Pearson
 Edexcel

Mark Scheme
(Results)

Summer 2019

Pearson Edexcel GCSE
In Chemistry (1CH0) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 1CH0_1F_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1	An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2	An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1 a and $1 b$	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and $2 b$		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

Question number	Answer \quad The only correct answer is C.	Mark
$\mathbf{1 (a)}$	\mathbf{C} freezingA is incorrect because condensation is when a gas changes into a liquid. \mathbf{B} is incorrect because evaporation is when a liquid changes into a gas. Dis incorrect because melting is when a solid changes into liquid.	(1)

Question number	Answer	Mark
$\mathbf{1 (b) (i)}$	2 / two (minutes)	(1)

Question number	Answer	Additional guidance	Mark
1(b)(ii)	$6-2(=4) / 4 /$ four	any other manipulation of numbers leading to the answer 4 scores 0	(1)

Question number	Answer	Additional guidance	Mark
1(c)(i)	Z	allow z	(1)

Question number	Answer	Additional guidance	Mark
1(c)(ii)	\mathbf{Y}	allow y	(1)

(Total for Question 1 = 7 marks)

Question number	Answer	Additional guidance	Mark
2(a)	\bullet stainless steel does not \{rust / corrode\} ORA (1)	allow stainless steel harder	(2)

Question number	Answer	Additional guidance	Mark
2(b)	pins do not bend (1)	ignore less likely to break allow less malleable	$\mathbf{(1)}$

Question number	Answer	Additional guidance	Mark
2(c)(i)	An explanation to include		(3)
	- magnalium has a lower density than aluminium ORA (1) - magnalium is stronger than aluminium ORA (1) magnalium has a higher resistance to corrosion than aluminium ORA (1)	allow magnalium lighter	

Question number	Answer	Additional guidance	Mark
2(c)(ii)	5.0 with or without working scores 2	allow any sig fig	(2)
	$\frac{3.15}{63.0}(1) \times 100(1)$ $(=5.0)$	if fraction inverted then $\times 100=2000$ allow (1) for 20 allow (1) allow any fraction using data $\times 100(1)$	

Question number	Answer	Mark
3(a)	B high melting point The only correct answer is B.	(1)
	A, C and D are incorrect because good conductor of electricity, malleable and shiny when cut or polished, are properties of both transition metals and group 1 metals, not just transition metals.	

Question number	Answer	Additional guidance	Mark
3(b)	A description to include two from	\{colour / blue\} fades / colourless solution forms (1)	stays colourless (0) turns colourless (1) ignore wrong starting colour ignore clear
	• (red-brown) solid forms (1)	allow \{red-brown\} precipitate/ppt	
• magnesium disappears (1)	allow dissolves allow magnesium blackens		

Question number	Answer	Additional guidance	Mark
3(c)(i)	oxygen	allow O_{2}	(1)

Question number	Answer	Additional guidance	Mark
3(c)(ii)	A description to include three from - clean iron nails (1) - place a nails into test tubes of water and sea water (1) - leave test tubes for a period of time (1) - observe the tubes and record any changes to compare \{appearance/mass\} (1)	allow correct idea of timing (1)	(3)

Question number	Answer	Additional guidance	Mark
3(c)(iii)	$0.68 \times 100(1)$ $(=136(\mathrm{~g}))$		(1)

(Total for Question 3 = 8 marks)

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 4(a) | A air The only correct answer is \mathbf{A}. | (1) |
| | B is incorrect since carbon dioxide is a compound and not a mixture.
 C and \mathbf{D} are incorrect because gold and titanium are both metallic elements and not mixtures. | |

Question number	Answer	Additional guidance	Mark
4(b)(i)	to measure the temperature of the \{water vapour / steam / gas $\}$ passing into the condenser	to measure the boiling point of the water / the vapour should be at $100^{\circ} \mathrm{C}$ when collected allow does not measure accurate boiling point where thermometer is on the diagram (or words to that effect)	(1)

Question number	Answer	Additional guidance	Mark
4(b)(ii)	beaker not under condenser exit / water entering condenser in wrong place / water flow in condenser wrong way round	ignore references to no Bunsen burner / clamps shown allow beaker not under where (condensed) water comes out /no \{anti-bumping granules / chips\}	(1)
allow beaker \{is too far away (from the condenser exit)/ too			
far to the right / is not in the right place / needs to be closer\}			
reject water out (without reference to end of condenser)			

Question Number	Answer	Additional guidance	Mark
4(c)(i)	(2) (3) 6415		
any two in the correct order and adjacent to each other max (1)	$64 / 15 / 41$ next to each other in this order in any position (1)	(2)	

Question number	Answer	Additional guidance	Mark
4(c)(ii)	An explanation linking	• mixture \mathbf{T} (1) because it gives \{the greatest number / 5\} spots (1)	allow dots or other suitable descriptor allow more \{spots / separated (coloured) substances $\}$ ignore coloured substances (alone) / colours / references to spots moving further up the paper

Question Number	Answer	Additional guidance	Mark
4(c)(iii)	0.29 with or without working scores 2 $\begin{align*} \mathrm{R}_{\mathrm{f}} & =\frac{2.30}{8.00}(=0.2875) \tag{1}\\ & =0.29 \end{align*}$	$\begin{array}{r} \text { allow } \frac{8.00}{2.30} \\ =3.5(1) \end{array}$ (other way round for 1 mark) $\begin{aligned} & 8.00+2.30=10(1) \\ & 8.00-2.30=5.7(1)(2 \mathrm{sf}) \\ & 8.00 \times 2.3(=18)(2 \mathrm{sf}) \end{aligned}$	(2)

(Total for Question 4 = 9 marks)

Question number	Answer	Mark
5(a)(i)	A a balance The only correct answer is \mathbf{A}.	(1)
	B is incorrect because a pipette is used to measure out a volume of liquid and is not used to find the mass of a metal. C is incorrect because a stopwatch is used to measure time and is not used to find the mass of a metal. D is incorrect because a thermometer is used to measure temperature and is not used to find the mass of a metal.	

Question number	Answer	Additional guidance	Mark
5(a)(ii)	Any two from the following		(2)
	• (same) volume of acid (1) • (same) concentration of acid (1) - (same) size of metal (pieces) (1)	allow amount / mass of acid allow strength / pH allow surface area	
	(same) temperature (1)		

Question number	Answer	Additional guidance	Mark
5(a)(iii)	copper is \{not reacting / no reaction / unreactive / low in reactivity series / not reactive enough\}	allow less reactive (than hydrogen)	
ignore inert (alone)			

Question number	Answer	Additional guidance	Mark		
5(a)(iv)	$\mathrm{MgCl}_{2}(\mathrm{aq})(1)$ $\mathrm{H}_{2}(\mathrm{~g})(1)$	allow AQ allow G			
$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathbf{g})$				\quad	(2)
:---					

Question number	Answer	Additional guidance	Mark
$\mathbf{5 (b) (\mathbf { i })}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$	allow $\mathrm{SO}_{4} \mathrm{~K}_{2}$ allow $\left(\mathrm{K}^{+} \mathrm{SO}_{4}{ }^{2-}\right.$ (both charges needed \& allow in reverse) reject incorrect subscript and superscripts (both charges needed \& allow in reverse) reject incorrect subscript and superscripts	(1)

Question number	Answer	Additional guidance	Mark
5(b)(ii)	5.22 with or without working scores 2		(2)
	$\frac{5.22+5.24+5.21 ~(=5.2233) ~(1) ~}{3}$ $=5.22$ (1)	$5.22+5.24+5.21=15.67$ (MP1 does not score) allow $15.67(1)($ ie not divided by 3 but MP2 scores as answer to $2 d p)$	

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 6(a) | B gold The only correct answer is B. | (1) |
| | A, \mathbf{C} and \mathbf{D} are incorrect because calcium , iron and magnesium respectively, are all found chemically
 combined to other elements in the Earth's crust. | |

Question number	Answer	Additional guidance	Mark		
6(b)(i)	zinc oxide + carbon \rightarrow zinc + carbon dioxide zinc oxide + carbon \rightarrow (1) \rightarrow zinc + carbon dioxide (1)	allow reactants on LHS or products on RHS in either order	(2)		
allow $2 \mathrm{ZnO}+\mathrm{C} \rightarrow 2 \mathrm{Zn}+\mathrm{CO}_{2}(2)$					
unbalanced equation (1)					
ignore state symbols					
allow $=$ for \rightarrow				\quad	
:---					

Question number	Answer	Additional guidance	Mark
6(b)(ii)	reduction	allow phonetic spellings	(1)

Question number	Answer	Additional guidance	Mark
6(c)(i)	five / 5 (ions)	allow 2 + 3	(1)

Question number	Answer	Mark
6(c)(ii)	$2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$	(2)

Question Number	Answer	Additional guidance	Mark
6(d)(i)	C B D A (2)		
any two in the correct order and adjacent to each other max (1)	CB / BD / DA next to each other in this order in any position (1) allow lower case for letters c b d a	(2)	

Question number	Answer	Additional guidance	Mark
6(d)(ii)	Any two from the following -conserves \{natural reserves of raw materials/ ore / aluminium (ore) (1) - less damage to \{landscape / habitats\} / less \{noise /dust (pollution)(1) - less \{energy / electricity\} required (to process aluminium waste compared to extracting aluminium from its ore) (1) - less waste metal goes into landfill (1) \{pollution / environment / resources\} needs to be qualified	less waste needs to be qualified	
ignore 'less mining (of ore)' which is in stem			

Question number	Answer	Additional guidance	Mark
7(a)(i)	phosphorus /potassium /nitrogen	accept phonetically correct spellings	
		allow $\mathrm{P} / \mathrm{K} / \mathrm{N}$	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (a) (i i) ~}$	$\mathrm{KOH}+\mathrm{HNO}_{3} \rightarrow \quad \mathrm{KNO}_{3}(1)+\mathrm{H}_{2} \mathrm{O}(1)$	incorrect balancing of correct species 1 mark max allow $\mathrm{OH}_{2} / \mathrm{HOH} / \mathrm{NO}_{3} \mathrm{~K}$	(2)

Question number	Answer	Additional guidance	Mark
7(b)(i)	reversible	allow equilibrium / equilibria /dynamic equilibrium ignore static equilibrium	(1)

Question number	Answer	Additional guidance	Mark
7(b)(ii)	NH_{3}	allow $\mathrm{H}_{3} \mathrm{~N}$ reject $\mathrm{NH} 3, \mathrm{NH}^{3}$	(1)

Question number	Answer	Mark
7(b)(iii)	world ammonia production increases over time	(1)

Question number	Answer	Additional guidance	Mark
7(c)	water	allow $\mathrm{H}_{2} \mathrm{O}$ reject $\mathrm{H}^{2} \mathrm{O} / \mathrm{OH}^{2}$	(1)

| Question
 number | Indicative content | Mark |
| :--- | :--- | :--- | :--- |
| *7(d) | Answers will be credited according to candidate's deployment of knowledge and understanding of the
 material in relation to the qualities and skills outlines in the generic mark scheme.
 The indicative content below is not prescriptive and candidates are not required to include all the material
 which is indicated as relevant. Additional content included in the response must be scientific and relevant. | |
| | A01 (3 marks) A02 (3 marks) | EXP |
| (6) | | |

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2))
Level 2	3-4	- Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	- Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

General additional guidance - the decision

within levels

Eg - At each scientific coherency of what is stated backed up by planning detail will help place the answer at the top, or the bottom, of that level.

Possible candidate responses

- add sulfuric acid using a burette to ammonium solution
- use a pipette to measure out the ammonia solution and fill a burette with sulfuric acid
- mix correct volumes of sulfuric acid and ammonia solution together without indicator
- heat the ammonium solution until crystals start to form

Possible candidate responses

- use a pipette to measure out the ammonia solution into a conical flask add few drops of indicator, add acid from a burette to ammonia solution. Crystallise the ammonium sulfate solution.
- use a pipette to measure out the ammonia solution. Add sulfuric acid using a burette to ammonia solution. Mix correct volumes of sulfuric acid and ammonia solution together without indicator to produce ammonium sulfate solution.
- carry out a titration adding acid to ammonia to find amounts of acid and ammonia solution needed. Mix correct amounts of sulfuric acid and ammonia solution together without indicator. Crystallise the ammonium sulfate solution.

Level 3	$\begin{aligned} & 5- \\ & 6 \end{aligned}$	Additional guidance Describes all three stages in the preparation of the ammonium sulfate crystals in some detail to include without use of indicator (6 marks) OR two stages in detail to include repeating without indicator (5 marks)	Possible candidate responses use a pipette to measure out the ammonia solution into a conical flask. Add a few drops of indicator. Add acid from a burette to ammonia solution, swirling flask, until indicator just changes colour. Mix correct volumes of sulfuric acid and ammonia solution together without indicator to produce ammonium sulfate solution. Heat the ammonium sulfate solution until crystals start to form. Leave to cool and filter off crystals. - use a pipette to measure out the ammonia solution into a conical flask. Add a few drops of indicator. Place flask on white tile. Fill a burette with sulfuric acid and read level on burette. Add acid to ammonia solution, swirling flask, until indicator just changes colour. Read level on burette. Use the results of titration, mixing the correct volumes of sulfuric acid and ammonia leaving out indicator.

Question number	Answer	Additional guidance	Mark
8(a)(i)	any two from \mathbf{E}, \mathbf{G} and \mathbf{X}	allow mark if all three given for E allow $\mathrm{B} /$ boron for G allow $\mathrm{O} / \mathrm{O}_{2}$ / oxygen for X allow Ar / argon allow use of lower case letters reject answers with any other letters / element names	(1)
Question number	Answer	Additional guidance	Mark
8(a)(ii)	any two from A, E and G	allow mark if all three given for A allow Li / lithium for E allow $\mathrm{B} /$ boron for G allow $\mathrm{O} / \mathrm{O}_{2}$ / oxygen allow use of lower case letters reject answers with any other letters / element names	(1)
Question number	Answer	Additional guidance	Mark
8(a)(iii)	A / J	allow mark if both given for A allow Li / lithium for J allow Na / sodium allow use of lower case letters reject answers with any other letters / element names reject answers with + or - charges	(1)

Question number	Answer	Additional guidance	Mark
8(b)(i)	An explanation linking:		(2)
	• (atoms with) same(number of) protons (1) (atoms with) different (number of) neutrons (1)	ignore any mention of electrons reject answers in terms of elements (plural) but allow element (singular)	

Question number	Answer	Mark
$\mathbf{8 (b (b i)}$	A 5 protons is the only correct answer	
B is not correct because there are 5 or 6 neutrons		
C is not correct because the atomic number is 5		
D is not correct because there are 5 or 6 neutrons	(1)	

Question number	Answer	Additional guidance	Mark
8(c)	2.8.8	$\begin{array}{r} \text { allow } 2,8,8 \\ 2 / 8 / 8 \\ 288 \end{array}$ or other separator allow correct electron shell diagram	(1)
Question number	Answer	Additional guidance	Mark
8(d)	MP1 for dividing by atomic mass $\begin{array}{rll} \text { A } & : & \mathbf{G} \tag{1}\\ \frac{3.5}{7} & : & \frac{4.0}{16} \end{array}$ MP2 for deriving ratio from MP1 OR $0.5: 0.25$ $\begin{equation*} 2: 1 \tag{1} \end{equation*}$ MP3 for ratio in MP2 to formula empirical formula $\mathbf{A}_{\mathbf{2}} \mathbf{G}$	$\mathrm{A}_{2} \mathrm{G}$ with no relevant working (1) ONLY $\mathrm{AG}_{2}(0)$ For MP2: If they go on to calculate a different ratio in addition to 0.5:0.25 or 2:1 do not award MP2 ecf on step 1: if inverted, $\begin{aligned} & \frac{7}{3.5} \\ & : \frac{16}{4.0}(0) \\ = & 2 \\ \text { or } 1 & : 4 \\ & \mathrm{AG}_{2} \end{aligned}$ allow 1 in empirical formula allow Li for A and O for G do not penalise incorrect case in formula	(3)

Question number	Answer	Additional guidance	Mark
8(e)	shared pair of electrons in right hand overlap(1) rest of molecule with 4 electrons drawn in outer shell of O only (1)	EXP $\mathbf{(2)}$	
MP2 dependent on MP1			
allow x or • or combinations thereof for any electrons			
ignore inner shells of electrons even if incorrect			

Question number	Answer	Additional guidance	Mark
9(a)(i)	(squeaky) pop / gas burns / water forms	allow explosion / bang / flame / fire / energy released ignore: reaction occurs / ignites / set alight ignore references to splints (glowing or lighted)	(1)

Question number	Answer	Additional guidance	Mark
9(a)(ii)	A description to include - volumes going up: (oxygen/ hydrogen/ gas) increase (with time) / volume (directly) proportional to time (1) - quantitative comparing hydrogen and oxygen: (volume of) hydrogen double (volume of) oxygen / ORA / 2:1 ratio (1)	allow hydrogen goes up by $4\left(\mathrm{~cm}^{3}\right)$ each time / by $2 \mathrm{~cm}^{3}$ per minute / equivalent for oxygen for MP1 explicit reference needed to a ratio and not just quoting 2 figures allow amount in place of volume throughout twice as much hydrogen produced as oxygen (1) rate of hydrogen production double that of oxygen (2)	(2)

Question number	Answer	Mark
$\mathbf{9 (b)}$	C lead and bromine is the only correct answer	(1)
	A is incorrect because lead is produced at the cathode	
D is incorrect because lead and bromine are produced		

Question number	Answer	Additional guidance	Mark
9(c)	An explanation linking:		(2)
	(calcium) nitrate $\{$ is soluble/ dissolves\}/ (calcium) carbonate \{is insoluble/ does not dissolve\} (1)	so ions \{free to move in solution / not free in solid\} (1)	calcium nitrate dissolves so ions can move (2) or reverse argument for calcium carbonate

Question number	Indicative content	Mark
*9(d)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlines in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. A01 (6 marks) - copper atoms form copper ions at anode - (copper atoms are oxidised / lose electrons) - $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}$ - copper ions pass into solution - copper ions move to / are attracted by the cathode - cathode increases in size / gains mass - pink/ brown colour on the surface of the cathode - solid copper deposited on the cathode - (copper ions are reduced/gain electrons) - copper ions form copper atoms - $\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}$ - copper sulfate solution is blue colour - colour remains same since for every copper ion entering the solution at the anode, one is removed from the solution at the cathode - concentration of copper sulfate (solution) remains the same - solid is the insoluble impurities falling from the anode	(6)

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) - Presents a description which is not logically ordered and with significant gaps. (AO1)
Level 2	3-4	- Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) - Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing.(AO1)
Level 3	5-6	- Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) - Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels Eg - At each level, as well as content, the scientific coherency of what is stated backed up by further detail will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance A simple statement about one of the three observations	Possible candidate responses - the cathode increases in size and anode decreases in size - solid beneath the anode is the impurities - the amount of copper in solution stays the same / same blue colour throughout
Level 2	3-4	Additional guidance Explains at least one of the observations OR gives two or more partial explanations	Possible candidate responses - solid copper deposits on the cathode, so size increases - solid beneath the anode is the insoluble impurities - copper ions moving and direction from anode to cathode
Level 3	5-6	Additional guidance Explains at least two observations OR at least one in detail	Possible candidate responses - the ions move to the correct electrodes linked with the correct change in size of both electrodes - colour does not change since copper ions enter solution at anode copper ions removed from solution at cathode - copper atoms form copper ions at the anode and pass into the solution, so size of anode decreases; copper ions in the solution are attracted to the cathode

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a)}$	$8.000-6.213=(1.787)(\mathrm{g})$	allow $1.8,1.79$	$\mathbf{(1)}$

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (i)}$	97.3 (\%) with or without working scores 2 $5.450(1) \times 100$ 5.600	if fraction inverted then $\times 100=102.75 \ldots$ (3 or more sig fig) allow (1)	
for 0.973 allow (1)			
$=97.3214 \ldots$			
$=97.3(\%)(1)$	MP2 only for correctly $\times 100$ some figure derived from the data given eg 5.600-5.450 $=15(\%)$	(2)	

Question number	Answer	Mark
$\mathbf{1 0 (b) (i i) ~}$	A some solid was lost from the crucible is the only correct answer	(1)
	B is incorrect because this would increase mass	
C is incorrect because this would not alter mass		
D is incorrect because this would increase mass		

Question number	Answer	Additional guidance	Mark
10(c)(i)	An explanation linking - \{rate/ mass loss\} is slowing down (1) - as amount of reactant falls (1) OR - mass decreases (1) - as further decomposition occurs/ reaction continues / \{gas/ CO_{2} \} \{is produced/ escapes/ lost $\}$	allow amount of calcium carbonate decreases do not allow 'as time goes on' for MP2; must explain in terms of a reaction	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (c) (i i) ~}$	mass may decrease further / not heated to constant mass / last two figures not the same	allow mass is still decreasing reject mass not gone to 0 ignore there is still 5.2g solid	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (d) (i)}$	100 with or without working scores 2	ignore any units ecf for MP2 if using 12,16 and 40, using addition and multiplication only $=100(1)$	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (d) (i i) ~}$	56\% without working scores 0 $\frac{56}{100}(1)$	$56 /$ answer to 4(d)(i) (1) $\times 100(1)$ MP2 only for correctly $\times 100$ some figure derived from the data given 100% scores 0	(2)
	$(\times 100)=56(\%)(1)$		

Pearson Education Limited. Registered company number 872828

