Pearson
Edexcel

Mark Scheme
(Results)

Summer 2019

Pearson Edexcel GCSE
In Chemistry (1CH0) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019

Publications Code 1CH0_1H_1906 MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	$\begin{aligned} & 2 \mathrm{a} \text { and } \\ & 2 \mathrm{~b} \end{aligned}$		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3 a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

Question number	Answer	Additional guidance	Mark
1(a)	$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \text { (2) }$ fully correct balanced equation (2) If not (2), then $\mathrm{H}_{2} \mathrm{O}$ as product in an equation format, regardless of any other errors (1)	Allow $=$, \rightleftharpoons for \rightarrow Ignore all words and state symbols Allow multiples reject formulae with charges Do not penalise small letters e.g allow $\mathrm{h}_{2} \mathrm{O}$ If H 2 O or $\mathrm{H}^{2} \mathrm{O}$ in otherwise fully correct equation, allow (1)	(2)
Question number	Answer	Additional guidance	Mark
1(b)(i)	iron rusts/ corrodes/ reacts \{with oxygen/ water\} / iron oxidises / forms iron oxide	ignore erodes/ corrosive	(1)

Question number	Answer	Additional guidance	Mark
1(b)(ii)	platinum is a transition $\{$ metal/ element $\}$	ignore 'in the middle' etc. ignore any irrelevant/ additional information	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (c)}$	Any two from: - improves the appearance/ shiny (1)	(2)	
	- improves resistance to corrosion/ does not corrode/ prevents reaction with aair/oxygen/water\}/ prevents oxidation (1)	can make e.g. 'gold' object more cheaply ignore durable/ protects unqualified etc. more expensive than it is (1)	ignore 'makes more valuable'

Question number	Answer	Additional guidance	Mark
2(a)(i)	any two from $\mathbf{E , G}$ and \mathbf{X}	allow mark if all three given for E allow B / boron for G allow O / O2 / oxygen for X allow Ar / argon allow use of lower case letters reject answers with any other letters / element names	(1)

Question number	Answer	Additional guidance	Mark
2(a)(ii)	any two from A, E and \mathbf{G}	allow mark if all three given for A allow Li / lithium for E allow $\mathrm{B} /$ boron for G allow $\mathrm{O} / \mathrm{O}_{2} /$ oxygen allow use of lower case letters reject answers with any other letters / element names	(1)

Question number	Answer	Additional guidance	Mark
2(a)(iii)	A / J	allow mark if both given for A allow Li / lithium for J allow $\mathrm{Na} / \mathrm{sodium}$ allow use of lower case letters reject answers with any other letters / element names reject answers with + or - charges	(1)

Question number	Answer	Additional guidance	Mark
2(b)(i)	An explanation linking:	ignore any mention of electrons	
	• (atoms with) same (number of) protons (1)	reject answers in terms of elements (plural) but allow element (singular)	(2)
	(atoms with) different (number of) neutrons (1)	if no other mark: allow same atomic number and different mass number (1)	

Question number	Answer	Mark
2(b(ii)	A 5 protons is the only correct answer	(1)
	B is not correct because there are 5 or 6 neutrons	
C is not correct because the atomic number is 5		
D is not correct because there are 5 or 6 neutrons		

Question number	Answer	Additional guidance	Mark
2(c)	2.8 .8	allow 2,8,8	$2 / 8 / 8$
		288	
		or other separator	
		allow correct electron shell diagram	(1)

Question number	Answer	Additional guidance	Mark
2(d)	MP1 for dividing by atomic mass $\begin{array}{lll} \text { A } & : & \mathbf{G} \\ \frac{3.5}{7} & : & \frac{4.0}{16} \tag{1} \end{array}$ MP2 for deriving ratio from MP1 OR $0.5: 0.25$ $\begin{equation*} 2: 1 \tag{1} \end{equation*}$ MP3 for ratio in MP2 to formula empirical formula $\mathbf{A}_{\mathbf{2}} \mathbf{G}$	$\mathrm{A}_{2} \mathrm{G}$ with no relevant working (1) ONLY $\mathrm{AG}_{2}(0)$ For MP2: If they go on to calculate a different ratio in addition to 0.5:0.25 or 2:1 do not award MP2 ecf on step 1: If inverted, ```\frac{7}{3.5}:\frac{16}{4.0} = 2:4 or 1: 2(1) AG2 (1)``` allow 1 in empirical formula allow Li for A and O for G do not penalise incorrect case in formula	(3)

Question number	Answer	Additional guidance	Mark
3(a)(i)	(squeaky) pop / gas burns / water forms	allow explosion / bang / flame / fire / energy released	
		ignore reaction occurs / ignites / set alight	
ignore references to splints (glowing or lit)	(1)		

Question number	Answer		Mark
3(a)(ii)	A description to include volumes going up: (oxygen/ hydrogen/ gas) increase (with time) / volume (directly) proportional to time (1)	allow hydrogen goes up by $4\left(\mathrm{~cm}^{3}\right)$ each time / by $2 \mathrm{~cm}^{3}$ per minute / equivalent for oxygen for MP1 quantitative comparing hydrogen and oxygen: (volume of) hydrogen double (volume of) oxygen / ORA / 2:1 ratio (1)	(2)
explicit reference needed to a ratio and not just quoting 2 figures amount in place of volume throughout			

Question number	Answer	Mark
3(b)	C lead and bromine is the only correct answer	(1)
	A is incorrect because lead is produced at the cathode	
	B is incorrect because lead and bromine are produced	

Question number	Answer	Additional guidance	Mark
3(c)	An explanation linking:		(2)
	(calcium) nitrate $\{$ is soluble/ dissolves $\} /$ (calcium) carbonate $\{$ \{is insoluble/ does not dissolve\} (1)		
	so ions $\{$ free to move in solution / not free in solid\} (1)	calcium nitrate dissolves so ions can move (2) or reverse argument for calcium carbonate	

Question number	Answer	Additional guidance	Mark
3(d)	$\mathrm{Zn}^{2+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{Zn}(2)$	if not fully correct, allow 1 for $\mathrm{Zn}^{2+}+$ (any number) $\mathrm{e}^{(-)} \rightarrow$ (anything) allow ZN, zn allow multiples reverse reaction scores (0) ignore state symbols $\mathrm{Zn}^{2+} \rightarrow \mathrm{Zn}-2 \mathrm{e}^{(-)}(0)$	(2)

Question number	Answer	Additional guidance	Mark
4(a)	$8.000-6.213=(1.787)(\mathrm{g})(\mathbf{1})$	allow $1.8,1.79$	$\mathbf{(1)}$

Question number	Answer	Additional guidance	Mark
4(b)(i)	$97.3(\%)$ with or without working scores 2	if fraction inverted then $\times 100=102.75 \ldots(3$ or more sig fig) allow (1)	(2)
	$\frac{5.450}{5.600}(1) \times 100$ $=97.3214 \ldots$. $=97.3(\%)(1)$	MP2 only for correctly $\times 100$ some figure derived from the data given	

Question number	Answer	Mark
4(b)(ii)	A some solid was lost from the crucible is the only correct answer	(1)
	B is incorrect because this would increase mass	
C is incorrect because this would not alter mass	D is incorrect because this would increase mass	

Question number	Answer	Additional guidance	Mark
4(c)(i)	An explanation linking - \{rate/ mass loss\} is slowing down (1) - as amount of reactant falls (1) OR - mass decreases (1) - as further decomposition occurs/ reaction continues / \{gas/CO2\} \{is produced/ escapes/ lost\} (1)	allow amount of calcium carbonate decreases do not allow 'as time goes on' for $2^{\text {nd }}$ mark: must explain in terms of a reaction	(2)

Question number	Answer	Additional guidance	Mark
4(c)(ii)	mass may decrease further / not heated to constant mass / last two mass figures not the same	allow mass is still decreasing ignore there is still 5.2 g solid reject mass has not gone to zero	(1)

Question number	Answer	Additional guidance	Mark
4(d)(i)	100 with or without working scores 2 $40+12+3 \times 16(1)$ $=100(1)$ ignore any units ecf for MP2 if using 12,16 and 40, using addition and multiplication only	(2)	

Question number	Answer	Additional guidance	Mark
4(d)(ii)	$\mathbf{5 6 \%}$ without working scores 0	56/answer to 4(d)(i) (1) $\mathbf{5 6}(1)$ 100 $(\times 100)=56(\%)(1)$ MP2 only for correctly $\times 100$ some figure derived from the data given 100% scores 0	

Question number	Answer	Additional guidance	Mark
5(a)(i)	$14(.2)$ with or without working scores 3	If the percentage of non nickel compounds is calculated to give $85.8 \% / 86 \%$ score 2	(3)
	$1 \mathrm{~kg}=1000 \mathrm{~g}(1)$	$\frac{142}{1000}$ or 0.142 will score MP1 and MP2	
	$\frac{142(1)}{1000}$	$\frac{142}{1} \times 100=14200$ scores (1)	
	$\times 100 \%=14(.2)(1)$		

Question number	Answer	Additional guidance	Mark
5(a)(ii)	decontaminates ground / conserves \{nickel / nickel ores / ores\} / allows use of low-grade ore /	Ignore any reference to cost/ better for environment etc. / time / energy	(1)
	specified environmental reason: e.g. less noise due to mining / carbon neutral / less carbon dioxide		

Question number	Answer	Additional guidance	Mark
$\mathbf{5 (b) (\mathbf { i })}$	$2 \mathrm{NiS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{NiO}+2 \mathrm{SO}_{2}$ (2)	allow = for \rightarrow allow multiples all four formulae (1) balancing correct formulae only (1)	if wrong subscript or misuse of capital/small letter e.g. O2, O2, niO, NIS, allow MP1 but cannot score MP2 if more than 4 formulae, can score MP1 but not MP2 ignore state symbols

Question number	Answer	Mark
5(b)(ii)	B the metal produced by electrolysis is very pure is the only correct answer	
	A is incorrect because this is a disadvantage	
C is incorrect because electrolysis is expensive	(1)	
	D is incorrect because heating with carbon can be used	

Question number	Answer	Additional guidance	Mark
5(c)	An answer that describes the following points of application of knowledge and understanding to provide a logical description:	answers describing simple or fractional distillation are allowed - (fractional) distillation (1) - heat/ boil (1) heat indicated)	(3)
- nickel tetracarbonyl \{\{boils/evaporates\} off first / is obtained from top of column/ vapour is condensed by condenser\} ORA (1)	allow 'raise temp. to $50^{\circ} \mathrm{C}^{\prime}$ etc. (temp >42 and <90)		

Question number	Answer	Additional guidance	Mark
6(a)	A description including DECOMPOSITION - heat the (hydrated) \{crystals / solid\} (1) - (solid) goes white/ steam is observed / water produced (1) REVERSE REACTION - add water / water rejoins / water reacts with anhydrous solid (1) - (solid) goes blue (again) / heat is released (1)	ignore anything to do with Le Chatelier etc.. ignore 'closed system' MP4 independent of MP3	(4)
Question number	Answer	Additional guidance	Mark
6(b)	An explanation linking - less purple / lighter/ paler / fades (1) - because less iodine (1)	Ignore equilibrium shifts right, forward reaction favoured reject 'goes colourless' for MP1 reject ALL iodine reacts to give HI for MP2 (credit some iodine reacts / some iodine is used up) ignore 'more HI' ignore forwards reaction is favoured	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (c)}$	$1.8 \ldots \times 10^{24}$ with or without working scores 2	allow $18 \times 10^{23}, 1.81 \times 10^{24}, 1.806 \times 10^{24}$ or any other form of correct answer to 2-4 sig figs	(2)
	$\bullet 3 \times 6.02 \times 10^{23}(1)$	allow $2 \times 6.02 \times 10^{23}=1.2 \times 10^{24}(1)$	

(Total for question 6 = 8 marks)

Question number	Answer	Mark
7(a)	D the metal is oxidised	(1)
	A is incorrect because the reaction is with oxygen	
B is incorrect because the reaction is with oxygen		
C is incorrect because the metal does not decompose		

Question number	Answer	Additional guidance	Mark
7(b)(i)	An explanation linking - stainless steel resistant to \{corrosion/ rusting/ oxidation\} / corrosion rate slower / does not react with \{air/oxygen\} and water - neither rod would rust/ react (in a few days) / there would be no \{rusting / reaction\}/ no change would occur / it would take a long time for any result (1)	Ignore iron corrodes but ALLOW iron corrodes faster than stainless steel / iron rusts but stainless steel does not (1)	(2)

Question number	Answer	Additional guidance	Mark
7(b)(ii)	measuring cylinder accurate enough / accuracy of pipette not needed / no need to be (more) accurate / the volume of water is not critical	allow exact/ precise for accurate allow pipettes only used for accurate/ precise/ exact volumes	(1)

Question number	Answer	Additional guidance	Mark
7(b)(iii)	An explanation linking	(2)	
	(A) the magnesium has \{corroded/ reacted/ oxidised\} / (B) \{rusting / corrosion / oxidation\} has occurred (1) - because magnesium is more reactive than iron / (magnesium has reacted) instead of the iron (1)	MP2 reason - ignore 'sacrificial protection' etc.	MP1 describes reaction that occurs

Question number	Answer	Additional guidance	Mark
7(c)	An explanation linking - \{less oxygen / no oxygen / oxygen is removed\} by the hydrazine (1) - oxygen is needed for \{rusting / reaction\} / corrosion/so oxidation prevented (1)	For MP1 allow ‘oxygen reacts with hydrazine instead of the metal' (1) ignore hydrazine \{displaces/ more reactive than\} oxygen no oxygen so no rusting scores 2	(2)

Question number	Answer	Additional guidance	Mark
7(d)(i)	Haber process (1)	accept phonetically correct spellings e.g Harber	(1)

Question number	Answer	Mark
7(d)(ii)	rate increased / speeded up / quicker / faster (1)	(1)

Question number	Answer	Mark
7(d)(iii)	yield unchanged/ stays same / none (1)	(1)

Question number	Answer	Additional guidance	Mark
8(a)	Any two from: - \{(red-)brown / orange / pink\} solid formed (1) - (some) $\{$ grey/silver\} solid remains (1) - (blue solution) becomes colourless (1)	Ignore substance names - descriptions are required allow \{grey/silver\} solid disappears / reduces / dissolves Answers that include fizzing/ effervescence/ bubbles in addition to correct response have max score of 1 .	(2)

Question number	Answer	Additional guidance	Mark		
8(b)	An explanation linking				
- zinc oxidised (1)					
- because (zinc) lose electrons/ half					
equation (1)					
- copper (ions) reduced (1)					
- because copper (ions) gained					
electrons/ half equation (1)				\quad	(4)
:---					
ignore copper sulfate is reduced					
ignore copper sulfate gains electrons					
marks are independent					
e.g zinc is reduced because it loses electrons $=1$					
zinc is oxidised because it gains electrons =1					

		If no other mark scored allow one mark for oxidation is the loss of electrons and reduction is the gain of electrons	
Question number	Answer	Additional guidance	Mark
8(c)	$0.005 / 5 \times 10^{-3} \mathrm{~mol}$ with or without working scores 3 $M r=63.5+32+4 \times 16(1)(=159.5)$ AND EITHER mass of copper sulfate $=$ $50 / 1000 \times 15.95$ (1) (=0.7975 g) moles $=0.7975 / 159.5(1)(=0.005 \mathrm{~mol})$ OR conc $=15.95 / 159.5(1)\left(=0.1 \mathrm{moldm}^{-3}\right)$ moles $=50 / 1000 \times 0.1=(0.005 \mathrm{~mol})$	2 marks for (MUST show working): 5 0.1 ecf in all stages	(3)

Question number	Answer	Additional guidance	Mark
8(d)	2.8 g with or without working scores 2 $0.043 \times 65(1)(=2.795)$ $=2.8 \mathrm{~g} \mathrm{(1)}$	(2) allow 1 mark for a different calculation using 65 and 0.043, correctly evaluated, with working, rounded to 1 decimal place	

Question number	Answer	Additional Guidance	Mark
9(a)(i)	use pH meter/ pH probe (1)	allow pH paper / Universal indicator	(1)

Question number	Answer	Mark
9(a)(ii)	D ten times higher A is incorrect because a pH difference in 1 reflects a 10 fold difference in $\left[\mathrm{H}^{+}\right]$	(1)
	B is incorrect because a pH difference in 1 reflects a 10 fold difference in $\left[\mathrm{H}^{+}\right]$	
C is incorrect because a lower pH means a higher $\left[\mathrm{H}^{+}\right]$		

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (b) (\mathbf { i })}$	ACID use measuring cylinder / pipette / burette (1) BASE balance / scales / weigh out amount (1)	must name apparatus ignore weigh the liquid	(2)
allow use portion of known mass / use measured			
amount in g / specific mass given [from 0.1 to 10g]			
allow weight for mass			

Question number	Answer	Additional guidance	Mark
9(b)(ii)	START colourless	both START and END required for mark	(1)
	END pink / magenta	ignore clear	

Question number	Answer	Additional guidance	Mark
9(b)(iii)	An explanation linking		(2)
	• \{hydrogen ions/ $\left.\mathrm{H}^{+}\right\}\{$reacted / neutralised $\}(1)$ more $\} \mathrm{OH}^{-}(1)$	allow $\mathrm{H}^{+}+\mathrm{OH}^{-} \square \mathrm{H}_{2} \mathrm{O}(1)$ for MP1	

Question number	Indicative content	Mark
9(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlines in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO3 (6 marks) - A is copper oxide - copper oxide is black - copper oxide reacts with sulfuric acid to make \{copper sulfate / blue solution\} but no gas - \mathbf{B} is magnesium - magnesium is silver coloured - magnesium reacts/ bubbles with water - magnesium reacts with sulfuric acid to give hydrogen / equation - C is sodium hydroxide - sodium hydroxide is white - sodium hydroxide solution is colourless - sodium hydroxide reacts with sulfuric acid to form a colourless solution / equation - sodium hydroxide solution is alkaline - sodium hydroxide has hydroxide ions - D is copper carbonate - copper carbonate is green - carbonates are insoluble	(6)

\square

- copper carbonate reacts with sulfuric acid to form copper sulfate and \{gas / carbon dioxide\}
- copper carbonate reacts with sulfuric acid to form carbon dioxide / equation
- copper sulfate (solution) is blue

Level	Mark	Descriptor
	0	- No rewardable material.
Level 1	1-2	- Deconstructs scientific information but understanding and connections are flawed. An unbalanced or incomplete argument that provides limited synthesis of understanding. - Judgements are supported by limited evidence. (AO3)
Level 2	3-4	- Deconstructs scientific information and provides some logical connections between scientific concepts. An imbalanced argument that synthesises mostly relevant understanding, but not entirely coherently. - Judgements are supported by evidence occasionally. (AO3)
Level 3	5-6	- Deconstructs scientific information and provide logical connections between scientific concepts throughout. A balanced, well-developed argument that synthesises relevant understanding coherently. - Judgements are supported by evidence throughout. (AO3)

Level	Mark	Descriptor	Additional Guidance
	0	No rewardable material.	Read whole answer and ignore all incorrect material/ discard any contradictory material then: No solids are correctly identified/ One solid is identified but no reason is given
Level 1	1-2	Additional Guidance Three solids are correctly identified but only one or none have valid reasoning (2) Two solids are correctly identified and one has valid reasoning (2) Two solids are correctly identified but neither has valid reasoning (1) One solid is correctly identified with a valid reason (1)	Possible candidate response A is copper oxide. D is copper carbonate because carbonates fizz with acid. - 2 correctly identified, one has a sufficient reason (2)
Level 2	3-4	Additional Guidance All four solids are correctly identified but only one or none have valid reasoning -No solid has valid reasoning (3) -One solid has valid reasoning (4) Three solids are correctly identified and at least two have valid reasoning -Three have valid reasoning (4) -Two have valid reasoning (3) Two solids are correctly identified and both have valid reasoning (3)	Possible candidate response A is copper oxide because it has $\mathrm{pH} 7, B$ is magnesium because metals are silver coloured, C is sodium hydroxide because it reacts with acid, D is copper carbonate because it has pH 7 . -4 correctly identified, only 1 has a sufficient reason (magnesium is silver) (4)
Level 3	5-6	Additional Guidance All four solids are correctly identified and at least two have valid reasoning.	Possible candidate response

		-Two or three solids have valid reasoning (5) -All four have valid reasoning (6)

```
A is copper oxide because it is the only black solid. B is magnesium because metals are silver coloured. C is sodium hydroxide because it dissolves to form an alkaline solution. \(D\) is copper carbonate because it forms copper sulfate which is blue in the reaction with acid and fizzes.
4 correctly identified, 4 with sufficient reasons (6)
```

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a) (\mathbf { (i) }}$	neutralisation	allow exothermic	(1)
	OR		

Question number	Answer	Mark
$\mathbf{1 0 (a) (i i) ~}$	D ammonium nitrate is the only correct answer	(1)
	A is incorrect because the cation is ammonium and the anion is nitrate	
B is incorrect because the cation is ammonium		
C is incorrect because anion is nitrate		

Question number	Answer	Additional guidance	Mark
10(b)	$2000 \mathrm{dm}^{3}$ with or without working scores 4 moles NO = 1000/30 (1) (= 33.3...) moles $\mathrm{O}_{2}=$ moles NO /2 (1) (= 16.666...) volume $\mathrm{O}_{2}=$ moles $\times 24=16.666 \ldots \times 24(1)\left(=400 \mathrm{dm}^{3}\right)$ volume air $=$ volume $\mathrm{O}_{2} \times 100 / 20(1)\left(=2000 \mathrm{dm}^{3}\right)$ OR $2 \mathrm{~mol} \mathrm{NO}=60 \mathrm{~g}(1)$ $60 \mathrm{~g} \mathrm{NO}: 24 \mathrm{dm}^{3}$ oxygen (1) 1000 g NO reacts with $24 \times 1000 / 60(1)\left(=400 \mathrm{dm}^{3}\right)$ volume air = volume $\mathrm{O}_{2} \times 100 / 20$ (1) (=2000 dm ${ }^{3}$)	ecf on all stages 3 marks all working up to $400 \times 20 / 100=80$	(4)

Question number	Indicative content	Mark
*10(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlines in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 \& AO2 (6 marks) EXCESS AIR - increases oxygen concentration - so excess air favours right hand side - and gives higher yield - excess air increases concentration of oxygen - equilibrium reached faster PRESSURE - 9 molecules on left and 10 on right - so higher pressure favours left hand side - and gives lower yield - higher pressure increases concentration of gases - more frequent collisions - equilibrium reached faster TEMPERATURE - heat energy given out in forward reaction - higher temperature favours reaction that takes in heat energy - so higher temperature favours left hand side - hence lower yield - molecules move faster at higher temperature	(6)

- more frequent collisions
- therefore more reactions in given time
- equilibrium reached faster

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	- Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	- Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

$\left.\begin{array}{|l|l|l|l|}\hline \text { Level } & \text { Mark } & \text { Descriptor } & \text { Additional guidance } \\ \hline \begin{array}{l}\text { Level } \\ 1\end{array} & 1-2 & \begin{array}{l}\text { No rewardable material. } \\ \text { Additional guidance } \\ \text { One factor is discussed with a statement of } \\ \text { effect on yield and/or rate (1) }\end{array} & \begin{array}{l}\text { Read whole answer and ignore all incorrect material/ discard any contradictory material } \\ \text { then: }\end{array} \\ \hline \begin{array}{l}\text { One factor is discussed with explanation of } \\ \text { yield and/or rate (2) }\end{array} & \begin{array}{l}\text { Possible candidate responses } \\ \text { hand side. } \\ \text { Factor and reason - } 2 \text { marks }\end{array} \\ \hline 2 & 3-4 & \begin{array}{l}\text { Two or three factors are discussed with } \\ \text { statement of effect on yield and/or rate (2) }\end{array} & \begin{array}{l}\text { Additional guidance } \\ \text { One factor is fully discussed with } \\ \text { explanation of yield and rate. (3) }\end{array} \\ \begin{array}{ll}\text { Two factors are discussed with explanation } \\ \text { of yield and/or rate in one case and just } \\ \text { statement of yield and/or rate in one } \\ \text { case(3) }\end{array} & \begin{array}{l}\text { Possible candidate responses } \\ \text { A higher pressure gives a lower yield because there are more gas molecules on the right } \\ \text { hand side. A higher temperature gives a lower yield because the forward reaction is } \\ \text { exothermic. }\end{array} \\ \hline \text { factors both with reasons - 4 marks }\end{array}\right\}$

