Compromised Item Detection Using Item Response and Response Time

Chunyan Liu, Dan Jurich, & Kimberly Swygert 10/12/2018

Introduction

Test security

- > Item breach
- > Item preknowledge
- Decrease in item difficulty
- > Increase in examinee performance

Response time (RT)

- Examination of test taker's motivation (Wise, 2006; Wise & Kong, 2005)
- > Test form construction (van der Linden, 2011)
- Examination of test speededness (Shao, Li, & Cheng, 2016)
- > Detection of item preknowledge (Meijer, & Sotaridona,

2006; Qian et.al, 2016; van der Linden & Guo 2008)

Compromised Item Detection

- > Sequential procedure (Zhang, 2013)
 - Computerized Adaptive Testing (CAT)
 - \circ Change-point (n_c)
 - Item becomes easier at the changing-point

Compromised Item Detection

- ➤ Sequential procedure (Zhang, 2013)
 - moving sample: most recent responses to an item up to n
 - o m: size of the moving sample
 - \circ n_c : changing point

Sequential procedure (Zhang, 2013)

$$\hat{Z}_{nm} = \frac{\hat{p}_{nm} - \hat{p}_{n-m}}{\sqrt{\hat{p}_{n-m}(1 - \hat{p}_{n-m})}} \sqrt{\frac{m(n-m)}{n}}.$$

n: sequence number of the present examinee

m: moving sample size

 \hat{P}_{nm} : item p-value of the moving sample at n

 \hat{p}_{n-m} : item p-value of the first n-m responses

Note: \hat{Z}_{nm} does not follow a normal distribution and a cutoff point (c_{α}) is used to flag items

Sequential procedure (Zhang, 2013)

$$E[Z_{nm}] = \begin{cases} 0, & \text{if } m \le n \le n_c; \\ (n - n_c)(p^* - p) / \sqrt{mp(1 - p)}, & \text{if } n_c < n < n_c + m; \\ \sqrt{m}(p^* - p) / \sqrt{p(1 - p)}, & \text{if } n \ge n_c + m. \end{cases}$$

$$\frac{\sqrt{m}(p^* - p)}{\sqrt{p(1 - p)}}$$

Sequential procedure (Zhang, 2013)

- ➤ Applied in CAT Simulation
- Hasn't been applied to operational data in continuously administered linear computerbased testing (CBT)
- ➤ Didn't consider RT

Purpose of the Study

- Flag compromised items using the sequential procedure
 - For operational data from a linear CBT
 - For data from different countries
 - Considering both item responses and item RTs
 - ✓ RT: change of average item latency of the moving sample

➤ Average examinee ability varies during the testing window (seasonal effect)

Method

Data

- ➤ Medical licensure examination in English
- Multiple test forms administered in a year
- > Thousands of items
- > > 35,000 test takers
- > Four investigated countries (US, A, B, C)
- > Seasonal effect across the year

Method Sequential Procedure

- > For US
 - Starting point n_0 = 500
 - 0 m = 50
- > For non-US
 - \circ Starting point $n_0 = 50$
 - $\circ m = 25$
- \triangleright Cutoff point: c_{α} = 3.5 and 2.0

Method

Assumptions

Examinees' test speed and examinees' ability are not highly correlated

➤ Item response time decreases after it is breached

Data Examinee performance over time

Results

Z and average latency for an unflagged item(c_{α} = 3.5)

Results

Number of flagged items based on item responses only (c_{α} = 3.5)

Country	US	Α	В	С
N	92	2	4	0

Results - US

Example of Z and average latency for a flagged item based on item responses only (c_{α} = 3.5)

Possibly Type I error?

Results - US

Example of Z and average latency for a flagged item based on item responses (c_{α} =2.0) and *RTs*

Potentially concerning?

Results - US

Example of Z and average latency for a flagged item based on item responses (c_{α} =2.0) and *RTs*

Results – Country C

Example of Z and average latency for a flagged item based on item responses (c_{α} =2.0) and *RTs*

Results – Country C

Example of Z and average latency for a flagged item based on item responses and *RTs*

Results

Number of flagged items based on *RTs* and item responses

Country	US	A	В	С
N	5	1	0	4

Results

Overall item p-value and average item latency across different countries

Take Home

➤ A lot of items were likely falsely flagged using item responses only

For the current dataset, only 10 items were flagged using *RTs* and item responses, and 4 of them may need more attention/monitoring

Thank You!

cliu@nbme.org

©2018 National Board of Medical Examiners® (NBME®) All Rights Reserved