Pearson

 EdexcelMark Scheme (Results)

Summer 2019

Pearson Edexcel GCSE
In Chemistry (1CH0) Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 1CHO_2F_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and $2 b$		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3 a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3 b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

Question number	Answer	Mark
$\mathbf{1 (a)}$	C photosynthesis is the only correct answer	$\mathbf{1}$
	\mathbf{A} and \mathbf{B} are processes that required oxygen	
is a process that does not involve oxygen		

Question number	Answer	Additional guidance	Mark
1(b)(ii)	$\begin{aligned} & \text { MP1: } \frac{21}{100}(1)(=0.21) \\ & \\ & \text { MP2 : } 0.21 \times 300(1) \\ & (=63)\left(\mathrm{cm}^{3}\right) \end{aligned}$	$63\left(\mathrm{~cm}^{3}\right)$ with no working scores 2 marks $300 / 4.76=63(2)$ $300 / 4.8=62.5(2)$ allow $21 \times 300(1)(=6300)$ allow 300 (1) (=3) 100	(2)

Question number	Answer	Additional guidance	Mark
1(c)	1 mark for each line	Each line 1 mark Do not award mark if more than one line joins the left hand boxes with those on the right	(2)

Question number	Answer	Mark
1(d)	B a glowing splint will relight when placed in the gas	(1)

Question number	Answer	Additional guidance	Mark
2(a)(i)	halogens	reject halide	(1)
	or		

Question number	Answer	Additional guidance	Mark
2(a)(ii)	noble gases	Do not allow gases alone	(1)
	or		
	inert gases		

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \text { 2(b) } & \text { C yellow-green red-brown is the only correct answer } & \text { (1) } \\ \text { A gives the colours for iodine vapour and chlorine gas } \\ \text { B gives the colours for solid iodine and iodine vapour } \\ \text { D gives the colours for bromine liquid and iodine vapour }\end{array}\right]$

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 2(c) | D liquid solid is the only correct answer | (1) |
| | A, B and C are incorrect because bromine is a liquid and iodine is a solid at $50^{\circ} \mathrm{C}$ | |

Question number	Answer	Additional guidance	Mark
2(d)	accept any number in the range 1.4 - 3.5 accept value either on answer or in the space in the table	Do not allow number below 1.4 number of decimal places	(1)
		Do not allow negative numbers	
Do not allow numbers greater than 3.5			

Question number	Answer	Additional guidance	Mark
2(e)	An explanation linking the points in one of the pairs EITHER - argon is \{inert / a noble gas\} OR argon has /atoms have) \{full / 8 electrons in\} outer shell (1) - so (it) does not react (with metal filament) OR (argon/atoms) do not \{gain / lose / share electrons\} OR - oxygen is reactive (1) - (air/oxygen) reacts with metal filament / forms metal oxide (1)	so metal does not burn/ combust (in argon) so (argon) does not \{burn / combust\} with metal (filament) so (argon) \{is unreactive / less reactive / not very reactive / inactive \} (with metal filament) ignore air for MP1 here allow metal burns	(2)

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { 3(a) } & & \text { note } \mathbf{n} \text { must be present on the repeating unit }\end{array}\right]$ (3)

Question number	Answer	Mark		
3(c)				

Question number	Answer	Additional guidance	Mark
3(d)	MP1 : calculation $24600 \times 42(1)(=1033$ 200) MP2 : answer to 3 sig figs $=1030000 / 1.03 \times 10^{6}(1)$ (to 3 sig figs)	without working: $1030000-2$ marks $1033200-1$ mark	(2)
	allow $24600 / 42=586(1)$		

Question number	Answer	Additional guidance	Mark
4(a)	(top pan) balance (1)	allow (weighing) scale(s)	(1)

Question number	Answer	Additional guidance	Mark		
4(b)	An explanation linking		(2)		
	• temperature rises / increases (by $\left.11^{\circ} \mathrm{C}\right)(1)$				
allow gets hotter / water heats up					
\{temperature / it $\}$ goes up					
Ignore heat increasing for MP1					
allow heat / energy \{given out / released to					
surroundings $\}$					
reject endothermic for MP2				\quad	
:---					

Question number	Answer	Mark
4(c)(i)	c is the only correct answer A is the hazard symbol for corrosive substances B is the hazard symbol for substances that are harmful to the environment D is the hazard symbol for flammable substances	(1)

Question number	Answer	Additional guidance	Mark
4(c)(ii)	wear \{goggles / safety glasses\} / wear gloves	allow eye protection ignore tie long hair back ignore safety clothing / ppe	(1)
Question number	Answer	Additional guidance	Mark
4(d)	put a lid on / put cover on top / lag beaker / use insulation / use polystyrene cup (1)	allow any material around the beaker that prevents heat loss eg cotton wool /(aluminium) foil	(1)
Question number	Answer	Additional guidance	Mark
4(e)	$\begin{aligned} & \text { MP1: using volume }=\frac{\text { mass }}{\text { concentration }} \\ & \text { MP2: } \quad \begin{aligned} & \text { volume }=\frac{9.0}{12}\left(\mathrm{dm}^{3}\right)(1) \\ &\left(=0.75 \mathrm{dm}^{3}\right) \end{aligned} \\ & \text { MP3: converting volume to } \mathrm{cm}^{3}=0.75 \times 1000(1) \\ & \\ & \quad\left(=750\left(\mathrm{~cm}^{3}\right)\right) \end{aligned}$	$\begin{aligned} & \text { without working } \\ & 750 \mathrm{~cm}^{3} \quad(3) \\ & 0.75\left(\mathrm{dm}^{3}\right)(2) \\ & \frac{12}{9}(0) \times 1000(1)=1333 \mathrm{~cm}^{3} \end{aligned}$	(3)

Question number	Answer	Mark
$\mathbf{5 (a) (\mathbf { i })}$	$x=6(1)$ $y=14(1)$	(2)

Question number	Answer	Mark
5(a)(ii)	$25(\mathrm{~g})$	(1)

Question number	Answer	Additional guidance	Mark
5(b)(i)	4 electrons shown between the 2 carbon atoms	electrons may be shown as dots, crosses or as a mixture	(1)

Question number	Answer	Additional guidance	Mark
5(b)(ii)	carbon monoxide / carbon / soot	allow CO / C ignore carbon dioxide	(1)

Question number	Answer	Additional guidance	Mark
5(c)	An explanation linking		(2)
	- (molecules of X) contain double bonds / C=C (1)		
- only contain carbon and hydrogen atoms (1)			

| | | |
| :--- | :--- | :--- | :--- |
| Question
 number | Answer | Additional guidance |
| 5(d) | An explanation linking any two of the following | |
| | - A reacts with bromine (water) (1)
 (therefore) \mathbf{A} is unsaturated (1) | (2)
 OR
 allow \mathbf{A} is alkene / B is alkane (1)
 decolourise (1) |

Question number	Answer	Additional guidance		
6(a)	Any suitable container for measuring volume of $100 \mathrm{~cm}^{3} \mathrm{eg}$ measuring cylinder	allow burette / pipette ignore beaker, conical flask, measuring jug		
Question number Answer Additional guidance (b) An explanation linking -\{hydrogen / gas\} formed / OWTTE (1) escapes (from the flask) (1) (b) allow released (from the flask) ignore references to magnesium reacting				
:---				

Question number	Answer	Additional guidance	Mark
6(c)	An explanation linking - MP1 : fewer reacting particles left / some particles reacted (1) - MP2: fewer collisions (1) - MP3: (fewer) frequent (collisions) (1)	for full marks, reference needs to be made to particles in answer allow more particles at the start (than at the end) allow less magnesium / less reactants (1) allow 'less' ignore particle speed allow (fewer collisions) per \{second / unit time\} (less/fewer) frequent collisions scores MP2 and MP3	(3)

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \mathbf{6 (f) (i)} & \text { makes it faster / increases rate / lowers activation energy } & \begin{array}{l}\text { accept speeds it up / increases collision rate } \\ \text { allow shorter reaction time / alternative } \\ \text { reaction pathway / it could be carried out at a } \\ \text { lower temperature } \\ \text { ignore other aspects of catalysis eg is not used } \\ \text { up } \\ \text { ignore 'slows down the activation energy' } \\ \text { ignore speeds up reaction time }\end{array} & \text { (1) }\end{array}\right\}$

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (f) (i i)}$	Any three experimental points to include MP1 : use known mass of catalyst in a reaction / find mass of catalyst before reaction (1)		(3)
	MP2 : after reaction \{remove / filter\}, wash \& dry (1) MP3 : find mass of catalyst afterwards / mass of catalyst unchanged (1)	calculate difference in final and initial masses	

Question number	Answer	Mark
7(a)(i)	An explanation linking one of the following pairs	(2)
	- the test only detects that ion (1)	
	OR so no confusion with other ions (1)	
	OR if same result is given by more than one ion (1)	
	- do not know which ion is present (1)	

Question number	Answer	Additional guidance	Mark
7(a)(ii)	carbon dioxide	allow CO_{2} ignore $\mathrm{CO}^{2} / \mathrm{CO}_{2} / \mathrm{CO}_{2}$	(1)

Question number	Answer	Additional guidance	Mark
7(a)(iii)		chloride ion - white precipitate (1) iodide ion - yellow precipitate (1) sulfate ion - white precipitate (1) 1 mark for each line If more one line connects a left hand box to those on the right, do not award that mark	(3)

Question number	Indicative content
$\boldsymbol{* 7 (b)}$	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant.

AO1 (3 marks) AO3 (3 marks)

- sodium, potassium and calcium ions detected by flame test
- clean flame test wire with hydrochloric acid
- dip wire into solid
- hold wire in flame
- if flame is yellow - sodium
- if flame is lilac - potassium
- if flame is orange-red - calcium
- if no flame colour - could be aluminium
- calcium and aluminium ions detected using sodium hydroxide solution
- dissolve white solid in water
- add drops of sodium hydroxide solution
- white ppt shows calcium or aluminium ions
- no ppt shows sodium or potassium ions
- add more drops sodium hydroxide solution
- if white ppt dissolves to form colourless solution
- is aluminium ions
- if white ppt does not dissolve
- is calcium ions

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels Eg - At each level, as well as content, the scientific coherency of what is stated backed up by planning detail will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance State test OR State the result of a test OR knows that sodium hydroxide solution can be used to test for some metal Gives correct flame colour for more than one metal One test stated and one correct result One test poorly described	Possible candidate responses - use a flame test OR sodium gives a yellow flame OR carry out precipitate test OR use sodium hydroxide - sodium gives a yellow flame and potassium gives a lilac flame - use a flame test, and sodium gives a yellow flame - use sodium hydroxide for a ppt test OR sodium above blue flame
Level 2	3-4	Additional guidance One test poorly described and one correct result for either test OR One test well described States both tests, including sodium hydroxide OR One test well described and at least one correct result Both tests poorly described OR One test poorly described, two correct results from either test	Possible candidate responses sodium (compound) above blue flame gives yellow flame OR add sodium hydroxide and aluminium gives white ppt - sodium (compound) on wire/splint and in blue flame OR dissolve solid in water and add sodium hydroxide - do flame test; use sodium hydroxide for a ppt test OR dissolve solid in water and add sodium hydroxide and aluminium gives white ppt OR sodium (compound) on wire/splint and in blue flame gives yellow flame - sodium (compound) above the blue flame; use sodium hydroxide for a ppt test OR sodium (compound) above the blue flame gives a yellow flame, carry out precipitate test, white ppt formed
Level 3	5-6	Additional guidance Both tests poorly described, a correct result for both tests Both tests well described One test well described, one test poorly described, and a correct result for either test Both tests well described, and a correct result for both tests	Possible candidate responses - sodium (compound) on wire/splint gives yellow flame AND Add sodium hydroxide and aluminium gives white ppt - dissolve solid in water and add sodium hydroxide AND Sodium (compound) on wire/splint and in blue flame. - sodium(compound) on wire/splint and in blue flame gives yellow flame AND add sodium hydroxide to metal. - Dissolve solid in water and add sodium hydroxide and sodium on wire/splint and in blue flame AND sodium gives yellow flam AND aluminium gives white ppt.

Question number	Answer	Mark
$\mathbf{8 (a)}$	B Crude oil is a mixture of hydrocarbons is the only correct answer	(1)
	Answer A, C and D are factually incorrect	

Question number	Answer	Additional guidance	Mark		
$\mathbf{8 (b) (i)}$	kerosene: (fuel for) aircraft / jets / lamps / cooking / heaters / fire lighters / rocket fuel (1) diesel oil: (fuel for) cars / trains / trucks / lorries / vehicles / tractors / generators / boats (1)	lgnore generic uses such as factories / machines / engines / fuel	(2)		
reject trains, boats				\quad allow ships	
:---					

Question number	Answer	Additional guidance	Mark
8(b)(ii)	any one of - boiling point: low(er) - melting point: low(er) - ignition: easy / easier - viscosity: low(er) / \{runny / runnier\} / thin(ner) - flammability: high(er) - volatility: high(er) - density: low(er)	Note : unless otherwise stated, comparison is kerosene with diesel oil ignore lower number of carbons and hydrogens: lower length of chain: lower /shorter molecule / colour sootiness: diesel has sootier flame accept reverse argument for diesel oil note: property may be implicit in comparison	(1)

Question number	Answer	Additional guidance	Mark
8(c)(i)	An explanation linking - they differ by $\mathbf{C H}_{2}$ / differ by one carbon atom / pentane has one more carbon (1) - they have the same general formula / $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$ / both alkanes (1)	ignore: similar chemical properties, quoting the two molecular formulae, they are both saturated, both have single bonds (only) reject carbon or hydrogen molecules for MP1 ignore same pattern of formula / similar general formula reject same \{chemical / molecular\} formula	(2)
Question number	Answer	Additional guidance	Mark
8(c)(ii)	82.8 with or without working scores 3 correct answer but incorrectly rounded or not to 3sf scores 2 $4 \times 12(1)(=48)$ OR $100(=1.724 \ldots)(1)$ $\frac{48}{58} \times 100(1)(=82.759)$ $=82.8(\mathrm{~g})(1)$	allow ecf but calculation must use 12, 58, 100 if working rounded to 1 dp and carried forward, allow full marks eg $1.72 \times 48=82.56$ (2) or 82.6 (3) allow $\begin{aligned} \frac{100}{58}(1) & (=1.72414) \\ & =1.72(1) \quad \text { (to } 3 \mathrm{sf}) \end{aligned}$ OR $\begin{aligned} \frac{100}{58}(1) \times 12 & (=20.68966) \\ & =20.7(1)(\text { to } 3 \mathrm{sf}) \end{aligned}$ OR $\begin{aligned} 4 \times 12(1) \times 100 & (=4800) \\ & =4.80 \times 10^{3}(1)(\text { to } 3 \mathrm{sf}) \end{aligned}$	(3)

Question number	Answer	Additional guidance	Mark
8(c)(iii)	butane + oxygen \rightarrow carbon dioxide + water (2) butane + oxygen \rightarrow (1) \rightarrow carbon dioxide + water (1)	allow $\mathrm{C}_{4} \mathrm{H}_{10}+6.5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ (2) allow multiples correct formulae no balancing (1)	(2)
allow hydrogen oxide for water			
allow reactants and products in either order			
ignore state symbols			
allow = for \rightarrow			

Question number	Answer		Mark
9(a)	B $\quad 13 \quad 14 \quad 10$ is the only correct answer \mathbf{A} is incorrect because it is the numbers of subatomic particles in the atom not the ion \mathbf{C} is incorrect because it would be an isotope of silicon with $a+4$ charge to it \mathbf{D} is incorrect because it would be another isotope of silicon but with a 3-charge to it.		(1)
Question number	Answer	Additional guidance	Mark
9(b)	2.25/ 2.3 with or without working scores 3 $\mathrm{MgO}=24+16=40(1)$ THEN 1 g Mg forms $\frac{40}{24}(1)=1.67(\mathrm{~g}) \mathrm{MgO}$ 1.35 g Mg forms $\frac{40 \times 1.35}{24}$ (1) MgO $=2.25(\mathrm{~g})$ OR $\mathrm{Mg} \quad \frac{1.35}{24}(1)=0.05625$ $\mathrm{MgO} \quad 0.05625 \times 40(1)=2.25(\mathrm{~g})$	allow ecf for incorrect formula mass allow 48 g Mg forms 80 g MgO (1) (could be under the equation) THEN 1 g Mg forms $\frac{80}{48}(1)=1.67 \mathrm{~g} \mathrm{MgO}$ 1.35 g Mg forms $\frac{80 \times 1.35}{48}$ (1) MgO $=2.25(\mathrm{~g})$ OR $\mathrm{Mg} \quad \frac{1.35}{48}(1)=0.028125$ $\mathrm{MgO} \quad 0.028125 \times 80(1)=2.25(\mathrm{~g})$ Note $40 \times 1.35=54(2)$ or $80 \times 1.35=108$	(3)

Question number	Answer	Additional guidance	Mark
9(c)	$\begin{aligned} & \mathrm{Cl}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HCl}(3) \\ & \mathrm{Cl}_{2}+\mathrm{H}_{2} \rightarrow \text { (1) } \end{aligned}$ $\rightarrow \mathrm{HCl}(1)$ balancing of correct formulae (1)	do not penalise incorrect small/ capital letters for left hand side formulae, do not allow Cl^{2} or Cl 2 , but allow MP3 if correctly balanced allow reactants in either order allow ClH for HCl allow $=$ for \rightarrow allow multiples ignore state symbols if molecules have a + or - charge do not allow mark for formulae but allow MP3 for correct balancing	(3)

Question number	Indicative content	Mark
*9(d)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (3 marks) AO3 (3 marks) - sodium atoms lose electrons - each sodium atom loses one electron - to obtain electronic configuration 2.8 - which is that of sodium ions, Na^{+} - electrons transfer to chlorine atoms - chlorine atoms gain electrons - each chlorine atom gains one electron - to obtain electronic configuration 2.8.8 - which is that of chloride ions, Cl^{-} - sodium ions attract chloride ions - because of opposite charges - ions pack close together - ratio of ions $1: 1$ - ions arranged in lattice - giant (ionic) (structure)	(6)

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels Eg - At each level, as well as content, the scientific coherency of what is stated backed up by use of the information will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional quidance Describes how ions are formed by loss or gain of electrons OR identifies structure type of sodium chloride	Possible candidate responses - atoms \{lose / gain\} electrons - sodium chloride has a giant structure - loose description of a solid ionic structure
Level 2	3-4	Additional guidance Describes formation of sodium ions by loss of electrons or describes formation of chloride ions by gain of electrons OR Describes formation of one ion using electron configurations OR Describes structure type of sodium chloride OR Basic description of ion formation and identifies sodium chloride structure	Possible candidate responses - sodium loses electrons and chlorine gains electrons to form ions - sodium loses \{electrons / 1 electron\} to form sodium ions [incorrect number of electrons lost puts this at the bottom of the level] - chlorine gains \{electrons / 1 electron\} to form chloride ions [incorrect number of electrons gained or 'chlorine ions' puts this at the bottom of the level] - electron shell diagram showing atoms forming ions for either sodium or for chlorine
Level 3	5-6	Additional quidance Describes formation of sodium and chloride ions by loss or gain of electrons AND describes formation of ions using electron configurations. or Describes structure of sodium chloride	Possible candidate responses - \{sodium / Na\} atoms lose 1 electron to form \{sodium ions / Na^{+}(ions) \} and \{chlorine / Cl$\}$ atoms gain 1 electron to form \{chloride ions / Cl^{-}(ions)\} AND - $\mathrm{Na}: 2.8 .1$ becomes $\mathrm{Na}^{+}: 2.8$ and $\mathrm{Cl}: 2.8 .7$ becomes Cl^{-}: 2.8.8 OR as electron shell diagrams showing electron transfer or - sodium and chloride ions have opposite charges and attract each other (to make a giant structure) (could be shown in a diagram)

Question number	Answer	Additional guidance	Mark
10 (a)	An explanation linking - yeast provides enzymes (1) - (at $80^{\circ} \mathrm{C}$) the enzymes \{not effective / denatured\} (1)	allow yeast provides a biological catalyst allow yeast provides zymase allow yeast \{contains/is\} an enzyme allow yeast is denatured ignore enzyme is killed allow yeast grows well at $30^{\circ} \mathrm{C}$ but yeast cells are killed at $80^{\circ} \mathrm{C}$.	(2)

Question number	Answer	Mark
$\mathbf{1 0}$ (b)(i)	B oxidised is the only correct answer	(1)
	A, C and D are factually incorrect	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0}$ (b)(ii)	allow correct dot and cross diagram ignore incorrect bond angles	(2)	
	or correct carboxylic acid group (1) correct methyl group (1)	reject methyl group with additional carbons	
max 1 mark if double bond present 2 carbons			

Question number	Answer	Additional guidance	Mark
10 (c)(i)	A description to include - heat water to increase temperature by $30^{\circ} \mathrm{C}$ (1) AND any two from - extinguish flame (1) - (re-)determine mass of burner containing ethanol (1) - subtract final from initial mass / calculate the change in mass (1)	ignore references to timing allow watch thermometer until the temperature increases $30^{\circ} \mathrm{C}$ / wait for temperature to rise $30^{\circ} \mathrm{C}$ allow put a cap on the burner (to extinguish flame) allow '(re-)weigh the burner'	(3)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (\text { (c)(ii) }}$	vertical axis with linear scale that uses more than half of the edge of the grid (1) all points correctly plotted to $+/-1 / 2$ small square (1) single line of best fit drawn (1)	allow axis not starting at 0	(3)
		allow points joined by straight lines / dot to dot ignore the line after points reject tramlines correct bar chart can gain MP1 and MP2	

Total for Question $10=11$ marks

Pearson Education Limited. Registered company number 872828

