Pearson

 EdexcelMark Scheme
(Results)

Summer 2019

Pearson Edexcel GCSE
In Chemistry (1CH0) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019

Publications Code 1CHO_2H_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1	An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2	An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1 a and $1 b$	An answer that combines points of interpretation/evaluation to provide a logical description	An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	2a and 2b	An answer that combines the marking points to provide a logical description of the plan/method/experiment	An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning
AO3	3b		

Question number	Answer	Additional guidance	Mark
1(a)(i)	high melting point / high boiling point / conducts (electricity) when molten (1)	ignore conducts (electricity) when in solution	(1)
		allow does not conduct (electricity) (when solid) ignore strong / shiny allow brittle / hard	

Question number	Answer	Additional guidance	Mark
(a)(ai)	$+4 / 4+/ \mathrm{Ti}^{{ }^{+4} / \mathrm{Ti}^{4+}}$	reject 4- allow 4 plus	(1)

Question number	Answer	Mark
$\mathbf{1 (b) (\mathbf { i) }}$	C 1×10^{-7} metres (correct 100 nanometers) is the only correct answer.	(1)
	A is not correct because it is 100000 nanometers	
B is not correct because it is 10000 nanometers		

Question number	Answer		Mark
1(b)(ii)	A description to include the following points		
can \{absorb/block\} UV light from the skin (1)			
therefore can prevent sunburn (1)	allow reflects UV light ignore sunlight allow can prevent \{skin/cell\} damage / protects skin /can help prevent skin cancer		
OR	(2) (therefore) appear invisible / cannot be seen on the skin (1)	allow is not white on the skin	
ignore insoluble in water so water resistant			

Question number	Answer	Additional guidance	Mark
1(b)(iii)	An explanation linking two from do not know the risks fully / long term risks not yet known (1) because they have not been used for a long enough time / are new technology / no long term research (1) might pass into the body / through cell membranes / enter skin / enter the bloodstream (1) could \{change / catalyse\} reactions in body (1)	(2)	

Question number	Answer	Mark
2(a)	B Crude oil is a mixture of hydrocarbons is the only correct answer	
Answer A, C and D are factually incorrect	(1)	

Question number	Answer	Additional guidance	Mark
2(b)(i)		lgnore generic uses such as factories / machines / engines / fuel	(2)
kerosene: (fuel for) aircraft / jets / lamps / cooking / heaters / fire lighters / rocket fuel (1) diesel oil: (fuel for) cars / trains / trucks / lorries / vehicles / tractors / generators / boats (1)	reject trains, boats		

Question number	Answer	Additional guidance	Mark
2(b)(ii)	any one of	Note : unless otherwise stated, comparison is kerosene with diesel oil	(1)
	- boiling point: low(er)	ignore	
	- melting point: low(er) - ignition: easy / easier - viscosity: low(er)/ \{runny / runnier\} / thin(ner) - flammability: high(er) - volatility: high(er) - density: low(er)	allow sootiness: diesel has sootier flame	

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\
\hline \text { 2(c)(i) } & \text { An explanation linking } & \begin{array}{l}\text { ignore: similar chemical properties, quoting the two } \\
\text { molecular formulae, they are both saturated, both } \\
\text { have single bonds (only) }\end{array}
$$ \& (2)

\& \begin{array}{ll}- they differ by \mathrm{CH}_{2} / differ by one carbon atom / pentane has

one more carbon (1)

(1)\end{array} \& reject carbon or hydrogen molecules for MP1\end{array}\right]\)| (he same general formula / $\mathrm{C}_{n} \mathrm{H}_{2 n+2} /$ both alkanes |
| :--- |
| ignore same pattern of formula / similar general |
| formula |
| reject same \{chemical / molecular\} formula |

Question number	Answer	Additional guidance	Mark
2(c)(ii)	82.8 with or without working scores 3 correct answer but incorrectly rounded or not to 3sf scores 2 $4 \times 12(1)(=48)$ OR $\underline{100(=1.724 \ldots)(1)}$ $48 \times 100(1)(=82.759)$ $\text { = } 82.8(\mathrm{~g})(1)$	allow ecf but calculation must use $12,58,100$ if working rounded to 1 dp and carried forward, allow full marks eg $1.72 \times 48=82.56$ (2) or 82.6 (3) $\begin{aligned} \frac{100}{58}(1) & (=1.72414) \\ & =1.72(1) \quad \text { (to } 3 \mathrm{sf}) \end{aligned}$ OR $\begin{aligned} \frac{100}{58}(1) \times 12 & (=20.68966) \\ & =20.7(1) \text { (to } 3 \mathrm{sf}) \end{aligned}$ OR $\begin{aligned} 4 \times 12(1) \times 100 & (=4800) \\ & =4.80 \times 10^{3}(1)(\text { to } 3 \mathrm{sf}) \end{aligned}$	(3)

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3(a) | B $13 \quad 14 \quad 10 \quad$ is the only correct answer | (1) |
| | A is incorrect because it is the numbers of subatomic particles in the atom not the ion
 C is incorrect because it would be an isotope of silicon with a +4 charge to it
 D is incorrect because it would be another isotope of silicon but with a 3- charge to it. | |

Question number	Answer	Additional guidance	Mark
3(b)	2.25/ 2.3 with or without working scores 3 $\mathrm{MgO}=24+16=40(1)$ THEN 1 g Mg forms $\frac{40}{24}(1)=1.67(\mathrm{~g}) \mathrm{MgO}$ 1.35 g Mg forms $\frac{40 \times 1.35}{24}$ (1) MgO $=2.25(\mathrm{~g})$ OR $\mathrm{Mg} \quad \frac{1.35}{24}(1)=0.05625$ $\mathrm{MgO} 0.05625 \times 40(1)=2.25(\mathrm{~g})$	allow ecf for incorrect formula mass OR $\mathrm{Mg} \quad \frac{1.35}{48}(1)=0.028125$ $\mathrm{MgO} \quad 0.028125 \times 80(1)=2.25(\mathrm{~g})$ Note $40 \times 1.35=54(2)$ or $80 \times 1.35=108(2)$	(3)

Question number	Answer	Additional guidance	Mark
3(c)	$\begin{aligned} & \mathrm{Cl}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HCl} \\ & \mathrm{Cl}_{2}+\mathrm{H}_{2} \rightarrow(1) \\ & \rightarrow \mathrm{HCl}(1) \\ & \text { balancing of correct formulae (1) } \end{aligned}$	do not penalise incorrect small/ capital letters for left hand side formulae, do not allow Cl^{2} or Cl 2 , but allow MP3 if correctly balanced allow reactants in either order allow ClH for HCl allow $=$ for \rightarrow allow multiples ignore state symbols if molecules have a + or - charge do not allow mark for formulae but allow MP3 for correct balancing	(3)

Question number	Answer	Additional guidance	Mark
3(d)	$\begin{array}{ll} \mathrm{Na}^{+} & 2.8(1) \\ \mathrm{Cl} & 2.8 .8(1) \end{array}$	allow any separator e.g 2,8 send any atom diagrams to review allow $\mathrm{Na}^{+} 2.8 .0(1)$ 2.8.8.0 (1)	(2)

Question number	Answer	Additional guidance	Mark
4 (a)	An explanation linking - yeast provides enzymes (1) - (at $80^{\circ} \mathrm{C}$) the enzymes \{not effective / denatured\} (1)	allow yeast provides a biological catalyst allow yeast provides zymase allow yeast \{contains/is\} an enzyme allow yeast is denatured ignore enzyme is killed allow yeast grows well at $30^{\circ} \mathrm{C}$ but yeast cells are killed at $80^{\circ} \mathrm{C}$.	(2)

Question number	Answer	Mark
4(b)(i)	B oxidised is the only correct answer	(1)
	A, C and D are factually incorrect	

Question number	Answer	Additional guidance	Mark
4 (b)(ii)	 (2) or correct carboxylic acid group (1) correct methyl group (1)	allow correct dot and cross diagram ignore incorrect bond angles allow OH for $\mathrm{O}-\mathrm{H}$	(2)

Question number	Answer	Additional guidance	Mark
4 (c)(i)	A description to include - heat water to increase temperature by $30^{\circ} \mathrm{C}(1)$ AND any two from - extinguish flame (1) - (re-)determine mass of burner containing ethanol (1) - subtract final from initial mass / calculate the change in mass (1)	ignore references to timing allow watch thermometer until the temperature increases $30^{\circ} \mathrm{C}$ / wait for temperature to rise $30^{\circ} \mathrm{C}$ allow put a cap on the burner (to extinguish flame) allow '(re-)weigh the burner'	(3)

Question number	Answer	Additional guidance	Mark
$\mathbf{4 (c) (\text { ii) }}$	vertical axis with linear scale that uses more than half of the edge of the grid (1) all points correctly plotted to $+/-1 / 2$ small square (1) single line of best fit drawn (1)	allow axis not starting at 0	(3)
		allow points joined by straight lines / dot to dot ignore the line after points reject tramlines correct bar chart can gain MP1 and MP2	

Question number	Answer	Mark
$\mathbf{5 (a) (i)}$	D 95 decreased is the only correct answer	(1)
	A is incorrect as the percentage of carbon dioxide was thought to be 95\% B is incorrect as the percentage of carbon dioxide was thought to be 95\% C is incorrect as the amount of carbon dioxide has decreased	

Question number	Answer	Additional guidance	Mark
5(a)(ii)	An explanation to include any two linked pairs combustion/ burning of fossil fuels (1) \{increases/ gives out carbon dioxide (1)	each pair to be separately marked; MP2 dependent on MP1 allow named fossil fuel / carbon compound that is burnt e.g wood ignore 'use of fossil fuels' / 'use of cars' but allow MP2	(4)
	respiration (1) increases carbon dioxide (1) increases in sea temperature (1) release of (dissolved) carbon dioxide (1) ignore 'breathing'/ 'population increase' but allow MP2		
photosynthesis (1) \{absorbs/ takes in/reduces\} carbon dioxide (1) carbon dioxide (dissolves) into the sea (1) carbon dioxide decreases (1) volcanic emissions (1) releases carbon dioxide (1) deforestation means less photosynthesis (1) carbon dioxide increases (1)	ignore 'plants/ trees' etc but allow MP2		
ignore 'deforestation' alone but allow MP2			

	use of alternative energy/ electric cars (1) less carbon dioxide release (1)		

Question number	Answer	Additional guidance	Mark
5(b)	An explanation linking weak \{forces between molecules / intermolecular forces\} (1)	reject weak covalent bond for both mark points allow weak intermolecular bonds / weak bonds between molecules	(2)
(intermolecular forces need) little \{heat/energy\} required (1)	ignore easy to break ignore 'easier to separate molecules' ignore needs a low temperature to break		

Question number	Answer	Additional guidance	Mark
$\mathbf{5 (c)}$	1.5×10^{21} with or without working scores 3 $\frac{0.11}{44}(1)(=0.0025)$ $0.0025 \times 6.02 \times 10^{23}(1)$ $=1.5 \times 10^{21}(1)$ $\mathbf{O R}$ 44 g contains 6.02×10^{23} molecules (1)	allow 15×10^{20} Allow ecf in MP2 and MP3 if using 0.11 and/or 44 and	(3)

0.11 g contains $\underline{0.11} \times 6.02 \times 10^{23}$		
molecules $(1)\left(=1.505 \times 10^{21}\right)$		
$=1.5 \times 10^{21}(1)$		

Question number	Answer	Mark
$\mathbf{6 (a)}$	D $3 \quad 3$ is the only correct answer.	(1)
	A is incorrect as the metal is in group 3	
B is incorrect as the metal is in group 3, period 3		
C is incorrect as the metal is in period 3		

Question number	Answer	Additional guidance	Mark
6 (b)(i)	A description to include from - effervescence / bubbles / fizz (1) - disappears / gets smaller (1) - explodes / flame / ignites / sparks (1)	ignore gas / smoke ignore hydrogen given off allow dissolves allow moves around very fast allow forms a ball / melts ignore floats /sinks ignore 'pops' / hydrogen	(2)

Question number	Answer	Additional guidance	Mark
6(b)(ii)	an explanation linking outer $\{$ electron /shell\} closer to nucleus (1) so more attraction for \{electron/shell\} (1) (therefore) electron is harder to lose (1)	allow smaller atomic radius / fewer shells reject less outer shells for MP1 allow less shielding allow more energy to lose electron ORA for potassium	(3)
Question number	Answer	Additional guidance	Mark
6(c)	6.92 with or without working scores 4 $\begin{aligned} & 7.59 \times 6(1)(=45.54) \\ & 92.41 \times 7(1)(=646.87)(1) \\ & \frac{45.54+646.87}{100}(1)(=6.9241) \\ & 6.92(1) \end{aligned}$	penalise early rounding once only $\begin{aligned} & \frac{(7.59 \times 6)+(92.41 \times 7)(3)}{100} \\ & \\ & 6 \times 0.0759(1)(=0.4554) \\ & 7 \times 0.9241(1)(=6.4687) \\ & 0.4554+6.4687(1) \\ & =6.92(1) \end{aligned}$ allow $7.59 \% \text { of } 6(1)(=0.4554)$ $92.41 \% \text { of } 7(1)(=6.4687)$ $0.4554+6.4687(1)$ $\text { = } 6.92 \text { (1) }$ allow ecf	(4)

		allow MP4 for incorrect answer with working to 2 dp if using most of the data in question	

Question number	Answer	Additional guidance	Mark
7(a)	an explanation linking	reject is a mixture of carbon and hydrogen	
	contains hydrogen and carbon only (1)	reject contains hydrogen and carbon molecules	(2)
		ignore bonds that haven't been used	

Question number	Answer	Additional guidance	Mark
7(b)	$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}(3)$	allow correct multiples	(3)
	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow(1)$ $\rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}(1)$ balancing of correct formulae (1)	penalise incorrect subscripts once only	

Question number	Answer	Additional guidance	Mark
7(c)	A description to include bromine water is \{yellow / orange / red-brown\} (1)	allow brown ignore red alone	(3)
	ethene: becomes colourless /decolourises (1) poly(ethene): (remains) \{yellow / orange / red-brown\} / no colour change (1)	allow no reaction	

| | | ignore poly(ethene) turns \{yellow / orange /
 red-brown\} |
| :--- | :--- | :--- | :--- |

Question number	Answer	Additional guidance	Mark
7(d)	$\mathrm{C}_{6} \mathrm{H}_{12}$ with or without working gains 3 marks		
relative mass $\mathrm{CH}_{2}=12+(2 \times 1)(1)(=14)$	allow ECF	(3)	
	CH_{2} units in hydrocarbon $=84(1)(=6)$		
14			
molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12}(1)$			

Question number	Answer	Additional guidance	Mark
8(a)	delivery tube, not in liquid, connected to flask sealed with a bung/cork (1) gas syringe / measuring cylinder or burette inverted over water (1)	do not allow a single line for a delivery tube allow sealed cross sections (e.g. delivery tube going through solid bung) labels and graduations not required mark independently	(2)
Question number	Answer	Additional guidance	Mark
8(b)	an explanation linking breaking bonds \{needs energy/ endothermic\} (1) making bonds \{releases energy/ exothermic\} (1) more energy is given out than is taken in (1)	allow heat for energy	(3)

Question number	Indicative content	Mark
*8(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (3 marks) AO3 (3 marks) - less gas produced with large lumps in same amount of time - therefore, reaction slower ORA - larger lumps have smaller surface area ORA - fewer particles available for reaction - fewer collisions in given time - more gas produced at higher concentration in all experiments - higher concentration there are more particles in same volume - more particles available to react - more frequent collisions - most gas produced in same time with small lumps and highest concentration ORA - therefore, fastest reaction is with small lumps and highest concentration ORA	(6)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels Eg - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
$\begin{aligned} & \hline \text { Level } \\ & 1 \end{aligned}$	1-2	Additional guidance One statement (1) Two unlinked statements (2) One simple explanation (2)	Possible candidate responses less gas produced with large lumps (1) more gas produced with higher concentration of acid (1) smaller lumps have larger surface area (1) large lumps produced less gas and higher concentration produced more gas (2) the rate of reaction is higher with smaller lumps because they have a larger surface area (2) more gas at a higher concentration because there are more acid particles (2)
$\begin{aligned} & \text { Level } \\ & 2 \end{aligned}$	3-4	Additional guidance Two simple explanations (4) One full explanation including reference to particles and frequency of collisions for either surface area OR concentration (4)	Possible candidate responses less gas with large lumps, reaction is slower due to smaller surface area. more gas at higher concentrations due to more particles (4) more gas at higher concentrations due to more particles having more frequent collisions (4) more gas at higher concentrations due to more particles having more collisions (3) Less gas with large lumps, reaction is slower due to smaller surface area as fewer particles fewer collisions in given time (4) with large lumps, reaction is slower as lower surface area fewer collisions in a given time (4)
$\begin{aligned} & \hline \text { Level } \\ & 3 \end{aligned}$	5-6	Additional guidance One full explanation including reference to particles frequency of collisions AND one simple explanation. The volume of gas must be referred to in at least one part of the answer. (6)	Possible candidate responses Less gas with large lumps, the reaction is slower due to smaller surface area. Fewer particles are available for reaction and fewer collisions in a given time. Whereas more gas is produced with a higher concentration as there are more particles (6) There is more gas produced at higher concentration because at a higher concentration there are more particles, this means that more particles available to react so there are more frequent collisions. Whereas less gas is produced with large lumps because they have a smaller surface area. (6) with large lumps the reaction is slower so less gas is produced because they have a smaller surface area so there are fewer particles available for reaction and fewer collisions. Whereas there is higher rate with a higher concentration as there are more particles in the same volume of solution (5)

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (a)}$	A description to include		(2)
	(damp) litmus / indicator paper		
bleaches / goes white (1)	allow dip litmus into solution		
reject bleaches then goes red			
MP2 dependent on MP1			

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (b)}$	hydrobromic acid (1)	Ignore hydrogen bromide solution ignore HBr(aq)	(1)

Question number	Answer	Additional guidance	Mark
9(c)	colour: grey/ black (1) state: solid (1) black/grey (1)	Allow any shade of grey/ gray	(2)

Question number	Answer	Additional guidance	Mark
9(d)	an explanation linking 4 of the following - \{chlorine / bromine\} are more reactive than iodine / iodine is the least reactive (1) - (in the reaction of chlorine with potassium iodide) chlorine displaces iodine / iodine formed / iodide ions oxidised (1) - (in the reaction of bromine with potassium iodide) bromine displaces iodine / iodine formed / iodide ions oxidised (1) - brown colour of final mixture is due to iodine (1) - iodine with KI has no reaction / iodine cannot displace iodine from its compound (1)	ignore iodide in MP1 In MP2 and MP3: allow 'iodide displaced' mark(s) could be scored in word or symbol equations (symbol equations do not have to be balanced and allow 1 for I_{2}) allow iodine cannot displace itself	(4)

Question number	Answer	Additional guidance	Mark
9(e)	$2 \mathrm{Fe}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{FeF}_{3}$ (2)	allow multiples	(2)
correct formulae only (1)			
balancing of correct formulae (1)	reject Fe(III) on LHS reject incorrect capitals and subscripts reject charges on LHS but ignore charges on RHS. allow $=$ for \rightarrow		

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a)}$	A description to include	allow flame emission spectroscopy / spectroscope ignore flame test	(2)
	flame photometer (1)	allow compare emission to reference samples	

Question number	Answer	Additional guidance	Mark		
$\mathbf{1 0 (b)}$	$2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(3)$	ignore state symbols			
$\mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \rightarrow(1)$					
$\rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(1)$					
balancing of correct formulae (1)				\quad allow = for \rightarrow	(3)
:---					

Question number	Indicative content	Mark
*10(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (3 marks) AO3 (3 marks) - the chloride ion is justified as it produces a white precipitate with nitric acid and silver nitrate solution in K and L - Fe^{2+} ion is justified because it forms green precipitate with sodium hydroxide solution in M - in K ammonium ion is justified by adding more sodium hydroxide solution and heating - gas evolved turns damp red litmus paper blue - in L aluminium ion is justified by adding more sodium hydroxide solution - until in excess - precipitate dissolves - to give colourless solution - in M sulfate ion is justified by adding dilute hydrochloric acid - and barium \{chloride / nitrate\} solution - white precipitate	(6)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels Eg - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level	1-2	Additional guidance Two or more statements as to which ions are justified by the students conclusions (1) OR A full explanation of one of the students conclusions (2)	Possible candidate responses In K and L chloride ion is justified (1) in K chloride is justified, ammonium is not justified (1) in K chloride is justified, in M iron is justified (1) In K and L chloride ion is justified as test 1 shows a white precipitate. (2) In K chloride ion is justified as test 1 shows a white precipitate, for ammonium ion is justified as warm and test gas with damp litmus which turns blue (2)
$\begin{aligned} & \hline \text { Level } \\ & 2 \end{aligned}$	3-4	Additional guidance a partial explanation of the further work required to justify two of the ions and why chlorine or iron are justified (3) OR A full explanation of two of the students conclusions (4)	Possible candidate responses In L chloride ion is justified as test 1 shows a white precipitate but aluminium is not justified by test 2, add more sodium hydroxide which should dissolve the white precipitate. In M iron is justified by green precipitate (3) In K chloride ion is justified as test 1 shows a white precipitate, In L chloride ion is justified as test 1 shows a white precipitate, In M iron ion is justified as test 2 shows a green precipitate (3) In M sulfate is not justified by any test, add barium chloride white precipitate is formed, iron is justified by green precipitate in test 2 . In K chloride ion is justified as test 1 shows a white precipitate, warm and test gas with damp litmus which turns blue to test for ammonium ion (4)
Level	5-6	Additional guidance An explanation of the further work required to justify three of the ions and a reason why at least and why chlorine or iron are justified (5) OR A full explanation of three of the students conclusions (6)	Possible candidate responses In K chloride ion is justified as test 1 shows a white precipitate, to test for the ammonium ion warm and test gas with damp litmus which turns blue. In L chloride ion is justified as test 1 shows a white precipitate but aluminium is not justified by test 2 , add more sodium hydroxide which should dissolve the white precipitate. In M , the sulfate ion can be justified by adding dilute hydrochloric acid and barium chloride solution to get a white precipitate. (5) In K chloride ion is justified as test 1 shows a white precipitate, warm and test gas with damp litmus which turns blue to justify ammonium ion. In L chloride ion is justified as test 1 shows a white precipitate but aluminium is not justified by test 2 , add more sodium hydroxide which should dissolve the white precipitate. In M, iron ion is justified because it forms green precipitate in test 2 . The sulfate ion can be justified by adding dilute hydrochloric acid and barium chloride solution to get a white precipitate. (6)

