$\underline{\textbf{Neurodevelopment}} - Q \ \& \ A \ by \ H.J.$

Questions	Answers
Neural Crest derivatives	Schwann cells
	Autonomic neurons
	Gut neurons
	DRG
	Pia + Arachnoid
Anencephaly	Failure of neural tube to close (rostrally)
Spina Bifida	Failure of neural tube to close (caudally)
	Part of meninges protrudes through spinal cord.
Hox Genes	Similar to homeotic regulator genes in drosophilia.
	"Master Genes"
	Conserved region called <i>Homeobox</i>
	Includes emx and otx
Otx abnormality	Get epilepsy.
emx abnormality	Get schizencephaly
What determines pattern of	Gradient of retinoic acid
hox gene expression?	Produced by Hensen's node
	Gradient in ant-post creates hox expression in
	hindbrain
Where is the floor plate?	Ventral midline
What are the regions around	Adjacent = motoneurons
the floor plate?	Dorsal = interneurons
	Most dorsal = neural crest
What is BMP	Bone Morphogenetic Protein
	→ single molecule that influences different tissues.
What induces ventral spinal	Notochord.
cord characteristics?	Thus if notochord transplant, get 2 floor plates and 2
	mononeurons
What happens if notochord is	Floor plate and motoneurons fail to form
removed from the embryo?	
What is the floor plate and	Product of Sonic Hedgehog
motoneurons induced by?	(why does Nicholls leave out the R in motor neurons? And why is it one word?)
What does Sonic Hedgehod	Floor plate
induce?	Motoneurons
	Serotonigeric neurons in ant. hindbrain
	Dopaminergic neurons in post. hindbrain

	Oculomotor neurons in ant. midbrain
What does BMP induce?	Specification of cells in dorsal horn
What about retinoic acid?	Specifiy longitudinal gradients
Order of development	Sonic hedgehog specifies a ventral phenotype.
	Particular characteristics determined by previous
	history of tissue.
How is tissue initially	First by the anterior-posterior position (Hox Gene)
restricted?	
And further restricted by	Dorso-ventral position (sonic hedgehog)

Main Point: Formation of forebrain and midbrain and spinal cord is by anteroposterior, dorsoventral and local patterning by induction of specific transcription factors.\

Cell Proliferation and Migration

Questions	Answers
How do the cells proliferate?	Grow radially.
•	Nucleus migrates to inner (ventricular) surface.
	Pial end detaches.
	Cell divides
	Nuclei of daughters migrate to outer surface and
	reattach
Where would you find the	They migrate past the older ones.
younger neurons?	
Which ones are the largest?	Older ones.
Which neurons regenerate?	Olfactory. So smell can recover after injury
With whom do neurons share a	Glial cells
common progenitor?	
How do neurons move from	Via radial glial cells.
ventricular to pial surfaces?	
What are some neuronal	Astrotatin
migration proteins?	Integrin
What happens in a reeler	No reeler gene, so old neurons on outside, younger
mouse?	ones on inside.
What group of cells can	GnRH – moves into CNS from olefactory
migrate even without these	epithelium.
radial glial cells?	

Kallmann's syndrome	In males – migration of GnRH fails to occur.
	- no smell and no normal sex dev't
What is the key to migration in	The substate. Eg. Neural cells migrate along laminin
PNS?	marked pathways

Maturation and Axon Outgrowth

Questions	Answers
What can influence	Environment – can shape output of cells (change
maturation?	their NT depending on env.)
What is LIF?	Leukemia inhibitory factor
	Can change the phenotype of crest cells
How to the axons grow?	Filopodia smell out substrates and choose direction.
	Can also clear out pathway and change substrate.
	Also have diffusible molecules which can attact the
	growing axon.
What is netrin?	In spinal cord.
	Used to direct axons.
What is laminin?	Present along pathways
	Synthesized by schwann cells after injury.
	If remove laminin (eg. Via Ab) then no neurite
	extension and outgrowth.

Myelin

Questions	Answers
What myelinates in PNS and	PNS – Schwann Cells
CNS	CNS – oligodendryocyes
Trembler mouse	No myelin.
	But if take sciatic nerve from normal mouse, then
	myelinates normally.
Significance of PMP-22	Aka. Peripheral myelin protein.
	Essential for layers of Schwann cell membranes to
	wrap and seal themselves around developing axons.
Who makes PMP-22?	Schwann cells make it and break it down.
	If neurons present, then Schwann won't break it
	down so it can be used.
Charcot Marie Tooth Disease	PMP-22 not normal
	Peripheral myelin fails to form
	Gly → Asp

NGF

Questions	Answers
What happens if put leg on	Nerves from CNS attracted to leg.
back of frog.	
What causes growth?	NGF! Duh. In male mouse salivary glands.
What happens if remove NGF?	Ab against NGF in newborn mice prevents sympth.
	From dev't. So: req in dev't and survival.
Is parasymph affected by	Nope
NGF?	
What about sensory?	Needs NGF.
Ok, so what does the lack of	SYMPH & SENSORY
NGF affect?	→ Required during a <i>critical period</i>
Where is NGF transported to?	Cell soma
What does it do there?	Regulates synth of norE via:
	1. tyrosine hydroxylase
	2. dopamine b-hydroxylase
What happens if NGF	Level of these enz decreases!
transport is impaired?	
How is it transported?	Anterograde AND retrograde

Neutrophins

Questions	Answers
What is BDNF?	Brain-derived neutrotrophic factor.
	Promotes survival of DRG neurons in culture.
	Rescues neurons in vivo if dying.
What happens early in devt	The neurons req BDNF or NT3 for proliferation,
before sensory neurons	differentiation and survival.
innervate targets?	
Who provides this stuff?	The neurons themselves (early on) and mesenchyme.
What about when they reach	Use NGF from the target.
their targets?	
How do they bind?	Low affinity neutrophin receptors.
What is TRK?	Has NGF receptor. (high affinity)

How do they work?	Three pathways:
non do mey work.	1. PLC
	2. PI3K
	3. MAP Kinase
What happens to calls that lask	Triggers cell death?
What happens to cells that lack	ringgers cen deaur?
high affinity recepts?	A .1.
What type of NT do the NGF cells use in the CNS?	Ach
	T 1 10 1 ' 1' (1'
Where are they and what do	In basal forebrain and innervate hippocampus
they innervate?	(learning/memory)
What happens if u infuse NGF	Increased cholingeric cells, but still wrinkly.
in old wrinkly rats?	
What about the ability to learn	Inc. performance in spatial memory.
the way through a maze?	
What do cells in the	BDNF or NT-3
hippocampus require for	
survival.	
What does BDNF do?	Influences RGC branching and remodeling
	Dendritic growth of cortical neurons
	Formation of ocular dominance columns in V1.
What candles bundling of	N-CAMs (Neural Cell Adhesion Molecules)
neurons into fascicles.	→ causes neurons to stick together
How are Ach receptors	Randomly.
arranged before innervation in	
sketelal muscle?	
After innervation?	Focused at synaptic endplate.
What causes these receptors to	Agrin
aggregate?	
What releases agrin?	The nerve
In terms of cell death, what is a	Cells might compete for NGF. So if they don't get
hypothesis on apoptosis and	to where they are going, they don't get NGF and
motor axon dev't?	then they die by mean of apoptosis.
How are muscles fibers	Multiple axons innervate 1 motor fibre.
innervated in dev't?	
What about in mature	1 axon – 1 muscle fiber
muscles?	
What causes the change?	Competition between motoneurons. Elimination
	mediated by muscle fiber.
	•

How do neurons choose the	Chemical match during dev't (visual system)
'right' target?	
How do they sort themselves	On the anterior-posterior axis. Preference based on
out?	repulsive interactions.
What is Eph (ephrin) series of	Blocks fibers coming from posterior. (Highest conc
TK?	in posterior). Keeps each fiber on the right track
	(repulsive interaction)
Where else do you find ephrin?	On temporally located ganglion cells (vs. nasally
	located ganglion cdells)
Is this hard-wired then?	Nope. Electrical activity can shape the mapping.

Regeneration and Repair

Questions	Answers
What happens to denervated	Distal portion degenerates
nerves?	Become supersensitive to transmitters
	Sprouts and forms new synapses
Are fetal / neonatal neurons	Yep
able to re-establish connections	
if cut?	
What about adult neurons in	Yes, but not as specific as neonatal. Little intrinsic
PNS?	ability to navigate to appropriate target.
What about adult CNS?	If they can reach the target, then yes, but usually
	cant go far because of astrocyte proteins.

Visual System and Critical Periods

Questions	Answers
Can visual influence affect	Stupid question!!
cortical connections?	
When is it most important?	During a critical period! (neuroplastic changes occur
	best here) It then becomes more 'fixed'.
What are some examples of	Ocular dominance columns seen by EEG, 2DG
neuroplasticity in the visual	uptake, etc.
system?	
What happens if an eye is lost	Then you don't see the unique columns
in infancy	•
What happens if lost in adult?	Nothing

What does a translucent	Same thing
monocular occluder or lid	Dramatic shrinkage of terminals
sutre do in the first few months	C
of life?	
What is this correlated with?	Reduction of binocularly driven neurons when
	sutured (shift towards ipsi)
What does this suggest about	You gotta correct 'em early or you're f*****.
astigmatisms or congenital	
squints (strabismus)?	
What happens to a Barn Owl if	The inf. colliculus changes to accommodate for the
you put a prism over its eyes at	fact that the world is shifted This allows the sound
birth?	mapping to correlate with visual input.
How much the the auditory	The same amount that the prism switched the visual
receptor fields move by?	input.
What happens to thalidomide	Secondarily affect bone growth to give flippers
babies?	instead of fullsize limbs.
What happens to albinos?	Frequent miswiring of retinogeniculate connections.
Are there any more questions	Yes, one more.
in this Q&A?	
What is the main theme and	There are many innate properties of neurons, as
take home message?	well as important interactions between them that
	are crucial to the dev't of normal function.