Pearson

Mark Scheme (Results)

November 2021

Pearson Edexcel GCSE
In Chemistry (1CH0) Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Publications Code 1CHO_2F_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response
- Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3 a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3 b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Paper 2F Foundation Tier

Question number	Answer	Mark
$\mathbf{1 (a)}$	D does not dissolve in water A, B and C are not factually correct	(1)
Question number Answer Mark $\mathbf{1 (b) (i) ~}$ polymer (1)	AO3	

Question number	Answer	Mark
$\mathbf{1 (b) (i i)}$	B electrons	(1)
	A is not correct because atoms do not move through the metallic structure. C is not correct because neutrons do not move through the metallic structure. D is not correct because protons do not move through the metallic structure.	AO1

Question number	Answer	Mark
$\mathbf{1 (c) (i)}$	breathed in / absorbed by the skin / consumed within food and drink / medication	(1)

Question number	Answer	Mark
$\mathbf{1 (c) (i i)}$	catalyse (harmful) reactions / build up and form blockages	(1)
		AO1

	Answer	Mark
$\mathbf{1 (c) (\text { iii) }}$	$1.2: 1$	(1)
		AO2

Question number	Answer	Mark
2(a)	any two from:	
concentration of acid (1)		
\{size / shape / surface area / length\} area of magnesium ribbon (1) mass of magnesium (1)	(2)	

Question number	Answer	Mark
$\mathbf{2 (b)}$	B measuring cylinder	(1)
	A, C and D do not measure volumes	AO2

Question number	Answer	Mark
2(c)	magnesium has gone / no more bubbles	(1)

Question number	Answer	Additional guidance	Mark
2(d)	(particles) have more energy / (particles) collide more frequently / more successful collisions	allow particles move faster	(1)

Question number	Answer	Additional guidance	Mark
2(e)	$\frac{15.0}{60.0}$ (1)	$\frac{60}{15}=4(1)$	(2)
$=0.25(1)\left(\mathrm{cm}^{3} \mathrm{~s}^{-1}\right)$	AO2		

Question number	Answer	Mark
3(a)(i)	(outer shell is) full/ complete	(1)
		AO1

Question number	Answer	Additional guidance	Mark		
3(a)(ii)	An explanation linking • hydrogen is flammable / could ignite (1)	krypton is more dense than air (1)	allow krypton has a high density		
(so krypton) air ship would					
not float (1)				\quad	AO3
:---					

Question number	Answer	Mark
3(b)	had yet to be discovered / unknown / did not know about them	(1) AO1

Question number	Answer	Additional guidance	Mark
3(c)(i)	neon bar correct (1)	(2)	
	argon bar correct (1)	if no other mark scored, allow 1 for neon -252 and argon -192	AO2

Question number	Answer	Mark
3(c)(ii)	allow any value from -152 to -90	(1)

Question number	Answer	Mark
4(a)(i)	to clean the wire / to prevent contamination of sample	(1)
		AO1

Question number	Answer	Mark
4(a)(ii)	so that the solid vaporises more easily / so that the solid sticks onto the wire	(1) AO1

Question number	Answer	Mark
4(a)(iii)	A blue-green	(1)
	B is incorrect as potassium gives a lilac flame C is incorrect as calcium gives an orange-red flame D is incorrect as sodium gives a yellow flame	AO2

Question number	Answer	Additional guidance	Mark
4(b)(i)	more \{accurate / sensitive / reliable\}	requires no judgement / can be quantitative	(1)
AO1			

Question number	Answer	Mark
4(b)(ii)	single straight line of best fit through points	(1)

Question number	Answer	Mark
4(b)(iii)	value consistent with candidate's line of best fit	(1)
		AO3

Question number	Answer	Additional guidance	Mark		
4(c)	An explanation linking	use hydrochloric acid (rather than sulfuric acid) (1) (as) sulfuric acid contains sulfate ions (1)	Allow nitric acid allow use a different acid	AO3	(2)
:---					

Question number	Answer	Mark
4(d)	$\frac{63.5(=0.39811912)(1)}{159.5}$	(3)
	(1) $398 \times 100(=39.811912)(1)$ $40(1)$	AO2

Question number	Answer	Mark
5(a)(i)	halogens	(1)
		AO1

Question number	Answer	Additional guidance	Mark
5(a)(ii)	astatine	allow At / At 2_{2}	(1)

Question number	Answer	Mark
$\mathbf{5 (a) (i i i)}$	\mathbf{C} bromine	(1)
	A and B are not correct as they are gases at room temperature and pressure D is not correct as iodine is a solid at room temperature and pressure	AO1

Question number	Answer	Mark
$\mathbf{5 (a) (i v)}$	\mathbf{D} iodine	(1)
	A is not correct as fluorine is pale yellow at room temperature and pressure B is not correct as chlorine is green at room temperature and pressure \mathbf{C} is not correct as bromine is red-brown liquid at room temperature and pressure	AO1

Question number	Answer	Additional guidance	Mark	
5(b)	$\frac{1.19}{119}$ and $\frac{1.42}{35.5}$	(1)	allow ECF	(3)
	$0.01: 0.04$ (1)			
	$\mathrm{SnCl}_{4 .}(1)$			

Question number	Answer	Additional guidance	Mark
5(c)	An explanation linking	(2)	
fluorine has fewer electron shells (1)	allow less shielding (1) ignore fewer electrons ignore fewer outer electron shells	AO1	
(so) electron more easily attracted to nucleus (1)			

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (a) (i)}$	hydrogen peroxide \rightarrow water + oxygen	allow symbol equation if all symbols and balancing are correct	(1)

Question number	Answer	Additional guidance	Mark
6(a)(ii)	(2) all correct (2) 1 correct (1)	reject multiple lines	(2) AO1

Question number	Answer	Additional guidance	Mark
6(b)	A description to include		(2)
glowing splint (1)			
relights (1)	MP2 is dependent on MP1	AO1	

| Question |
| :--- | :--- |
| number | 6(c) | Answer |
| :--- |
| shared pair of electrons between the |
| oxygen and a hydrogen (1) |
| rest of molecule correct (1) |

Additional guidance	Mark
allow dots or crosses or a mixture of both	AO1

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (d) (i)}$	Time in $\{s / \mathrm{min}\}$	allow seconds/ minutes	(1) AO3

Question number	Answer	Additional guidance	Mark
6(d)(ii)	A description to include reaction is faster with liver (1) more \{gas/ oxygen\} produced with liver (1)	allow ORA	(2)

Question number	Answer	Mark
6(d)(iii)	A description to include bung and delivery tube (1) connected to \{a gas syringe / upturned burette / upturned measuring cylinder\} (1)	(2)

Question number	Answer	Additional guidance	Mark
7(a)(i)	(2)		(2)
	OR hydroxyl group on a carbon (1) rest of molecule correct (1)	allow OH for O-H reject any multiple bonds drawn	

Question number	Answer	Mark
7(a)(ii)	\mathbf{C} it is oxidised \mathbf{A}, \mathbf{B} and \mathbf{D} are incorrect as this is an oxidation reaction.	$\mathbf{(1)}$

Question number	Answer	Mark
$\mathbf{7 (b) (i)}$	0.39 with or without working scores 1 mark	(1)
	$152.62-152.23(=0.39)(1)$	AO2

Question number	I ndicative content	Mark
* 7 (b)(ii)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (6 marks) - measure $100 \mathrm{~cm}^{3}$ of water into a beaker. - place the beaker above the burner - place draft shields around the equipment - weigh the (alcohol) burner containing the alcohol - record this mass and the name of the alcohol. - place a thermometer in the water - record the initial temperature of the water - place a lid on beaker - light the wick. - heat the water so the temperature rises by $20^{\circ} \mathrm{C}$. - extinguish the flame. - re-weigh the (alcohol) burner - subtract final mass from initial mass of burner and alcohol/ calculate the mass of alcohol used. - repeat with the next alcohol - using same volume of water - keep the height of the beaker the same	(6)

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	$1-2$	Heat the water by $20^{\circ} \mathrm{C}$ and then subtract the final mass from the initial mass of the burner and alcohol
Level 2	$3-4$	Measure $100 \mathrm{~cm}^{3}$ of water into a conical flask, allow the alcohol to heat the water so the temperature rises by about $20^{\circ} \mathrm{C}$. re-weigh the spirit burner and cap then calculate the mass of alcohol used.
Level 3	$5-6$	Measure $100 \mathrm{~cm}^{3}$ of water into a conical flask/beaker. Weigh the burner and cap containing the alcohol. Record the initial temperature of the water in the flask. Allow the alcohol to heat the water so the temperature rises by about $20^{\circ} \mathrm{C}$. Re-weigh the spirit burner and cap, subtract final mass from initial mass of burner and alcohol.

Question number	Answer	Mark
$\mathbf{7 (b) (i i i)}$	0.02 with or without working scores 2 marks	(2)
	$\frac{0.36}{20}=(0.018)(1)$	AO2
	$0.02(1)$	

Question number	Answer	Additional guidance	Mark
8(a)	$46.25 / 46$ with or without working scores 2 marks $\frac{200}{1000}(1)=0.200\left(\mathrm{dm}^{3}\right)$ $\frac{9.25}{0.200}(1)=46.25 / 46$ OR $\frac{9.25}{200}=(0.04625)(1)$ $0.04625 \times 1000=46.25(1)$	AO2	

Question number	Answer	Additional guidance	Mark		
$\mathbf{8 (b) (i)}$	an explanation linking two of:				
-\{ammonium chloride solution/product has more energy than \{ammonium chloride solid and water/reactant / ORA (1)	ignore arguments about bond making / bond breaking	AO3			
- heat (energy) has increased /					
energy change is positive (1)					
- (therefore) heat energy has					
been \{absorbed/taken in\} (1)				\quad	
:---					

Question number	Answer	Additional guidance	Mark	
$\mathbf{8 (b) (i i)}$	heat energy		curve from reactants to products with peak higher than product energy (1) arrow labelled activation energy on correct curve (1)	AO2

Question number	Answer	Additional guidance	Mark
8(c)	An explanation linking - ammonium chloride solution conducts electricity and solid ammonium chloride does not conduct electricity (1) - ammonium chloride contains ions (1) - in solution ions can move / in solid ions cannot move (1)	Answer must refer to both solid and solution for full marks	(3) AO3

Question number	Answer	Mark
$\mathbf{8 (d) (i)}$	A	(1)
	A is incorrect as it is the symbol for flammable substances. B is incorrect as it is the symbol for corrosive substances. C is incorrect as it is the symbol for substances that are harmful to health.	AOB

Question number	Answer	Additional guidance	Mark
8(d)(ii)	use a fume cupboard	ignore wear PPE / masks ignore wear goggles / gloves	(1) AO1

Question number	Answer	Mark
9(a)	fractional distillation / fractionation (1)	(1)
		AO1

Question number	Answer	Mark
9(b)	C they have the same general formula A, B and \mathbf{D} not correct as compounds in homologous series have different chemical, empirical and molecular formulae.	AO1

Question number	Answer	Additional guidance	Mark
9(c)	$\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}(2)$	other incorrect balancing max 1	(2) or $\mathrm{NO}_{2}(1)$
AO2			

Question number	Answer	Additional guidance	Mark
9(d)	An explanation linking - \{carbon dioxide / water\} produced (1) - (the gases) absorb heat radiated from earth (1) re-radiate heat back into the atmosphere (1)	allow formula allow traps the heat	(3) AO2

Question num	I ndicative content	Mark
9(e)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (3 marks) AO2 (3 marks) - sulfur burns at the same time as the hydrocarbon - sulfur reacts with oxygen - sulfur dioxide gas is formed - sulfur dioxide is an acidic gas - sulfur dioxide dissolves in clouds - to form sulfurous acid - which is then oxidised to form sulfuric acid - rain water becomes acidic - acid rain damages buildings / statues - damages plants/trees - runs into rivers / waterways - makes rivers/waterways acidic - kills fish/insects/waterlife - increases corrosion of metals	(6)

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	$1-2$	acid rain damages plants and erodes buildings
Level 2	$3-4$	sulfur dioxide is formed which dissolves in clouds and then acid rain runs into waterways and kills fish
Level 3	$5-6$	sulfur burns to form sulfur dioxide which dissolves in clouds to form sulfuric acid, the acid rains can erode limestone statues and will increase corrosion of metals making them weaker.

Question number	Answer	Mark
10(a)(i)	Any one from - need to sort polymers into different types - polymers often need to be separated from other polymers - takes time to sort by hand - containers may need to be washed before recycling - difficult to break down into their monomers - some not recyclable - requires a lot of energy	(1) A01

Question number	Answer	Additional guidance	Mark
10(a)(ii)	A description to include - polymers persist in landfill / landfill site fills up too quickly - polymers degrade very slowly or - combustion produces gases - which may be toxic	accept polymers persist in the environment / harmful to wildlife not biodegradable / hard to decompose	(2) A01

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (i)}$	circle around C=C	or circle around C-Cl	(1)

Question number	Answer	Additional guidance	Mark
10(b)(ii)		chain containing 6 C atoms (1) single bonds between C atoms (1) rest of structure complete (1) allow alternative arrangements allow max 2 for	(3) AO1

Question number	Answer	Mark
$\mathbf{1 0 (b) (i i i)}$	addition (polymer)	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (\text { iv) }}$relative formula mass $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}=62.5$ (1)	without working $178000(3)$ $178125 / 178127(2)$	(3)	
	$2850 \times 62.5(1)(=178125)$	allow ECF on incorrect relative formula mass	
178000 (to 3 sig figs) (1)			

