Pearson

Mark Scheme
(Results)

Summer 2022

Pearson Edexcel GCSE
In Chemistry (1CH0) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Publications Code 1CHO_2H_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3 a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3 b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15\%). These will be identified by an asterisk in the mark scheme.

1CH0/ 2H 2206 Paper 2 Higher Tier

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (a) (i)}$	colourless / absorbs UV / non-toxic / large SA: vol ratio	allow transparent / does not leave white marks allow reflects UV	

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 (a) (i i)}$ | long term effects not known/ may build up in \{living things/
 water supplies/ environment | allow specific examples of effects on health
 but ignore 'health risks' |
| (1)
 AO1 1 | | |

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 (b) (i)}$ | as the diameter of the nanoparticle increases the surface
 area
 volume ratio decreases | ORA
 allow negative correlation/inversely
 proportional
 ignore that as volume increases surface area
 also increases |

Question number	Answer	Mark
$\mathbf{1 (b) (i i)}$	B 3:40 is the only correct answer.	(1) AO3 1 C is the correct ratio for a 70nm diameter sphere D is the correct ratio for a 90nm diameter sphere ratio for a 100nm diameter sphere

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (c)}$	calculate surface area $60 \times 60 \times 6(=21600)(1)$ calculate volume $60 \times 60 \times 60(=216000)(1)$ s.a : vol ratio $\frac{216000(1)(=10)}{21600}$	(3) AO2 1 ignow $10: 1$ (or multiples of) with calculation	

(Total for question 1 = 7 marks)

| Question
 number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 (a) (i)}$ | $\bullet \mathbf{1 0 0} \mathbf{c m}^{\mathbf{3}}$ measuring cylinder/ (gas) syringe (1) | allow 'smaller measuring cylinder'
 ignore gas measurer
 reject (upturned) burette for MP1 |
| | • which has smaller gradations / higher resolution (1) | (2)
 AO3 3b
 MP2 is dependent on MP1
 allow (more) precise / (more) accurate
 allow smaller measurements/ increments
 ignore easier to use / no gas will escape |

Question number	Answer	Additional guidance	Mark
2(a)(ii)	- volume read at $90 \mathrm{~s}=29 \mathrm{~cm}^{3}$ (1) - rate $=\frac{\text { volume }}{90}(1)$ - $=0.3222 \ldots\left(\mathrm{~cm}^{3}\right.$ per second) (1)	$0.31,0.32,0.33$ with or without working scores 3 0.3 alone scores 0 all other answers require working to have marks awarded allow any value 28-30 ECF for incorrect volume ECF if fraction inverted ECF if 1.5 used instead of 90 eg $\frac{28 / 29 / 30}{1.5}=18.66 \ldots / 19.33 \ldots / 20 \text { scores } 2$ MP3 must be decimal value correctly rounded - ignore fractions	$\begin{aligned} & \text { (3) } \\ & \text { AO3 } 2 \end{aligned}$

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array} & \text { Answer } & \text { Additional guidance } \\
\hline \mathbf{2 (a) (i i i)} & \text { volumes were \{constant/ stopped rising\} } & \begin{array}{l}\text { allow reactant(s) used up / limiting factor } \\
\text { allow no more hydrogen evolved } \\
\text { allow EVIDENCE that reaction stopped: measurements } \\
\text { stayed the same/ no more bubbles }\end{array}
$$

\& OR AO3 2

allow graph has reached zero gradient

ignore graph is a straight line

ignore it has reached the highest \{point / volume\}

gras \{flat/plateaued/ levelled off\}

reject reaction is becoming slower\end{array}\right\}\)| (1) |
| :--- |

Question number	Answer	Additional guidance	Mark
2(b)(i)	An explanation linking - more particles present (in same volume) (1) - so more frequent collisions/ more chance of collision (1)	allow atoms/ molecules/ ions for particles ignore more acid present allow more collisions per $\{\mathrm{sec} / \mathrm{min} /$ unit time $\}$ ignore more collisions/ more successful collisions ignore references to energy / moving faster mark independently	$\begin{aligned} & \text { (2) } \\ & \text { AO1 } 1 \end{aligned}$

Question number	Answer	Mark
$\mathbf{2 (b) (i i)}$	D use the same metal but in a powdered form is the only correct answer B and \mathbf{C} are incorrect because the reactants are not changed \mathbf{A} is incorrect because the reaction will be slower	(1) AO2 1

Question number	Answer	Mark
$\mathbf{3 (a)}$	\mathbf{B} effervescense is seen is the only correct answer.	$\mathbf{(1)}$
	AO1 $\mathbf{2}$ and \mathbf{D} are incorrect as they are not linked to gas production	

Question number	Answer	Mark
$\mathbf{3 (b)}$	B chlorine is the only correct answer.	$\mathbf{(1)}$
	A, C and D are incorrect because only chlorine bleaches litmus.	

Question number	Answer	Additional guidance	Mark
3(c)	2.20 with or without working scores (2) - $5(.000)-2.8(00)=2.2(00)$ - $=2.20(1)$	reject additional processing for MP1 (e.g $5-2.8=2.2$ then $\frac{2.2}{100}=0.0220$) does not score MP1 - additional process of dividing by 100 does not score MP2 - using a number not in the question for MP2 final answer must be to 3sf, correct evaluation of expression using only numbers from the question 2.2 / 2.200 scores 1 mark $\begin{aligned} & \frac{5.000}{2.800}=1.79 \text { scores } 1 \text { mark } \\ & \frac{2.800}{5.000}=0.560 \text { scores } 1 \text { mark }[0.56=0] \\ & 5.000 \times 2.800=14.0 \text { scores } 1 \text { mark }[14=0] \\ & 5.000+2.800=7.80 \text { scores } 1 \text { mark }[7.8=0] \end{aligned}$	$\begin{align*} & \text { (2) } \\ & \text { AO2 } 1 \tag{1} \end{align*}$

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array} & \text { Answer } & \text { Additional guidance } \\
\hline \text { 3(d)(i) } & \begin{array}{l}\text { An explanation linking: } \\
\text { - it has two electrons in outer shell/ it has a full outer } \\
\text { shell / OWTTE (1) }\end{array} & \begin{array}{l}\text { MP1 - reject if number of electrons in outer shell is } \\
\text { stated and not 2 } \\
\text { ignore references to protons and neutrons } \\
\text { allow helium has two electrons in its (only) shell / } \\
\text { helium's (only) shell is full }\end{array}
$$

AO1 1\end{array}\right\}\)| ignore helium does not need to react |
| :--- |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array} & \text { Answer } & \text { Additional guidance } \\
\hline \text { 3(d)(ii) } & \text { less dense than air } & \begin{array}{l}\text { allow less dense than nitrogen } \\
\text { allow low density / not (very) dense } \\
\text { allow diffuses slowly out of balloon }\end{array}
$$

ignore less dense than oxygen

ignore it is a gas / light /lightweight / inert/

unreactive/ non-flammable / lighter than air / makes

balloon float / it rises/ it floats\end{array}\right]\)| (1) |
| :--- |
| ignore non-toxic / not poisonous |

Question number	Answer	Additional guidance	Mark
3(e)	4.214×10^{24} with or without working scores (2) $\begin{aligned} & 2 \times 3.5(1)(=7(.0)) \\ & 7(.0) \times 6.02 \times 10^{23}(1)\left(=4.214 \times 10^{24}\right) \end{aligned}$ OR $\begin{aligned} & 3.5 \times 6.02 \times 10^{23}(1)\left(=2.107 \times 10^{24}\right) \\ & 2 \times 2.107 \times 10^{24}(1)\left(=4.214 \times 10^{24}\right) \end{aligned}$	allow any number of sig figs except 1 for full marks allow answer not in standard form	$\begin{aligned} & \text { (2) } \\ & \text { AO2 } 1 \end{aligned}$

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 (a) (i)}$ | An explanation linking
 \bullet corrosive (1)
 \bullet so wear gloves/ (safety) goggles (1) | (2)
 allow safety glasses/ safety spectacles / eye
 protection
 ignore glasses and any other precautions |
| A03 3a independently | | |

Question number	Answer	Mark
4(a)(ii)	nitric acid	(1)
		AO1 1

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 (a) (\text { iii) }}$ | inert/ unreactive/ does not corrode | reject 'is not corrosive' |
| | | allow acid will not dissolve/ react with glass
 ignore 'acid won't burn through'
 ignore references to clear / strong |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array} & \text { Answer } & \text { Additional guidance } \\
\hline \mathbf{4 (b) (i)} & \text { An explanation linking } \\
\text { • hold the wire in the flame / at the tip of the } \\
\text { (blue) cone (1) } \\
\text { (as) it is hotter (1) }\end{array}
$$ \quad \begin{array}{l}Mark

if the wire has been placed in the flame then any colour of

flame is allowed.

if the wire has not been placed in the flame then allow use

of a blue/roaring flame/open air hole, but NOT any other

specified colours of roaring flame.\end{array}\right\}\)| (2) |
| :--- |

Question number	Answer	Additional guidance	Mark
4(b)(ii)	P: lithium / Li (1) Q: potassium / K (1) R: copper / Cu (1)	for P allow strontium / Sr ignore any charges, even if incorrect (e.g. allow $\left.\mathrm{Li}^{+}, \mathrm{Li}^{2+}\right)$ do not penalise incorrect capital/small letters (e.g. allow CU, li)	(3) AO1 2

Question number	Answer	Additional guidance	Mark
4(c)	$20 \times 5 / 1000 \times 219(2)(=21.9 \mathrm{~g})$ - $5 / 1000(=0.005)(1)$ - $20 \times 0.005 \times 219$ (1) (= 21.9 g$)$	overall calculation is $5 \times 219 \times 20 / 1000$ deduct 1 mark per error allow ECF for MP2 21900 scores 1 (has not / 1000) 219 with working scores 1 (has used 100 not 1000)	$\begin{array}{\|c\|} \hline \text { (2) } \\ \text { AO2 } 1 \end{array}$

Question number	Answer	Additional guidance	Mark		
$\mathbf{5 (a) (i)}$	diesel releases more (nitrogen oxides/NOx) (per km driven) / ORA (1)	ignore just quoting numbers from the table answer does need to make comparison - can be shown by statements about diesel and petrol	(2) AO3 1 ignore any effect of pollutants		
ignore anything about rights and wrongs of					
either NOx or particulates				\quad	
:---					

Question number	Answer	Additional guidance	Mark
5(a)(ii)	an explanation linking - diesel releases less carbon dioxide (1) - which is a greenhouse gas/contributes to global warming (1) OR - diesel releases less sulfur dioxide (1) - which causes acid rain (1)	vague references to pollution / harms environment do need to be qualified for any MP2 allow climate change ignore effects of climate change ignore carbon monoxide / unburnt hydrocarbons ignore ozone / ozone layer / effects of acid rain reject particulates MP2 depends on MP1	$\begin{aligned} & \text { (2) } \\ & \text { AO3 } 2 \end{aligned}$

Question number	Answer	Mark
$\mathbf{5 (b) (i)}$	D their viscosity increases as the molecules get larger is the only correct answer A, B, \mathbf{C} are incorrect statements	(1) AO1 $\mathbf{1}$

Question number	Answer	Mark
$\mathbf{5 (b) (i i)}$	$\mathbf{C} \mathrm{C}_{4} \mathrm{H}_{10}$ is the only correct answer	(1) AO2 1

Question number	Answer	Additional guidance	Mark
5(b) (iii)	$\begin{aligned} & 2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O} \\ & \text { LHS formulae } \rightarrow(1) \\ & \rightarrow \text { RHS formulae (1) } \\ & \text { balancing correct formulae (1) } \end{aligned}$	allow multiples including halves ignore any state symbols	$\begin{aligned} & \text { (3) } \\ & \text { AO2 } 1 \end{aligned}$

Question number	Answer	Additional guidance	Mark
6(a)	bromine	ignore Br	(1) AO1 1
Question number	Answer	Additional guidance	Mark
6(b)	An explanation linking - outer \{shell / electron(s) \} is further from nucleus in iodine/ORA (1) - \{force / attraction\} between nucleus and (electrons in) outer shell is less in iodine/ORA(1) - iodine does not gain (an) electron(s) as readily/ORA (1)	accept reverse argument throughout allow iodine has more shells / larger atomic radius / ORA reject 'more outer shells' chlorine has \{fewer (electron) shells / smaller atomic radius\} allow shielding arguments for either MP1 OR MP2 for either iodine or chlorine allow outer electrons / incoming electron if no other mark scored (group 7 elements) gain one electron (when they react) (1)	(3) AO1 1

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 (c)}$ | sodium chloride | allow NaCl
 ignore 'salt'
 reject sodium chlorine / incorrect formula |

Question number	Answer	Additional guidance	Mark

| $\mathbf{6 (d) (i)}$ | $2 \mathrm{Na}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NaBr}$
 1 mark for correct formulae
 1 mark for balancing correct formulae | ignore state symbols even if incorrect |
| :--- | :--- | :--- | :--- |
| $\mathbf{A O 2} \mathbf{2}$ | | |

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (d) (i i)}$	turns yellow/ orange (liquid / solution)	reject brown as standalone colour ignore brown as in 'yellow-brown' ignore red as in 'red-orange'' reject other changes eg effervescence	

Question number	Answer	Additional guidance	Mark
6(d)(iii)	bromide (ions)/(2) Br^{-}(1) loses/ lost electrons (1)	reject bromine / Br allow bromine loses electrons for MP2 only reject answers in terms of \{chlorine / chloride\} being oxidised reject Br_{2} loses electrons	$\begin{aligned} & \text { (2) } \\ & \text { AO1 } 1 \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (a)}$	an explanation linking		(2)
	• plants (1)		
• (produces oxygen by) photosynthesis (1)	allow cyanobacteria / stromatolites		

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (b)}$	an explanation linking	allow burn ignore continue heating the magnesium until it no longer glows / all turned white 'heat to constant mass' $=2$ marks	(2) • reheat (and record the mass) (1)

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (c)}$	$\frac{1.24}{31} \mathrm{P}(=0.04)$ and $\frac{1.6}{16} \mathrm{O}(=0.1)(1)$	full marks can only be obtained with working shown allow elements in either order in any formula allow ECF from moles of elements calculated allow $1: 2.5$ allow $4: 10(1)$ ratio $=2: 5$ OR empirical formula $=\mathrm{P}_{2} \mathrm{O}_{5}(1)$	AO2 1 relative formula mass $\mathrm{P}_{2} \mathrm{O}_{5}=142(1)$ molecular formula $=\mathrm{P}_{4} \mathrm{O}_{10}(1)$ allow $\frac{31}{1.24} \mathrm{P}=25$ and $\frac{16}{1.6} \mathrm{O}=10(0)$ ratio $=2.5: 1$ or $5: 2$ or empirical formula $=\mathrm{P}_{5} \mathrm{O}_{2}(1)$ relative formula mass $\mathrm{P}_{5} \mathrm{O}=187(1)$

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{7 (d) (i)}$ | iron wool \{turns orange-brown / rusts\} (1)
 (because) it has \{oxidised/ reacted with oxygen\} (1)
 OR
 water level in test tube rises (1)
 (because) oxygen (in the air) has reacted (with the iron) /
 volume of oxygen (in test tube) has decreased (1) | allow any suitable colour to describe rust
 ignore changes colour
 ignore air |
| AO2 2 | | |

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{7 (d) (i i)}$ | replace test tube with a measuring cylinder (1) | graduated test tube
 allow (upturned) burette
 ignore gas syringe |
| | to measure the \{volume / amount\} of oxygen used up /
 to measure the change in \{volume / amount\} of gas in
 the tube (1) | allow air in place of gas |
| AO3 3 | | |

Question number	Answer	Mark
$\mathbf{8 (a) (\mathbf { i })}$	B solid forms in the solution is the only correct answer.	(1)
	A, \mathbf{C}, and \mathbf{D} are incorrect because a precipitate is a solid (of any colour)	AO2 2

Question number	Answer	Additional guidance	Mark
8(a)(ii)	A plan including - add named alkaline solution / sodium hydroxide (solution) / potassium hydroxide (solution) (1) - white precipitate forms (in both) (1) - white precipitate dissolves with excess (alkali) indicates Al^{3+} (1) - white precipitate does not dissolve in excess (alkali) indicates Ca^{2+} (1)	accept correct formulae ignore 'alkaline solution' accept AI / Ca without charges mark independently as alternative tests allow - flame test - will show orange red / brick red for $\mathrm{Ca}^{(2+)}$ for max 2 marks or - sulfuric acid - white precipitate for calcium ions for max 2 marks	$\begin{aligned} & \text { (4) } \\ & \text { AO1 } 2 \end{aligned}$

Question number	I ndicative content	Mark
*8(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. V - does not contain transition metal - because it is white - has ionic bonding - because does not have low melting point, is soluble in water and only conducts when dissolved W - it is alkaline gas as litmus turned blue - pungent and alkaline so is ammonia X - X is insoluble - it contains bromide ions as a cream ppt formed - which is silver bromide I dentity of V - \mathbf{V} contains ammonium ions - V contains bromide ions - \mathbf{V} is ammonium bromide	(6) AO1 1 / A03 2

Level	Mark	Additional Guidance	General additional guidance - the decision between levels
	0	No rewardable material.	Read whole answer and ignore all incorrect material/ discard any contradictory material then:
Level 1	1-2	Additional Guidance Correctly identifies at least one of the three compounds OR Correctly deduces information about at least one of the three compounds	Possible Candidate Responses - \mathbf{V} is an ionic compound because it has a high melting point. - \mathbf{W} is ammonia - \mathbf{X} is (silver) bromide because a cream precipitate is formed on reaction with silver nitrate
Level 2	3-4	Additional Guidance Correctly identifies two of the three compounds and gives reasons for at least one of the three. OR Correctly identifies one of the three compounds and gives positive deductions for at least two of the three	Possible Candidate Responses - \mathbf{W} is ammonia because it turns red litmus paper blue. \mathbf{X} is silver bromide. - \mathbf{V} does not contain a transition metal because it is a white solid. \mathbf{W} is ammonia. \mathbf{X} contains bromide ions because it forms a cream precipitate.
Level 3	5-6	Additional Guidance Correctly identifies V and \mathbf{W} and gives positive deductions for at least 1 AND That \mathbf{X} is (silver) bromide/the solution contains bromide ions	Possible Candidate Responses - \mathbf{W} is ammonia because it turns damp red litmus paper blue. \mathbf{X} is silver bromide because a cream precipitate formed on reaction with silver nitrate. Therefore \mathbf{V} must be ammonium bromide.

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Question number	Answer	Mark
$\mathbf{9 (a) (\mathbf { i })}$	C energy is absorbed energy is released is the only correct answer. B, \mathbf{C} and \mathbf{D} are incorrect because at least one energy change is reversed.	(1)

Question number	Answer	Additional guidance	Mark
9(a)(ii)	- energy change in reactants $=436+158(=594)(1)$ - energy change in products $=2 \times 562(=1124)(1)$ - overall energy change $=594-1124(1)$ $\text { - }=-530(1)\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right)$	allow ECF throughout ignore sign/unit in MP1 ignore sign/unit in MP2 MP3 for the difference between MP1 and MP2 ignore sign / unit in MP3 MP4 for correct sign or stating exothermic / endothermic based on MP3 (+)530 scores 3 marks (loses MP4) (+)64 scores 3 marks (MP1 doubled) - 64 scores 2 marks (MP1 doubled and loses MP4) (+) 32 scores 3 marks (MP2 not doubled) - 32 scores 2 marks (MP2 not doubled and loses MP4	$\begin{aligned} & \text { (4) } \\ & \text { AO2 } 1 \end{aligned}$

Question number	I ndicative content	Mark
*9(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. A01 DESCRI PTION - increases the rate of reaction - does not alter products of reaction - is chemically unchanged by reaction - does not get used up - so catalyst mass does not change FUNCTI ON - particles must have minimum energy for reactions to occur - this is called activation energy - reaction proceeds by an alternative route - which reduces activation energy - so a greater proportion of collisions are successful DI AGRAM - reaction profile with catalyst has start and end energies the same - because reactants and products the same (label or in text) - new profile has lower peak - this represents lower activation energy (label or in text) EXAMPLES - Haber process to make ammonia uses iron catalyst - cracking to make smaller alkanes uses catalyst - (fermentation) to make alcoholic drinks uses (yeast which contains) an enzyme - hydrogen peroxide decomposition uses catalysts - used in catalytic converters - use of enzymes as biological catalysts	$\begin{gathered} \text { (6) } \\ \text { AO1 } \end{gathered}$

Level	Mark	Additional Guidance	General additional guidance - the decision between levels
	0	No rewardable material.	Read whole answer and ignore all incorrect material/ discard any contradictory material then:
Level 1	1-2	Additional Guidance identifies a catalysed reaction describes simply the role of a catalyst or labelling activation energy on the diagram	Possible Candidate Responses - Haber process to make ammonia (uses iron catalyst) - enzymes are catalysts - a catalyst speeds up a reaction but does not get used up
Level 2	3-4	Additional Guidance Two from identifies at least one catalysed reaction gives a good description of the role of catalyst describes the function of a catalyst OR draws a labelled reaction profile (or amends that on question)	Possible Candidate Responses Two from: - Haber process to make ammonia (uses iron catalyst) and cracking to make smaller alkanes - a catalyst increases the rate of a reaction without affecting the products; the catalyst is chemically unchanged and its mass remains the same - a catalyst provides an alternative route for a reaction in which the activation energy is lowered so a greater proportion of collisions lead to products OR provides a labelled reaction profile (or amended the one in the question
Level 3	5-6	Additional Guidance Identifies at least one catalysed reactions AND Gives a good description of the role of catalyst AND describes the function of a catalyst OR draws a labelled reaction profile (or amends that on question)	Possible Candidate Responses - Haber process to make ammonia uses iron catalyst / cracking to make smaller alkanes a catalyst increases the rate of a reaction without affecting the products; the catalyst is chemically unchanged and its mass remains the same a catalyst provides an alternative route for a reaction in which the activation energy is lowered so a greater proportion of collisions lead to products OR provides a labelled reaction profile (or amended the one in the question

	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Deconstructs scientific information but understanding and connections are flawed. An unbalanced or incomplete argument that provides limited synthesis of understanding. (AO3)
Level 2	3-4	- Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Deconstructs scientific information and provides some logical connections between scientific concepts. An imbalanced argument that synthesises mostly relevant understanding, but not entirely coherently (AO3)
Level 3	5-6	- Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Deconstructs scientific information and provide logical connections between scientific concepts throughout. A balanced, well-developed argument that synthesises relevant understanding coherently. (AO3)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a) (i)}$	but-2-ene	allow 2-butene	(1) AO1 1

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a) (i i)}$	$\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$ fully correct equation (2) if equation not fully correct, then correct formula of product $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}(1)$	reject charges on formulae reject superscript numbers allow incorrect lower and upper case letters	(2)
AO2 2			

Question number	Answer	Additional guidance	Mark
10(a)(iii)	 2 neighbouring carbon atoms with single bond and continuation bonds shown (1) rest of repeating unit correct (1)	allow CH_{3} or ignore brackets and n MP2 depends on MP1	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO2 } 1 \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (i)}$	propene	accept prop-1-ene / 1-propene	(1)

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0 (b) (i i)}$ | $-\mathrm{COOH} / \mathrm{COOH} /$ | allow CO 2 H
 allow displayed formula |

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (i i i)}$	the polystyrene cup \{is a poor conductor of heat / will melt / will burn\}	ignore reference to any equipment other than the polystyrene cup (e.g. clamp stand)	(1) AO1 2

Question number	Answer	Mark
$\mathbf{1 0 (c) (i)}$	$\mathrm{H}_{2} \mathrm{O}$	(1) AO1 1

Question number	Answer	Additional guidance	Mark
10(c)(ii)	 fully correct diagram scores (2) if not scores (1) for 3 single bonded carbon atoms / 2 OH groups	allow OH or $\mathrm{O}-\mathrm{H}$ reject any double bonds	$\begin{aligned} & \text { (2) } \\ & \text { AO2 } 1 \end{aligned}$

