

540 E Vilas Rd Suite F Central Point, OR, 97502, US

Certificate of Analysis

Kaycha Labs

Shea Body Butter N/A

Sample Type: Lotion

Sample: CE20128010-001

Harvest/Lot ID: N/A

Batch#: 0001

Metrc Source Package #: N/A

Metrc #: N/A

Batch Date: N/A

Sample Size Received: 28 gram Total Weight/Volume: N/A

Retail Product Size: N/A gram

Ordered: 01/28/22

sampled: 01/28/22 Completed: 02/02/22 Expires: 02/02/23

Sampling Method: SOP-024

Page 1 of 2

Feb 02, 2022 | Black Dog Hill LLC

License # R&D

P.O.Box 13891 Salem, OR, 97309, US

PRODUCT IMAGE

SAFETY RESULTS

Pesticides

042C4-042AL

Residuals Solvents

MISC.

CANNABINOID RESULTS

Total THC <L00%

Total CBD 0.987%

Total Cannabinoids 0.987%

	CBDV	CBDVA	CBG	CBD	CBDA	THCV	CBGA	CBN	D9-THC	D8-THC	THCVA	СВС	THCA	СВСА
%	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.987</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.987</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.987</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.987	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
mg/g	<loq< th=""><th><loq< th=""><th><loq< th=""><th>9.87</th><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>9.87</th><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th>9.87</th><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></loq<>	9.87	<l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
LOQ	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	%	%	%	%	%	%	%	%	%	%	%	%	%	%

Cannabinoid Profile Test

Analyzed by Weight Extraction date : Extracted By: 1.008g 01/31/22 03:01:58

Analysis Method -SOP.T.40.020, SOP.T.30.050 Reviewed On - 02/01/22 17:17:49 Batch Date: 01/31/22 15:52:08 Analytical Batch -CE000768POT Instrument Used: HPLC 2030 EID 005 - Low Concentration Running On: 01/31/22 17:13:29

Reagent	Dilution	Consums. ID	Consums. ID
011222.R01	80	D01493069	945C6-945H
010322.08		32009E-1232	F148560
010322.09		436020160AS3 436020338AS2 436021005AS3	0325891
112921.11		C0000642	
		041CD-041C	

"Total THC" and "Total CBD" are calculated values and are an Oregon reporting requirement (OAR 333-064-0100). For Cannabinoid analysis, only delta 9-THC, THCA, CBD, CBDA are ORELAP accredited analytes. Cannabinoid values reported for plant matter are dry weight corrected; Instrument LOQ for all cannabinoids is 0.5 mg/mL, LOQ 'in matrix' is dependent on extraction parameters. FD = Field Duplicate; LOQ = Limit of Quantitation.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on OAR 333-007, OAR 845-025.

Anthony Smith

State License # 010-10166277B9D ISO Accreditation # 99861

02/02/22

Signed On

Signature

Central Point, OR, 97502, US

Kaycha Labs

Shea Body Butter

Sample Type: Lotion

POTENCY BATCH QC REPORT

Page 2 of 2

METHOD BLANK

Cannabinoid	LOQ	Result	Units
CBDV WET	0.002	0	%
CBDVA_WET	0.002	0	%
THCV_WET	0.002	0	%
CBD_WET	0.002	0	%
CBG_WET	0.002	0	%
CBDA_WET	0.002	0	%
CBN_WET	0.002	0	%
CBGA_WET	0.002	0	%
THCVA_WET	0.002	0	%
D9-THC_WET	0.002	0	%
D8-THC_WET	0.002	0	%
CBC_WET	0.002	0	%
THCA_WET	0.002	0	%
CBC-A_WET	0.002	0	%
TOTAL THC	0.002	0	%
TOTAL CBD	0.002	0	%
TOTAL CANNABINOIDS	0.002	0	%
CBDV	0.002	0	%
CBDVA	0.002	0	%
CBG	0.002	0	%
CBD	0.002	0	%
CBDA	0.002	0	%
THCV	0.002	0	%
CBGA	0.002	0	%
CBN	0.002	0	%
D9-THC	0.002	0	%
D8-THC	0.002	0	%
THCVA	0.002	0	%
CBC	0.002	0	%
THCA	0.002	0	%
CBCA	0.002	0	%

Analytical Batch - CE000768POT

Instrument Used: HPLC 2030 EID 005 - Low Concentration

LCS

Cannabinoid	LO	Q	Recovery	Units	Recovery Limits
CBG_WET	0.00)2	102.3	%	70-130
CBD_WET	0.00	02	102.2	%	70-130
CBDA_WET	0.00	02	103.5	%	70-130
THCV_WET	0.00)2	111.8	%	70-130
CBGA_WET	0.00)2	97.4	%	70-130
CBN_WET	0.00	02	102.8	%	70-130
D9-THC_WET	0.00)2	102.1	%	70-130
CBC_WET	0.00	02	107.6	%	70-130
THCA_WET	0.00	02	101.6	%	70-130
CBC-A_WET	0.00)2	93	%	70-130

Analytical Batch - CE000768POT

Instrument Used: HPLC 2030 EID 005 - Low Concentration

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, pb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on OAR 333-007, OAR 845-025.

Anthony Smith

State License # 010-10166277B9D ISO Accreditation # 99861

Signature

02/02/22

Signed On