Chapter 6
 Exponential and Logarithmic Functions

Section 6-3

Logarithms and Logarithmic Functions

Logarithms

You know that $2^{2}=4$ and $2^{3}=8$. However, for what value of x does $2^{x}=6$?
Mathematicians define this x-value using a logarithm and write $x=\log _{2} 6$. The definition of a logarithm can be generalized as follows.

G) Core Concept

Definition of Logarithm with Base b

Let b and y be positive real numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log _{\mathrm{b}} y$ and is defined as

$$
\log _{b} y=x \quad \text { if and only if } \quad b^{x}=y .
$$

The expression $\log _{b} y$ is read as "log base b of y."

This definition tells you that the equations $\log _{b} y=x$ and $b^{x}=y$ are equivalent. The first is in logarithmic form, and the second is in exponential form.

EXAMPLE 1 Rewriting Logarithmic Equations

Rewrite each equation in exponential form.
a. $\log _{2} 16=4$
b. $\log _{4} 1=0$
c. $\log _{12} 12=1$
d. $\log _{1 / 4} 4=-1$

EXAMPLE 2 Rewriting Exponential Equations

Rewrite each equation in logarithmic form.
a. $5^{2}=25$
b. $\quad 10^{-1}=0.1$
c. $8^{2 / 3}=4$
d. $6^{-3}=\frac{1}{216}$

Parts (b) and (c) of Example 1 illustrate two special logarithm values that you shoald v learn to recognize. Let b be a positive real number such that $b \neq 1$.

Logarithm of 1
$\log _{b} 1=0$ because $b^{0}=1$.

Logarithm of b with Base b
$\log _{b} b=1$ because $b^{1}=b$.

EXAMPLE 3 Evaluating Logarithmic Expressions

Evaluate each logarithm.
a. $\log _{4} 64$
b. $\log _{5} 0.2$
c. $\log _{1 / 5} 125$
d. $\log _{36} 6$

A common logarithm is a logarithm with base 10. It is denoted by $\log _{10}$ or simply by \log. A natural logarithm is a logarithm with base e. It can be denoted by $\log _{e}$ but is usually denoted by In .

Common Logarithm
 $\log _{10} x=\log x$

Natural Logarithm

$$
\log _{e} x=\ln x
$$

EXAMPLE 4 Evaluating Common and Natural Logarithms

Evaluate (a) $\log 8$ and (b) $\ln 0.3$ using a calculator. Round your answer to three decimal places.

SOLUTION

Most calculators have keys for evaluating common and natural logarithms.
a. $\log 8 \approx 0.903$
b. $\ln 0.3 \approx-1.204$

Check your answers by rewriting each logarithm
 in exponential form and evaluating.

Using Inverse Properties

By the definition of a logarithm, it follows that the logarithmic function $g(x)=\log _{b} x$ is the inverse of the exponential function $f(x)=b^{x}$. This means that

$$
g(f(x))=\log _{b} b^{x}=x \quad \text { and } \quad f(g(x))=b^{\log _{b} x}=x .
$$

In other words, exponential functions and logarithmic functions "undo" each other.

EXAMPLE 5 Using Inverse Properties

Simplify (a) $10^{\log 4}$ and (b) $\log _{5} 25^{x}$.

EXAMPLE 6 Finding Inverse Functions

Find the inverse of each function.
a. $f(x)=6^{x}$
b. $y=\ln (x+3)$

Graphing Logarithmic Functions

You can use the inverse relationship between exponential and logarithmic functions to graph logarithmic functions.

C) Core Concept

Parent Graphs for Logarithmic Functions

The graph of $f(x)=\log _{b} x$ is shown below for $b>1$ and for $0<b<1$. Because $f(x)=\log _{b} x$ and $g(x)=b^{x}$ are inverse functions, the graph of $f(x)=\log _{b} x$ is the reflection of the graph of $g(x)=b^{x}$ in the line $y=x$.

Graph of $f(x)=\log _{b} x$ for $b>1 \quad$ Graph of $f(x)=\log _{b} x$ for $0<b<1$

Note that the y-axis is a vertical asymptote of the graph of $f(x)=\log _{b} x$. The domain of $f(x)=\log _{b} x$ is $x>0$, and the range is all real numbers.

EXAMPLE 7 Graphing a Logarithmic Function

Graph $f(x)=\log _{3} x$.

