB.

b.

The point C is 100 m due west of O.

The surveyor walks directly from *C* to *A*. How far does she walk?

c. The surveyor then walks from *A* towards *B* until she reaches a point *P*, where *CP* is a minimum. Calculate *CP*.

Page -	3
--------	---

Centre for Educational Research & Academic Excellence

Elementary Mathematics Tutorial

9. In the diagram, PQ = 24 cm, QR = 7 cm, RS = 23 cm, PR = 25 cm, $\angle PQR = 90^{\circ}$ and QRS is a straight line.

Giving each answer as a fraction, find

- i. $\sin \angle QPR$,
- ii. $\tan \angle QSP$,
- iii. $\cos \angle PRS$,

10. In the right angled triangle *ABC*, *P* is a point on the side *AB*. Given that AP = 4cm, *PB* = 5 cm, *BC* =12 cm and *PC* =13cm,

Calculate

- i. *AC*,
- ii. $\cos \angle BPC$,
- iii. $\tan \angle PAC$,
- iv. $\sin \angle APC$.

11. In the diagram, *BCD* is a straight line. AB = 90 m, AC = 80 m, CD = 120 m and $\angle BCA = 116^{\circ}$.

b. The point E, inside triangle ACD, is such that CE = 62 m and the area of triangle CDE is 2200 m². Calculate $\angle ECD$.

Page - 4

a.

Donason Deen Research Centre

Centre for Educational Research & Academic Excellence

Elementary Mathematics Tutorial

12. In the diagram, *A*, *B* and *C* represent three islands.

B is 25 km from *A* on a bearing of 020° ,

C is 36 km from A on a bearing of 075° .

- a. Calculate the bearing of *A* from *B*.
- b. Calculate the distance of *C* from *B*.
- c. A ship leaves A at 12 40 and sails directly to C at a steady speed of 20 km/h.
 - i. When the ship is at *D*, it is due south of *B*. Calculate the distance *AD*.
 - ii. Find the time to the nearest minute at which the ship is closest to *B*.
- 13. Ann stands at *A*, which is at the top of a vertical cliff *AC*. She sees a boat on a lake at *B*, which is 80 m from *C*. The angle of depression of *B* from *A* is 35° .

- Using as much of the information given below as is necessary, calculate the height of the cliff.
- b. A yacht is on the lake at *D*, where *CDB* is a straight line.

The angle of elevation of A from D is 55 °. Calculate the distance BD.

 $[\sin 35^\circ = 0.574, \cos 35^\circ = 0.819, \tan 35^\circ = 0.700]$

Centre for Educational Research & Academic Excellence

Elementary Mathematics Tutorial

AB, BC, CD, AD, AC and CE are some of the beams supporting a roof. AD and BC are 14. horizontal and AC is vertical. CE is perpendicular to AB. D A AC = 3.9 m, CD = 4.4 m and $\angle BAC = 58^{\circ}$. 58° Ε Calculate 3.9 4.4 the length of CE, a. the length of *AB*, b. $\angle ACD.$ c. В С *P*, *Q* and *R* are three points on level ground with *P* due north of *R*. 15. Angle $QPR = 40^{\circ}$ and PQ = PR, Calculate the bearing of 40[°] Q from P, a. b. P from Q, OQ from R. c. R 16. The diagram represents a frame work. a. D E Given that $\angle BAC = 52^{\circ}$, $\angle ABC = \angle CDE = \angle ACE = 90^{\circ},$ 1.2 AC = 3 m and EC = 1.2 m. С Calculate i. BC, ii. $\angle EAC$, 3 iii. CD. 52° $\square B$ A Page - 6

Centre for Educational Research & Academic Excellence

Elementary Mathematics Tutorial

В

C

10

A

D

b. *QR* is a diameter of a circle, centre *O*, and *P* is a point on its circumference,

Given that $\angle PQR = 25^{\circ}$, calculate

- i. $\angle POR$,
- ii. $\angle OPR$.
- iii. the value, correct to 2 significant figures, of $\frac{PR}{OR}$
- 17. *ABCD* represents a building with a vertical flagpole *AP* on the roof. The point *O* is on the same level as *C* and *D*. The angle of elevation of *A* from *O* is 15° , OA = 60 metres and $\angle POA = 7^\circ$,
 - a. Calculate
 - i. the height *AD* of the building,
 - ii. the height of the. flagpole, AP.
 - b. Given also that AB = 10 metres, calculate the angle of elevation of P from B.

15°

7°

60

18. In the diagram, $\angle BAD = \angle ACD = 90^\circ$, $\angle ADB = 23^\circ$, AD = 6 cm and BCDE is a straight line.

Using as much of the information given below as is necessary, calculate

i. AC, ii. CD, iii. AB, iv. $\sin \angle ADE$. [$\sin 23^\circ = 0.391$; $\cos 23^\circ = 0.921$; $\tan 23^\circ = 0.424$]

a.

Donason Deen Research Centre

Centre for Educational Research & Academic Excellence

Elementary Mathematics Tutorial

19. In the diagram, AD = 2.8 cm, AX = 5.5 cm and BX = 4.1 cm. $\angle ADC = 90^{\circ}$, $\angle DAX = 74^{\circ}$, $\angle AXB = 123^{\circ}$ and AXC is a straight line.

- b. Given that *Y* is the point on *AX* such that *DY* is parallel to *XB*, calculate *AY*.
- 20. Villages *B* and *C* are each 5 kilometres from village *A*, and $\angle BAC = 150^{\circ}$. The village *C* is due south of a point *X* and the villages *A* and *B* are both due east of *X*.

- a. Calculate the bearing of *C* from *A*.
- b. Calculate the bearing of *B* from *C*.
- c. Using as much of the information given below as is necessary, calculate
 - i. how far C is west of A,
 - ii. the area of he triangle *ABC*.

 $[\sin 30^\circ = 0.5; \cos 30^\circ = 0.8660; \tan 30^\circ = 0.5774]$

~End~