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Abstract 

 

A statistical test is proposed that can be used to detect an item compromise 

due to cheating using information from wrong-to-right erasures. For most 

class sizes observed in practice, an (exact) statistical test based on the 

generalized binomial distribution has been shown applicable for most 

commonly used levels of significance. It is necessary, however, to set the 

significance level at lower values, e.g., below .001, for larger class sizes in 

order to maintain the error rates at the nominal level. 

 

 

1. Introduction 

A statistical analysis of the number of wrong-to-right (WTR) erasures in statewide assessments 

data is becoming customary practice as part of test security protocol adopted by state education 

agencies to identify possible occurrences of test fraud. The unit of analysis is often on a group of 

examinees, e.g., class or school. The general consensus is that once a group is flagged for 

suspicious test taking behaviour, follow up analyses have to be undertaken to rule out alternative 

explanations for the flag. Furthermore, collection of collateral information in the form of 

additional quantitative or qualitative analyses to substantiate or refute the allegation is necessary 

in order to minimize false accusations. The focus of the present paper is also on the analysis of 

WTR erasures but the emphasis is on the item level instead of examinee or group of examinees. 

The information obtained from item level analysis of erasures, in combination with other 

independent analyses, e.g., item level similarity analysis (Wibowo et al., 2013a), student level 

similarity analysis (van der Linden & Sotaridona, 2006; Wollack, 1997) can be used as part of 



2nd Annual Conference on Statistical Detection of Potential Test Fraud, Oct. 17-19, 2013, Madison, Wisconsin 

 

Page 2 of 23 

substantive analyses following the group-level analysis of test irregularity. Additionally, an item 

that is flagged from different units, either by using the method presented in this paper or other 

methods, e.g., item-fit and parameter drift, may indicate that an item has been seriously 

compromised for future operational use. In this paper, two item level statistical tests of WTR 

erasures are proposed and their error rates were investigated via Monte Carlo studies with one 

million replications using four data sets from statewide assessment program. 

 

 

2. Item Level Statistical Test of WTR Erasures 

 

 

2.1 Assumptions 

Let the wrong-to-right (WTR) erasures of a student s for an item i (
is

E ) be a Bernoulli random 

variable taking values of 0 (no WTR erasure) and 1 (WTR erasure). The probability of making a 

WTR erasure on item i, 
isis
pE == )1Pr(  for a constant 

is
p . We further assumed that 

is
E  and 

'is
E are independent for all s  and 's  in unit u  where 'ss ≠ . The probability of making a WTR 

erasure can be estimated from the data using parametric or non-parametric approach.  

 

2.2 Estimation of pis 

This paper followed a similar approach of conditioning to estimate the probability of WTR 

erasure on item i as discussed in van der Linden & Jeon (2012, see equation 3). Hence, 
is
p  is 

estimated using a subset of non-missing final responses given erasures on incorrect options as 

initial responses. Let 
u
S  denotes the number of students in this subset. The proportion of 

students in category d with WTR erasures out of 
u
S  students who made erasures on incorrect 

options during their initial responses can be used as (non-parametric) estimate of d

i
p . 
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Alternatively, d

i
p  can be estimated parametrically using (multiple) logistic regression with logit 

transformation (or logit link function): 
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where 
0
β  is the regression intercept and 

r
β  is the regression slope associated with the rth 

category variable (
r
d ). Maximum likelihood estimate of regression coefficients in equation (1) 

can be obtained from most standard statistical software, e.g., SAS (2002). One can also test 

which category variables are statistically significant using the likelihood ratio test. The present 

paper differs from that of van der Linden & Jeon (2012) in two ways. First, they used IRT 

approach to estimate the probability of WTR erasure on item i. Secondly, the focus of the present 

paper is on flagging an item instead of student. 

 

2.3 Statistical Tests 

2.3.1. Generalized (Compound) Binomial Model 

The total number of WTR in unit u for an item i 

∑=
=

u
S

s
isiu

EW
1

           (2) 

has a generalized binomial distribution (Lord, 1980) with parameter { }
uisi

SspP ,,1| K== . For a 

level of significance α  considered important by the analyst, item i in unit u is flagged if 

α<≥ )Pr(
iuiu

wW .          (3) 

The probability at the left hand side of (3) can be computed using the following recursive 

formula [see also Lord & Wingersky (1984) or van der Linden & Sotaridona (2006)] 
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where 1≠
is
p for all s and  

∑ 








−
=
=

u
S

s

k

is

is

p

p
kT

1 1
)( .          (5) 

In this paper, the probability in equation (4) was computed using the poibin package in R (Hong, 

2012). 

 

2.3.2. Poisson Model 

As noted by previous researchers, the WTR erasures is rare event (Qualls, 2001; Bishop, Balut, 

& Seo, 2010; Wibowo, Sotaridona, & Hendrawan, 2013), therefore the probability of WTR 

erasures can be very small. In this case, the probability in (4) can be estimated using Poisson 

model, that is 
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where ∑=
=

u
S

s
isiu
p

1

µ . Alternatively, 
iu

µ  can be estimated using loglinear model (see for example, 

Agristi, 1996). The Type I error rates of a statistical test based on (4) and that based on (6) are 

presented in Section 4. 

 

3. Methods 

 

3.1 Data 

Four data sets from a statewide assessment program consisting of two grades (5 & 8) and two 

content areas (Math and Language Arts) were used in this study. Although the original data sets 
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include open-ended items, only the multiple-choice (MC) portion of the tests was used in the 

study. The number of MC items ranges from 30 to 45 and the number of option is 4 for all data 

sets.  

 

3.2. Factors, Level of Significance, and Estimation Software 

The Type I error rates of the statistical tests based on equation (4) and equation (6) were 

investigated under four sizes of valid cases, namely, 5, 10, 30, and 100. These sizes of valid 

cases were chosen to show how the error rates fared across a wide range of unit or class sizes 

typically observed in practice. Note that the term “valid cases” in this study refers to a subset of 

cases as described in Section 2.2. Our emphasis on valid cases instead of the actual unit size (or 

class size) was motivated by the fact that for examinees in a given class or unit, e.g., 10, the 

actual number of valid cases is almost always less than 10 and the performance of the statistical 

test presented in this paper does not depend on the unit size but on the actual number of valid 

cases. A distribution of valid cases by class or unit size and item difficulty is presented in the 

Results section. Typical class sizes in the data set as reported in Wibowo et al. (2013) ranges 

from 10 to 59 examinees. We used significance levels in the range .01 to .05 with increments of 

0.01, .0001 to .0005 with increment .0001, and .00135 to represent a level of significance based 

on 3 standard deviations from a one-sided statistical test that assumed standard normal 

distribution. Because flagging an item has less severe consequence than flagging an examinee or 

group of examinees, using higher values of level of significance is reasonable. SAS software 

version 9.1.3, SAS Institute Inc.(2002), was used to estimate the parameters of the logistic 

regression in equation (1). The initial parameter estimates were obtained with three category 

variables included in the model, namely, gender (male, female), ethnicity (black, white, hispanic, 

others), and proficiency level (below proficient, proficient, advanced). After considering the 
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significance of the contribution of each category variable in the regression model and the 

simulation time if we are to consider different set of regressors for different items, we decided to 

drop both gender and ethnicity when estimating the probability of WTR erasures for all the items 

and only included the proficiency level as the sole regressor in the simulation studies. Maximum 

likelihood estimate of regression coefficients in equation (1) can be obtained from most standard 

statistical software, e.g., SAS (2002).  In practice, one can also test which category variables are 

statistically significant using the likelihood ratio test. The focus of analysis is on checking the 

error rates of the test statistics based on equations (4) & (6) for difference sizes of valid cases and 

for different levels of significance. 

 

3.3. Data Processing Steps 

Select valid cases from the data set per conditioning approach discussed in Section 2.2 then 

estimate the regression parameters of equation (1) for all items in each grade/content. Given a 

subset of examinees for a certain grade/content (e.g., math grade 5): 

(i) Randomly select 5 cases to represent valid cases of size 5. 

(ii) Conduct a statistical test on each item using (4) and (6). 

(iii) Perform (i)-(ii) for one million times and compute the empirical Type I error rates.  

(iv) Repeat steps (i)-(iii) for size 10, 30 and 100. 

(v) Repeat (i)-(iv) for the remaining grade by content combinations. 



2nd Annual Conference on Statistical Detection of Potential Test Fraud, Oct. 17-19, 2013, Madison, Wisconsin 

 

Page 7 of 23 

 

 

4.  Results 

 

 

4.1. Number of Valid Cases by Class Size and Item Difficulty 

The distributions of the number of students or valid cases from the actual data sets who made 

erasures on incorrect options during their initial responses and made non-missing final responses, 

as a function of class size and item difficulty are shown in Figure 1. In this figure, class sizes 15 

or less is classified as small (S), 16 to 25 as medium size (M), and above 25 as large (L). The 

items with difficulty greater than .7 were classified as easy items, difficulty .3 to .7 as medium 

difficulty item, and difficulty below .3 as difficulty items. Clearly, the number of valid cases (or 

erasures) increases as the item difficulty and class size. For easy items, most valid cases are 

below 10 and mostly below 30 for difficult items. 
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Figure 1. Number of Valid Cases by Class Size and Item Difficulty 
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4.2. Type I Error Rates 

4.2.1. By Item 

Figures 2-5 shows the Type I error rates of compound binomial (circle) and poisson (triangle) 

models for each individual item within certain size of valid cases. The points in the graph are 

coordinates where the x-axis is the level of significance and the y-axis is the empirical Type I 

error rates. The solid line (identity line) indicates perfect agreement between the theoretical and 

empirical error rates (ideal scenario). Error rates below the identity line would indicate that the 

statistical test is conservative while those above the identity line would indicate that the 

statistical test is liberal. Ideally, we aimed for a statistical test with error rates that are within or 

are slightly conservative. Some key observations from the plots of Type I error rates:  

a) For 10 and 5 valid cases, both methods were able to control the error rates within the 

nominal levels for all four data sets. However, the compound binomial performs better as 

the error rates are, for most items, closer to the identity line. 

b) For 30 valid cases, the compound binomial tended to be liberal at the higher value of 

level of significance (.01 or higher) while the poisson model performs best. For 

significance levels .00135 and below, the error rates of the compound binomial are 

acceptable for 30 valid cases (see Appendix 7.1) 

c) The error rates of the compound binomial are unreasonably large as the number of valid 

cases increases, e.g., for 100 valid cases, the compound binomial cannot be 

recommended in practice.  
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Figure 2. Type I Error Rates of Generalized (Compound) Binomial and Poisson, Individual 

Item, Math-Grade 5 
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Figure 3. Type I Error Rates of Generalized (Compound) Binomial and Poisson, Individual 

Item, Math-Grade 8 
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Figure 4. Type I Error Rates of Generalized (Compound) Binomial and Poisson, Individual 

Item, Reading-Grade 5 

 

 



2nd Annual Conference on Statistical Detection of Potential Test Fraud, Oct. 17-19, 2013, Madison, Wisconsin 

 

Page 13 of 23 

Figure 5. Type I Error Rates of Generalized (Compound) Binomial and Poisson, Individual 

Item, Reading-Grade 8 
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4.2.1. Mean Error Rates by Grade/Content 

Figures 6 shows the mean Type I error rates when all items are aggregated together and for large 

values of level of significance (.01-.05). Consistent with earlier results, the compound binomial 

performs best for 10 and 5 valid cases. If one has to use the compound binomial test for 30 valid 

cases, one has to set the level of significance at lower values, e.g., below .001 in order to 

maintain the error rates close to the nominal level (see Figure 7). 
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(a) Math – Grade 5 

 
 

(b) Math – Grade 8 

 
 

 

 

 

 

 

 

 

(c) Reading – Grade 5 

 
 

(d) Reading – Grade 8 

 
 

 

 

 

 

Figure 6. Mean Type I Error Rates of Generalized (Compound) Binomial and Poisson 
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(a) Math – Grade 5 

 
 

(b) Math – Grade 8 

 
 

 

 

 

 

 

 

 

(c) Reading – Grade 5 

 
 

(d) Reading – Grade 8 

 
 

 

 

 

 

Figure 7. Mean Type I Error Rates of Generalized (Compound) Binomial and Poisson for Small Level of Significance 
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5.  Discussions 

 

An evaluation of the characteristics of an item is a very important aspect of test development 

to ensure that each item that comprised a test contributes optimally to sound measurement. 

Some important item indicators that are used, traditionally, by test specialist for judging the 

characteristics of an item includes item fit, bias, difficulty, discrimination, and information. 

Because of the recent prevalence of cheating on statewide assessment tests, it is important to 

have an item indicator that pertains to cheating, e.g., an indicator that test practitioners can 

use to evaluate whether or not an item has been compromised due to test irregularities. 

Although an item fit, to some degree, could be used to measure item compromise, it was not 

designed for this purpose and hence, its power to detect item misfit due to cheating is known 

to be very low and the error rate is high. The statistical tests presented in this paper are 

designed specifically to detect item compromise using information from wrong-to-right 

erasures. For a statistical test of item compromise using information from item response 

similarity, refer to the paper by Wibowo et al. (2013). It has been shown that for most class 

sizes seen in practice, an (exact) statistical test based on the generalized (compound) 

binomial distribution is applicable, particularly at .01 to .05 range of significance level. For 

larger class sizes, however, it is necessary to conduct the test at lower significance level, e.g., 

below .001, in order to maintain the conservative nature of the test. A similar approach of 

analysis proposed in the paper by Wibowo et al. (2013) can also be applied here where the 

prevalence of item compromise across classes or units are collected then use this collective 

information as supporting evidence whether or not to exclude an item for operational use. 

Another approach of analysis is to look at the number of compromised items in a class and 
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use this information as supporting evidence that there might be class-wide incidence of 

cheating. 

 



2nd Annual Conference on Statistical Detection of Potential Test Fraud, Oct. 17-19, 2013, Madison, Wisconsin 

 

Page 19 of 23 

6. References 

 

Agresti, A. (1996). An introduction to categorical data analysis. NY: Wiley. 

Bishop, S., Bulut, O., & Seo, D. (2010). Modeling Erasure Behavior. NCME. New Orleans. 

Hong, Y. (2012). On computing the distribution function for the Poisson binomial distribution. 

Computational Statistics & Data Analysis. Available online, 

http://dx.doi.org/10.1016/j.csda.2012.10.006 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, 

NJ: Erlbaum. 

Lord, F. M., & Wingersky, M. S. (1984). Comparison of IRT true-score and equipercentile 

observed-score “equatings.” Applied Psychological Measurement, 8, 452–461. 

SAS Institute Inc. (2002), SAS 9.1.3 Help and Documentation, Cary, NC: SAS Institute Inc. 

Qualls, A. (2001). Can Knowledge of Erasure Behavior Be Used as an Indicator of Possible 

 Cheating?  Educational Measurement , 9-16. 

van der Linden, W.J. & Sotaridona, L.S. (2006). Detecting answer copying when the regular 

response process follows a known response model, Journal of Educational and 

Behavioral Statistics, 31, 283-304. 

Wibowo, A., Sotaridona, L.S., Hendrawan, I. (2013a). Statistical models for flagging unusual 

number of wrong-to-right. A paper presented at Annual Meeting of the National Council 

on Measurement in Education, April 26-30, 2013, San Francisco, California. 

Wibowo, A., Sotaridona, L.S., Hendrawan, I. (2013b). Item level analysis of response similarity. 

A paper accepted for presentation at the 2
nd
 Annual Conference on Statistical Detection of 

Potential Test Fraud, October 17-19, 2013, Madison, Wisconsin. 

 



2nd Annual Conference on Statistical Detection of Potential Test Fraud, Oct. 17-19, 2013, Madison, Wisconsin 

 

Page 20 of 23 

 

7. Appendices 

 

7.1. Type I Error Rates for Small Level of Significance 
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Math, Grade 8 
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Reading, Grade 5 
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Reading, Grade 8 

 
 


