Unit 3

1. Doing The Numbers
2. Shape Up
3. Measuring Up
4. Got The Time?
5. Relationships
6. Data and Systematics
7. Location and Direction
8. What's the Chances?
9. Working With Money
10. Managing Money

Important: All material, advice and assessment tasks are provided as a guide only and do not constitute official advice. As always you must check with the VCAA and any other relevant authorities about the suitability of a task.
Copyright notice/License information:
\Rightarrow All material in this printed workbook may only be reproduced by the school or institution named on each page in accordance with its purchase of a master license.
\Rightarrow All use of material must include the copyright and license notices at the bottom of each page. You are not permitted to electronically re-engineer or extract material from a page. Please see the Read Me First file for full licensing information in relation to a master license.
\Rightarrow Unauthorised copying and reproduction of this material constitutes a breach of the Copyright Act.
\Rightarrow For best results the material has been formatted to be reproduced from the master file.

VCE: VM Units 1\&2: From 2023

\Rightarrow Literacy VM 1\&2: Coursebook
\& Applied Vocational Booklet
\Rightarrow Numeracy VM 1\&2: Coursebook
\& Skills Development Portfolio
\Rightarrow Personal Development VM 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VM 1\&2: Coursebook
\& Applied Vocational Booklet
VPC Units 1\&2: From 2023
\Rightarrow Literacy VPC 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Numeracy VPC 1\&2: Coursebook
\& Skills Development Portfolio
\Rightarrow Personal Development VPC 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VPC 1\&2: Coursebook \& Applied Vocational Booklet
www.delivereducation.com.au

VCE: VM Units 3\&4: From 2024

\Rightarrow Literacy VM 3\&4: Coursebook
\& Applied Vocational Booklet
\Rightarrow Numeracy VM 3\&4: Coursebook \& Skills Development Portfolio
\Rightarrow Personal Development VM 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VM 3\&4: Coursebook \& Applied Vocational Booklet
VPC Units 3\&4: From 2024
\Rightarrow Literacy VPC 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Numeracy VPC 3\&4: Coursebook
\& Skills Development Portfolio
\Rightarrow Personal Development VPC 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VPC 3\&4: Coursebook \& Applied Vocational Booklet
michael@delivereducation.com.au

Copyright © 2023 Michael Carolan Developed and written by Michael Carolan Cover by Michael Carolan First published 2023 by DELIVER Educational Consulting, PO BOX 40, Moonee Vale, 3055, Victoria, Australia.
Contact: www.delivereducation.com.au michael@delivereducation.com.au (03) 99391229
Carolan, Michael
Numeracy: VM 3\&4 (ISBN 978-1-925172-89-8 for printed coursebook)
Images: © 2023 Depositphotos.com, © 2023 Thinkstock, © 2023 Photos.com (where noted within text); others: © 2023 Jupiterimages Corporation; and Copyright DELIVER Educational Consulting and its licensors.
This book is copyright and may only be copied in accordance with the Copyright Act. For information contact the Copyright Agency Limited. Students may copy pages from their own workbooks for their own educational purposes.

Advice to students

You are about to embark on a learning journey into Numeracy Units $3 \& 4$ subject of your Vocational Major. Use this coursebook to build and develop knowledge and skills to assist your numeracy development over the year. But also be sure to apply what you are learning in classroom situations to your work placements, your VET course and other applied situations, and vice versa! And of course, you should cross-apply knowledge and skills both to and from Literacy, Personal Development Skills and Work Related Skills.

1. In Numeracy Unit 3, you will investigate 4 areas of study through 3 applied numeracies.
2. In Numeracy Unit 4 you will investigate a further 4 areas of study through 3 more applied numeracies.
You will need to apply the 4-stage Problem-Solving Cycle for all activities and tasks that you do. In the beginning stages, your teacher will lead you through the application of the problem-solving cycle. Then as you further develop your numeracy skills, you will be expected to apply this cycle independently.
Throughout the year you will also develop applied skills in the use of many mathematics 'tools' and resources, as well as other tools and resources that relate to your own vocational, health and recreational, financial, civic and personal circumstances. These will form part of your 'Maths Toolkit'.
Use this coursebook by completing the tasks in the spaces and pages provided. You will also need to maintain your own work folios to complete some tasks, as well as others given to you by your teacher.
You may need to collect and keep a work folio with copies of resources, handouts and evidence of you applying numeracy skills.
You should also use your Numeracy Skills
Development Booklet to help build skills for various
topics throughout the year. Look for the icon to show the corresponding topic.
You might be directed to complete some or even all of the assessment tasks, as well as others supplied by your teacher.
Throughout this coursebook there are a number of quick-reference Numeracy Superskills. Use the table opposite to locate these.
When dealing with problems related to visual numeracy it is a good idea to draw a diagram.
Remember that your development of numeracy skills will provide you with the tools for a more successful personal, social and vocational life. So best wishes with your numerical journey.
Numeracy Super Skills
Unit 3
1.07 Order, order! 8
1.10 Addition 11
1.10 Subtraction 11
1.11 Multiplication 12
1.13 Division 14
1.16 Fractions: Addition \& subtraction 17
1.16 Fractions: Multiplication \& division 17
1.21 Estimating percentages 22
1.22 Percentage change 23
1.25 Power calculations 26
1.26 Pythagoras' Theorem 27
2.03 Solid objects 36
2.06 Transforming objects 39
2.10 Types of angles 43
2.11 Types of triangles 44
2.17 Scale 50
2.21 Scale and ratio 54
3.04 Units of measurement 65
3.07 Perimeter 68
3.08 Area 69
3.09 Volume 70
3.11 Fluids \& Solids 72
4.05 Converting time 92
4.08 Elapsed time (duration) 95
5.13 Formula for success 124
5.16 Calculating productivity. 128
Unit 4
6.11 Effective checksheets 152
6.15 Spreadsheets 156
6.19 Line graphs 160
6.21 Bar graphs 162
6.23 Pie charts 164
6.25 Mean 166
6.27 Median 168
6.29 Mode 170
7.11 Mapping features 190
8.07 Tree diagram 212
9.03 Discounts 230
9.21 Calculating productivity II 248
9.23 Fixed and variable costs. 250
10.03 Budgeting 258
10.07 Main types of income 262
10.13 Managing your money 268
10.17 Loan repayment calculator 272

*Note: 3\&4 due Nov \& Dec '23			Master license PDFs	
*	49.50	__ @ \$27.50	_ @ \$38	495
*	9.50	\$27.50	\$38	\$495
*Personal Development VM: 3\&4	__ @ \$49.50	. 50	- @ \$38	_ @ \$495
*Work Related Skills	\ldots _ @ 49.50	_ @ \$27.50	- @ \$38	__@ \$495
Literacy	\$49.50	__ @ \$27.50	- @ \$385	or __ @ \$495
N	\$	- @ \$27.50	_ @ \$3	__ @ \$495
P	_ @ \$49.50	_ @ \$27.50	_ @ \$385	or__@ \$495
Work Related Skills VM: 1\&2	__ @ \$49.50	__ @ \$27.50	_ @ \$385	or __ @ \$495

3\&4 Interim masters

- Available now
- Available now
- U3 Available now, U4 Oct
- Available now

3\&4 Interim masters
U3 Available from Nov, U4 Jan '24
U3 Available from Dec, U4 Feb '24
U3 Available from Nov, U4 Jan '24
U3 Available from Dec, U4 Jan '24

Order Details

Vocational Pathways Certificate

* Print Lit/WRS due Dec 23 \& Jan 24 ^ Print Num \& PDS due Mar '24	Printed Coursebook	Applied Vocational Booklet	Master license PDFs	$\begin{gathered} \text { e-version } \\ \text { Master license } \\ \text { PDFs } \end{gathered}$
* Literacy VPC: 3\&4	@ \$49.50	_ @ \$27.50	_ @ \$385	or___ @ \$495
\wedge Numeracy VPC: 384	@ \$49.50	@ \$27.50	\$385	r__ @ \$495
\wedge Personal Development VPC: 3\&4	— @ \$49.50	- \$ 27.50	@ \$385	or__ @ \$495
* Work Related Skills VPC: 3\&4	__ @ \$49.50	___ @ \$27.50	— @ 385	or___ @ \$495
Literacy VPC: 1\&2	—@\$49.50	___ @ \$27.50	\$38	or__ @ \$495
Numeracy VPC: 1\&2	_ @ \$49.50	___ @ \$27.50	@ \$385	r__ @ \$495
Personal Development VPC: 1\&2	_ @ \$49.50	___ @ \$27.50	— @ \$385	or__ @ \$495
Work Related Skills VPC: 1\&2	__ @ \$49.50	__ @ \$27.50	_ @ \$385	or __ @ \$495

Doing The Numbers

1.01 Unit 3: Introduction
1.05 Solving Problems
1.09 Addition and Subtraction
1.11 Multiplication and Division
1.15 Fractions, Decimals \& Ratios
1.15 Fractions, Decimals \& Ratios 16

Acti	ifies 1: Doing The Numbers	p. Due date Done	Comment
1 A	Unit 3 Requirements	3	
1 B	My maths toolkit	5	
1 C	Solving Problems	7	
1D	Calculations	9	
1E	Basic calculations 1	11	
$1 F$	Multiplication	13	
$1 G$	Division	15	
1 H	Fractions \& decimals	\bigcirc	
11	Fractions \& decimals II	-	
1 J	Fractions, decimals \& ratios	-	
1K	Percentages	21	
1L	Calculating percentages		
1 M	Rounding		
1 N	Powers \& roots	27	
AT 1	Party by the Numbers	$\begin{gathered} 28- \\ 31 \end{gathered}$	
PST	Problem-Solving Cycle and Maths Toolkit	32	

Comments:

1.01 Unit 3: Introduction

Unit 3 requirements

In order to successfully complete this unit:
\checkmark for Outcome 1 you must demonstrate key knowledge and skills in the 4 areas of study through applied activities related to 3 numeracies
\checkmark for Outcome 2 you must use and apply the 4 -stage Problem-Solving Cycle
\checkmark for Outcome 3 you must develop, use and apply a mathematical 'toolkit'.

4 Areas of Study for Unit 3

3. Quantity \& Measures

6 Numeracies for Units 3 \& 4

a. Personal Numeracy

Includes travel, transport, organising, planning, commitments, education, life scheduling.

b. Civic Numeracy

 Includes data, information, issues, society, economy. government, institutic © media and environment.
c. Financial Numeracy

Includes money, prices, shopping, income, wealth, banking, saving, debt, tax and budgets.

3 Outcomes for Unit 3

Outcome 1

Use and apply numeracy skills and capabilities across the 6 numeracy foci; and through the 4 Areas of Study.
Unit 3: 4 Areas of Study
Unit 3: 3+ Numeracies

Outcome 2

Use and apply numeracy skills as part of the 4-stage

Problem-Solving Cycle.

1. Identify the Maths
2. Act \& Use Maths
3. Evaluate \& Reflect
4. Communicate \& Report

Outcome 3
Develop, use and apply mathematical 'toolkit' including analogue and digital numerical tools.

1.03 Unit 3: Introduction

Problem-solving cycle

You will need to apply the 4-stage Problem-Solving Cycle at all times throughout the year, for all activities and tasks you do. In the early part of your studies, your teacher will guide you through the application of the problem-solving cycle. Then as you develop your numeracy skills, you will apply this cycle naturally and independently.

4-Stage Problem-Solving Cycle

1. Identify the maths

Find, identify and interpret the numerical information. Look for:
\square numbers

\square sizes
\square directions
\square angles
\square times
patterns
\square sequences
\square ratios
\square questions
\square problems
\square data
\square proportions \square formulae.

2. Act on and use maths

4. Communicate \& report

Communicate the results and findings using a range of different methods and media. Consider:
\square selecting
explaining
\square describing
\square summarising
\square graphing
\square evaluating
\square words
\square numbers
\square format
\square method
\square media
\square technologies.

Do the estimates or calculations or actions; and apply suitable te9hnolocis h as: \square calgriating
comparing
analysing
\square solving
\square making
\square sketching \& drawing
\square designing
\square rendering
\square constructing
\square building.

3. Evaluate and reflect

Check and review to make sure that the right information is being used and that appropriate maths has been performed.
\square Did I perform the appropriate steps?
\square Did I apply the correct tools?
\square Does my answer seem correct?
\square What did I do well?
\square Is the result close to my estimate?
\square What do I need to improve?
How can I double-check?

Mathematics Toolkit: Analogue // Digital // Technological

Throughout the year you will develop skills in the use of many mathematics 'tools' and resources, as well as other tools and resources that relate more specifically to your own vocational, health, recreational, financial, civic and personal circumstances.
\square Measuring devices
Software
Tables
Counters
Inputs
Planners
Monitoring
Data
Collecting
DrawingCalculatorsAppsGraphingDesigningReadersOrganisersSensorsStatisticsTiming devices
\square Spreadsheets
MappingMakingOutputsRostersAlarmsInformation

cessors

My maths toolkit
At the start of this year, what do alread $>$ in mumbs toolkit?

I can...	Personal maths skills and tools
I can...	I am able to...
I am able to...	I can use...
I am able to...	I can use...
I can use...	I can apply...
I can use...	I can apply...
I can apply...	I...
I can apply...	
I...	

1.05 Solving Problems

Solving problems

At times life requires dealing with problems. Money problems, time problems, people problems, work problems, customer problems, work/life balance problems and many more problems. And that's where well-developed applied numeracy skills come in.
VM Numeracy $3 \& 4$ is aimed at you developing and using skills to deal with problems. But 'doing the numbers' is not the problem. 'Doing the numbers' allows you to use data and information to make more informed decisions, so that you can deal with problems in a better way.
Some problem-solving numeracy skills you can apply include the following.
\Rightarrow Collecting, collating, interpreting and analysing data
Looks a bit raw! Perhaps Ivan and information, such as transport schedules and travel times.
\Rightarrow Using measurements and formulae to calculate area and other amounts, such as the number of tiles needed for a kitchen floor.
\Rightarrow Applying or changing formulae when cooking, such as working out the amount of time needed to cook a heavier cut of meat than given in a recipe.
\Rightarrow Setting up spreadsheets and other toolg ${ }^{\circ}$ ariise and interpret information, such as per
\Rightarrow Calculating averages based on varic is patterns, such as daily sales.
\Rightarrow Developing flowcharts and is is tr an esent sequences.
\Rightarrow Creating sketches and

Consider this example. What is th ar an ats th numbers that are the problem? Or are the actions and behaviours that havted tr that yumbers, 'the problem'? What do you think?

Marnie has just started working i
an dvertising firm after getting her degree in public relations last year. But she fir he is always broke by the end of the week. Being cool and hooked-in digital, \mathbb{V} rnie uses PayWave, direct debits, apps and online purchases for most everything ste buys. But she doesn't know where the money goes! Marnie says that her problem is that she has got no money. But is that the problem? What do you think?
Marnie's friend Lucinda completed her Vocational Major and is good with practical numbers. Lucinda shows Marnie how to do a budget to track her spending. Lucinda puts all Marnie's income and spending from when she started working into a spreadsheet, and organises the information by various categories.
Marnie sees that each week she is spending, on average, 20% of her income on Uber Eats and MenuLog, 15% on Uber and 15% on mobile, internet and online subscriptions. That's half her take-home pay; gone! She is also spending about 30% a week going out and socialising. So it's lucky she still lives at home!

Solve these problems first by estimating (where appropriate), and then researching relevant information to make accurate calculations.
a. How much would a fish and chip dinner
cost for your family?

| a. How much would a fish and chip dinner |
| :--- | :--- |
| cost for your family? |\quad b.

c. How long would it take you to save up for a car? What changes would you need to make?
b. What would you buy to cook a dinner for you and 3 friends for only 10 bucks?
d. If you got a job with 34 -hour shifts per week, where would you find the time? What days and times would you prefer and why?
to use a spreadsheet to
e. How long would it take you ansio
kms? In what circumstances wou, you do
this? dget, what would be the

1.07 Solving Problems

Calculations

By now you are probably familiar with the different types of calculations required to develop, use and apply numeracy skills.
First off you have the basic addition, subtraction, multiplication and division functions. You need to be able to do some of these in your head. More complex problems will require you to set the calculations out on paper and/or use a calculator. For many applied situations calculations can involve a combination of different functions. This is governed by order of operations and the use of brackets.
One of the most important skills when performing calculations is to know that your answer is correct. This requires you to be able to carry out estimates and rounding in your head. By doing this you can tell if your exact answer is close to your estimated amount. This skill is important when you are on the go, such as when shopping, working with materials, preparing customer orders or even providing quotes.
When estimating or calculating you need to be able to work with small and large whole numbers (both positive and negative), fractions, decimals and percentages. You also need to be able to convert between different units, such as when dealing wis quantities expressed in millimetres, grams, men kilograms and so on.
You should also have an understanding to calculate rate ratios, whereby onc in atity is expressed in the terms of another, $1 / \mathrm{h}$ as kilr ρ re per hour. You also need to und ot tan varie ac ratios that are used in desir a. Tiams

When performing a calculation the order of peration is as follows.
Firstly, you must always evaluate an' kets before doing anything else:

$$
5+(10 \times 5-\quad 0=65 \text { (and not 90!!!) }
$$

Secondly, you move from left to ig) performing any multiplication or division. It doesn't matter which of these you-io first as long as you move from left to right. Tip: You can show this as a bracket ().

$$
\begin{gathered}
6 \times 5+3 \times 13= \\
(6 \times 5)+(3 \times 13)= \\
30+39=69 \text { (and not } 429,624 \text { or } 1,170!!)
\end{gathered}
$$

Finally, you move from left to right performing any addition or subtraction.
(Once again it doesn't matter which of these you do first as long as you move from left to right.)

$$
\begin{array}{rr}
\text { For example: } & \text { And another: } \\
3+9 \times 7=? ? & 6 \times 9-9 \div 3=? \\
3+(9 \times 7)=66 & (6 * 9)-(9 \div 3)=? \\
\text { do this 1st } & \text { do this 1st dot this 2nd } \\
3+63 & =66
\end{array}
$$

$$
\begin{aligned}
& 17-(15 \div 3)+5 \times 25=? ? \\
& \text { dothis st }=? \\
& 17-5+(5 \times 25)=? ? \\
& \text { do this 2nd } \\
& 12+125=137
\end{aligned}
$$

NUM
SUPER SKILLS

1. Had a long summer? Complete these calculations to refresh your numerical skills. We'll start easy and then build up. Try these first without a calculator.

a.	$2+2.5=$ (expressed as a fraction)	b.	$3+7+3 \times 7=$
c.	25% of $250=$	d.	1,000-17\% + $50=$
e.	$46 \times 72+12.5=$	f.	$2,000 \div 40 \div 5=$
	Change from $\$ 100$ for purchase of 7 @ \$12.50 =		of $4 @ \$ 16.50$ and ss 10% total discou
i.	$3 / 2 \times 4 / 2=$		
	ked 24 hours at		
m . Filled up a 70 -litre tank and palu $\$ 17 \mathrm{j}$. DrcHow much was the petrol per litr on the full tank before it			
	Drove 500 km in 6 hours. What average speed?	$2 x+y=20$ If $y=10$, how much is x ?	
	A box has dimensions of $10 \mathrm{~cm} \times 40 \mathrm{~cm}$ $x 20 \mathrm{~cm}$. What is its volume?		ratio of 4:1, will the smaller, than its ac

2. Your studies of numeracy are about skills development and using and applying these skills. So in your workbooks, describe an example of how you applied numeracy skills during your holiday break for each of these areas.
\square calculating
\square estimatingusing money
\square budgetingmapping/locating
\square planning time
\square measuring
\square designing and/or drawing

1.09 Addition and Subtraction

Introduction
Over the course of this year, you will investigate a wide range of numeracy topics and undertake varied skills development and applied activities and tasks.
Across units $3 \& 4$ you will develop and apply numeracy skills in the 6 areas of:
a. Personal Numeracy
b. Civic Numeracy
c. Financial Numeracy
d. Health Numeracy

"Easy numbers are easy.
But what about when the
numbers get harder?"
e. Vocational Numeracy
f. Recreational Numeracy.

Making a start

In this first section, you will develop the skills to perform a range of numerical calculations. You will build this mathematical knowledge by:
\Rightarrow undertaking some basic mental arithmetic
\Rightarrow learning the correct order to perform arithme jerations
\Rightarrow applying these mental numerical skills t
\Rightarrow practising how to calculate fractions
\Rightarrow learning how to interpret words
\Rightarrow apply the 4-stage problom ${ }^{2}$ ing cad aitar inf
\Rightarrow further develop your app d math ind.
This section culminates in an assfesme atask at quires you to use a range of numerical skills for an applied situation involvind party

Basic calculations

Basic calculations are those calculat ins hat you should be able to do in your head; or on pa ore complicated calculations.
You can't just rely on a calculator to do basic calculations. You have to know if the answer that the calculator gives you is correct. A calculator will only calculate based on the numbers you enter, and people often make errors when entering data. So you have to be able to also predict and estimate. That's the problem-solving cycle in action!
Some of the basic functions that you are already likely to know include addition, subtraction, multiplication and division. You might also be able to calculate percentages and fractions, as well as be able to measure area, volume and distance.
In this section, you will recap some of these skills so that you can develop your own skills that rely on numeracy.

Nearly every occupation requires you to have an immediate understanding of basic calculations.

Addition (plus or sum)

...shown by a '+' sign
Addition involves combining two numbers into a sum. e.g.

$$
\begin{gathered}
10+10=20 \\
5.07+190.30=196.37 \\
1 / 2+1 / 4=3 / 4
\end{gathered}
$$

$\$ 1.04$ billion $+\$ 10$ million $=\$ 1.05$ billion
Addition also involves combining more than two numbers. e.g.

$$
\begin{gathered}
1+10+20=31 \\
27.4+2.6+12.5=42.5 \\
1 / 2+1 / 3+1 / 6=1 \\
25 c+65 c+\$ 1.10=\$ 2 \\
90+125+57+350=?
\end{gathered}
$$

Addition can also involve negatives.

Subtraction (take away or minus)

 ...shown by a '-' signSubtraction involves taking one number away from another, which essentially is finding the difference between 2 or more numbers. e.g.

$$
\begin{gathered}
4-2=2 \\
4.85-2.15=2.70 \\
3 / 4-1 / 2=1 / 4 \\
\$ 100-\$ 27.95=\$ 72.05 \\
2-1-1=0 \\
4.5-2.25-2.50=-0.25 \\
1 / 2-1 / 4-1 / 12-1 / 12=1 / 12 \\
\$ 50-\$ 30-\$ 40=-\$ 30 \\
-250+125-72.5-10=?
\end{gathered}
$$

Subtraction can also involve negatives.

$$
-40-14=-54 / /-10-(-15)=5
$$

When making calculations on paper it is gd is easy to read and follow. Use the ex
e.g. What is the sum of the followin/ numbers?

$$
55+667.5+2,000+
$$

\Rightarrow Set the problem out clearly.
\Rightarrow Numbers should be right justified at the point of any decimal.
\Rightarrow Here 'carrying' is included at the bottom. This could also be shown at the top
 Your teacher will show you a preferred method.

1. So what is the sum of the following numbers?

$$
53+556+3,500+11.55=?
$$

2. So what is the sum of the following numbers?

$$
1,000-520+48.5-125-90=?
$$

1.11 Multiplication and Division

Multiplication

With multiplication you are calculating an answer based on repeated 'adding' of a particular number.
The best way to clearly understand multiplication is by saying the words in the calculation out loud. For example:
\Rightarrow Calculate: Five times six.
\Rightarrow This means you have to work out the total of five sixes.
\Rightarrow Five sixes is just: six plus six plus six plus six plus six. i.e. 5×6.
\Rightarrow The answer to this, is of course, 30 !
<Can you hear how saying the words out loud helps make multiplication much easier to understand? Multiplication is simply: something times something else.

Multiplication calculations

When performing multiplication it is important to know these instructions.
\Rightarrow You have to set out the question in the proper way. This includes making sure that you right-align the numbers.
\Rightarrow You might also have to carry a number (or numbers). Your teacher will explain how to do this.
\Rightarrow For bigger numbers you might have to include a 0 to show place value for 10 s , and another 0 to show place value for 100 s and so on. Once again your teacher will explain how to do this.
These might sound a bit confusing written in words. But when your teacher works through examples it will be much easier. This is because most people learn better from watching and doing numerical calculations, rather than from reading how they're done! Do you agree?
Tip: Always perform any calculations in brackets first!

In your workbooks complete the followin mult.olication calculations.
Make sure that you show appropriate v ork) gs out.

1.13 Multiplication and Division

Division

With division you are calculating an answer based on how many times one number (the divisor) goes into another number. You can better understand division by saying the words in the calculation out loud. e.g.
\Rightarrow Calculate: 30 divided by 10.
\Rightarrow This means you have to work out how many 10 s there are in 30 .
\Rightarrow So if we say " 10 ", " 10 ", " 10 " we quickly count up to 30 .
\Rightarrow The answer to this, is of course, 3 !
But dividing for 10 s is easy, as is working out division for small numbers by counting.
To deal with less uniform numbers, as well as bigger numbers, you will need to learn and apply the skills for calculating division. And you should also know that doing the

Division (how many)

...shown by a ' \div ' or '/' sign)
Division involves finding the quotient of 2 (or more) numbers. In other words, how many times one number goes into another. e.g.

$$
28 \div 4=7
$$

(How many 4 s are in 28?; there's 7 !)

$$
\begin{gathered}
56 \div 2=28 \\
250 / 10=25 \\
-250 / 10=-25 \quad-250 /-10=25
\end{gathered}
$$

Sometimes not all numbers are divisible (or go into each other) equally, which leaves a remainder.
You might express this remainder as a decimal or as a fraction. e.g.
$11 / 2=5.5$ (Remainder a decimal.)
$11 \div 2=51 / 2$ (Remainder a fraction.) SUPER

Division calculations

When performing short division it is important to know these instructions.
\Rightarrow You have to set out the question in the proper way. This includes using a division box as shown below.
\Rightarrow You set out the dividend (the number you are dividing into) by the divisor (the number you are dividing by). i.e. 20 (the dividend) divided by 5 (the divisor).
\Rightarrow You might also have to carry a number (or numbers) if you get a remainder. Your teacher will explain how to do this.
Remember that most people learn better from watching and doing numerical calculations rather than from reading how they're done! That's why your teacher will do some examples for the class and then get you to try some on your own.
Tip: Always perform any calculations in brackets first!

1.15 Fractions, Decimals \& Ratios

Fractions

You already know that a fraction represents a part or a portion of a whole number. Essentially a fraction divides the top number (numerator) by the bottom number (the denominator).

For example: Fractions

\Rightarrow A cake cut equally in two portions $=1 / 2$ a cake $+1 / 2$ a cake. If you eat one of these portions you have eaten $1 / 2$ of the cake. And 1 divided by $2=1 / 2$. (Or, how many 2 s go into 1 : a half!) Then if you cut the other half equally you have 2 quarters. Eat one of those and you have now consumed $3 / 4 \mathrm{~s}$ and have $1 / 4$ left.
$\Rightarrow 75$ cents $=3$ quarters of a dollar or $3 / 4$.
\Rightarrow A pizza sliced in 8 portions $=8 \times 1 / 8$. Each slice is $1 / 8$.

Proper and improper fractions

A proper fraction is one where the number on top (numerator) is less than the number on the bottom (denominator). This means that the number represented by the fraction will always be less than 1. e.g. $1 / 4,1 / 2,3 / 5,2 / 3,5 / 7>10,19 / 20$ and so on. In money terms this can be related to how many cents in a dollar \quad, 2 of a dollar); whech is of course 50% ! An improper fraction is one where the number on the bottom (denominator). is reans ti a fraction will always be more than $1 /$ inn it's nan iva. e.g ת/4 7 t/, $5 / 4,7 / 2,11 / 3$, $27 / 4$ and so on. In money terms thi. evetes to verung in 0 dollars ($150 \mathrm{c}=3 / 2$
 $\$ 1,487,000 \mathrm{~m}$, which is 1 ar 2 illion (a a ound g).

Decimals

A decimal is another way of represep ig a fro thecimals are based on our number system which uses the power of 10 s, (i.e. $10,1,000,0.1,0.01,0.001,0.0001$). Some numbers include a decimal po hese represent a whole number, such as 9 , plus a fraction of a whole number, such a $n d$). Written together this will be 9.95 (or 9 and nineteen twentieths).
For really accurate numbers, such sin medicine, pharmacy and other technical and scientific areas, decimals might go up to the hundredth (i.e. 2 numbers after the decimal point; 0.01); or even to the thousandth, (i.e. 3 numbers after the decimal point 0.001). Numbers to 2 decimal points are important when dealing with money (i.e. dollars and cents); and when converting measurements, such as $\mathrm{m}, \mathrm{cm}, \mathrm{mm}$, tonne, kg and grams.

1H Fractions \& decimals

Calculate to express each of these fractions as a decimal or vice versa.

$1 / 4$	$11 / 3$		$9 / 10$		$3 / 2$	$2 / 3$		$7 / 2$	$27 / 4$		$5 / 7$		$7 / 10$	
0.25		2.50		0.50			1.33			0.60		1.25		0.95

Fractions: Addition and subtraction

If the fractions have the same bottom number (denominator) then simply add or subtract the top numbers (numerator).
e.g. $\frac{1}{5}+\frac{3}{5}=\frac{4}{5}=0.8$
e.g. $\frac{5}{8}-\frac{3}{8}=\frac{2}{8}=\frac{1}{4}$
e.g. $\frac{9}{2}+\frac{6}{2}$
$\frac{3}{2}=\frac{15}{2}-\frac{3}{2}=\frac{12}{2}=6$

But, if the fractions have different bottom numbers (denominators) then you will have to find the lowest common denominator (or lowest common multiple).

After this, you can then add or subtract the top numbers.

$$
\begin{aligned}
\text { e.g. } \frac{1}{2}+\frac{1}{4}=\frac{2}{4}+\frac{1}{4}=\frac{3}{4} \quad \begin{aligned}
\text { e.g. } \frac{3}{2}+\frac{2}{4}-\frac{1}{8} & =\frac{6}{4}+\frac{2}{4}-\frac{1}{8} \\
& =\frac{12}{8}+\frac{4}{8}-\frac{1}{8} \\
& =\frac{15}{8}=17 / 8 \text { or } 1.875
\end{aligned}
\end{aligned}
$$

Fractions: Multiplication and division Multiplication
Multiply the top numbers (numerators). Multiply the jottom numbers (denominators). Then if possible, simplify the fraction.

Invert all the fractions to the rig. of the is cran ion (ole number).
Then multiply (yes multiply) the top r abe (num ato).
Then multiply (again, yes multiply) the bom nu. (denominators).
Then if possible, simplify the fraction.

$$
\frac{4}{5} \div \frac{2}{5}=\frac{4}{5} \times \frac{5}{2}=\underset{\operatorname{step} 10}{\substack{\operatorname{steps} 2 \\ 2}}=\frac{4}{2}=2
$$

In your workbooks complete the following calculations showing your workings.

a. $1 / 2+0.5+50 \%=$	b. $3 / 7 \times 9 / 7=$	c. $0.25 \times 3 / 2=$	d. $1 / 4 \times 0.75=$
e. $4 / 5 \div 5 / 4=$	f. one 8 th of a billion $=$	g. $46.5 \times 7 / 4-20 / 2=$	h. $0.5 \div 1.5 \times 5 / 2=$

1.17 Fractions, Decimals \& Ratios

Proportions and ratios

A proportion refers to an amount of something as compared to the total amount.
Proportions are often measured in percentages, decimals or fractions.

Example 1: Proportion

What proportion of her weekly pay did Vonda spend?
\Rightarrow She spent $\$ 233$ out of $\$ 466$, which is $1 / 2$ or 0.50 or 50%. That's not too bad really.
\Rightarrow Vonda has shown some financial discipline and can save her money for the future.
\Rightarrow Her mate Benny spent all of his \$66 pay. That's 100%.

Proportions can also be expressed as ratios. A ratio shows one quantity as expressed in relation to another.

Example 2: Proportion

A cake you are baking requires 0.25 kg of sugar for every kg of flour.
\Rightarrow So, the weight ratio of sugar to flour 1:4; and the weight ratio of flour to sugar is 4:1.
\Rightarrow Vonda's savings-to-spending ratio is 1:1 (i.e. for every dollar she spends she also saves a dollar).

\Rightarrow Alternatively, her earnings-to-spendis spends 1 dollar; or for every $\$ 1$ shis
Proportion and ratios are impo. Qthers mints, so ie id for dealing with physical quantities.
People doing practical, manua, desigr ∇ Niect ~ 1 taks in their vocational and personal life, rely on the use of proportions cios ar y often estimate these using their own experience, expertise and understar.ung \rightarrow tical numeracy. Proportion and ratios are also used to express financial information an statistics in simple sentences.
Consider this applied example and v ork
at the proportions.

Sami makes and sells gourmet pies from a food trolley.
\Rightarrow He sells the Mini pie for $\$ 2$ and the Maxi pie for $\$ 5$.
\Rightarrow The 200g mini has 150 grams of meat and gravy.
\Rightarrow The 500 g maxi has 350 grams of meat and gravy.
\Rightarrow Every 50 grams of meat and gravy costs Sami 40 c to make.
So what are the 'meat/gravy weight to total weight' ratios for each of the pies?
What are the 'meat/gravy cost to selling price' ratios for each pie? Which pie is better for Sami to make and sell - or is there other information you need to know before you determine this?

1. Write these money amounts in words, and also say and write these as fraction ratios (e.g. 2 and a half million dollars).

a. $\$ 71 / 2$ million	b. $\$ 250,000$	c. $\$ 125,000$
d. $\$ 10,250$	e. $\$ 875$	f. $\$ 750 \mathrm{~m}$

2. Write these ratios numerically and then convert the ratios into percentages.
 spent, or even earned, in relation to zoth .i.e. S Mimg per something else. Got it? The most common rates you expeine use se e and time. e.g. 100 km per hour or 100 kmh . (You'll explore these much

Section 5.)
3. Calculate these time-based rates usir propriate units.

a. Travelled 100 km at average of 50 kmh .	b. Travern n at average) 0 kmh .	c. Travelled 10 km at average of 4 kmh .
d. Cooked 5 kg of beef over 5 hours.	e. Sold 712 hot dogs over 16 hours of trading.	f. Made 54 coffees over 150 minutes of trading.
g. Ran a half marathon in 3 hrs 32 minutes.	h. Lost $\$ 100$ at the pokies in 12 minutes.	i. Saved \$1m in superannuation over 45 years of working.

1.19 Percentages

Percentages

At times people say that they have trouble calculating percentages. But in reality, percentages are one of the most straightforward calculations going around.
A percentage simply represents a proportion of a whole! Just look at this orange.

Percentages

Right now, in your class, put up your hand if you feel that you are OK at calculating percentages.
Count the number of people who put up their hands. This is the number of people in your class who are O^{K} calculating percentages.

Count the number of py total in your clas.
Now you have all you need to cal ats a percentage. Wita the answer?

Proportion

A percentage represents a sre (1) Dlyortio fawhole et'sconsider these examples. (And do you thir es are 're low c ald you find out?)
$\Rightarrow 7$ out of 10 people prefer inumer ∇ sirs. Th's. $\quad \%$.
$\Rightarrow 33$ out of 100 people have nev \quad en ov as rhat's 33%.
$\Rightarrow 950$ out of 1,000 survey respondents n icerned about climate change. That's 95\%
$\Rightarrow 26$ out of 50 people surveyed adi ad MAFS contestants are, "a waste of oxygen". That's 52% (52 ou \& ') 0).
\Rightarrow Approximately 60% of all adults in Australia are considered 'overweight or obese'. If there are about 15 million adult Australians then that's about 9 million people.

Making percentages easier

Percentages are calculated as a proportion of 100. You cannot have a percentage greater than 100% nor can you have a percentage lower than 0%. If you have a cake and slice it in two you have two slices each of 50%. You cannot create more than 100% of the cake.
When calculating percentages the easiest to do are the $10 \% \mathrm{~s}$. It's not that hard to calculate 10% of any number. Quickly, what's 10% of 270 ? See it's easy! If you have to work out 5%, then calculate 10% and then halve the amount. If you have to calculate 20\% then calculate 10\% and then double the number.
You get the picture! Or should we say, the number.

mage: brunoil/
Image: brunoil

1. Colour in the shapes to indicate each percentage.

2. Fill in the table with the correct percentages.

1.21 Percentages

Percentages

When it comes to dealing with quantities or money amounts, one of the most common types of calculations you are likely to have to perform is to calculate a percentage.
Remember that a percentage is just another way of representing a proportion (half) or a fraction ($1 / 2$) of something.
Our monetary system is based on a decimal currency. 100 cents $=\$ 1$.
This means that proportional amounts of money are very easily converted into percentages, (i.e. 'a half' or ' $1 / 2$ ' is ' 50% '. So half a dollar $=50 \%$, which is of course is 50 c).
At this level of your studies, you are expected to be able to do more complex percentage calculations that are likely to involve a number of steps. For money, these could relate to retail discounts, margins (or mark-ups), trade (wholesale pricing), income amounts, bank interest rates, interest rates on credit products (such as credit cards and personal loans), calculation of rates and ratios (such as fuel costs), and many more personal and work situations.

Percentage change is one of thon and useful calculations you might need to do when dealing with quantities or mo.ey amounts in personal or work-related stations.
Percentage change allows us to measure whether quantities or amounts are growing or reducing. By using a percentage change calculation we can make better comparisons between amounts of different sizes.

For example:
\Rightarrow Gronk has been lifting weights for many years. Over the last 3 months, he has increased his best squat by 30 kg from 100 kg to 130 kg .
\Rightarrow Myron is quite new to working out. In the last 3 months, he has increased his best squat by 15 kg from 30 kg to 45 kg .
\Leftrightarrow Gronk says that he has made better strength gains, twice as good, than Myron. But Myron doesn't necessarily agree. What do you think?

Percentage change

\Rightarrow Percentage change measures 'how much' a quantity or number has grown or reduced over a given period of time.
\Rightarrow It is calculated by finding out how much the amount has changed by, and then comparing this to the original amount. The answer is then multiplied by 100% to express the answer in \% terms to enable better comparisons.

$$
\% \text { change }=\frac{(\text { end value) less (start value) })}{\text { (start value) }} \times \frac{100 \%}{1}
$$

e.g. Based on Gronk and Myron's best squat gains, Gronk's best squat 3 months ago was 100 kg and Myron's best 3 months ago was 30kg.

Gronk
$\%$ change $=\frac{130 \mathrm{~kg}-100 \mathrm{~kg}}{100 \mathrm{~kg}} \times \frac{100 \%}{1}$
$=\frac{30 \mathrm{~kg}}{100 \mathrm{~kg}} \times \frac{100 \%}{1} \quad=\frac{15 \mathrm{~kg}}{30 \mathrm{~kg}} \times \frac{100 \%}{1}$
$=30 \%$
Myron
$\%$ change $=\frac{45 \mathrm{~kg}-30 \mathrm{~kg}}{30 \mathrm{~kg}} \times \frac{100 \%}{1}$

$$
=\frac{15 \mathrm{~kg}}{30 \mathrm{~kg}} \times \frac{100 \%}{1}
$$

$$
=50 \%
$$

Calculating percentages

1. Calculate these amounts in your head or on

2. Calculate the \% change for each of these situations.

a. Sales Year $1=\$ 40,000$ Sales Year $2=\$ 60,000$	b. 2024 wage: $\$ 18 / \mathrm{hr}$ 2023 wage: $\$ 12 / \mathrm{hr}$	c. Height age 12: 140 cm Height age 18: 200 cm
d. Profit 2024: \$125,000 Profit 2023: $\$ 105,000$	e. House value 2023: \$700,000 House value 2022: \$770,000	f. 2 km time trial May: 9:57 2km time trial June: 9:32

1.23 Rounding, Powers and Roots

Rounding

Rounding is an important Numeracy skill that enables people to turn complex numbers into more simple expressions. By using rounding people can estimate more easily. This allows them to perform 'in the head' calculations.
Rounding also enables people to complete calculations faster. This is important when working - especially in commercial or practical roles, when purchasing goods and services, or when planning and forecasting budgets.
The most commonly accepted way to round is to apply the use of rounding up if a number is halfway to the next highest, or rounding down if the number is less than halfway to the next highest. In other words, look for 0.5 or half.
For example:
$\Rightarrow 1.5$ becomes 2 (by rounding up). 1.4 becomes 1 (by rounding down).
$\Rightarrow 1.56$ becomes 1.6 (by rounding up). 1.44 becomes 1.4 (by rounding down).
$\Rightarrow 1.568$ becomes 1.57 (by rounding up). 1.442 becomes 1.44 by rounding down).
It's as simple as that!
Sometimes rounding is important when working u haterials and converting between units, especially from mm to metres ar ams to kilograms. But many tradespeople and practical work< sure that when round <measures, they leave a little extra 'on the ca Ahy thithat br 0 ? case?

Money rounding

The use of rounding also appl: © the. deain in mon symetimes it is important to make quick es to how han der lomght cost, or the total amount of loan repayments, r even $>$-terme of a phone and data plan. So when working with mone dou nould oun to nice, whole numbers. With money you should always try rcid un b. 'ulings' - such as costs and expenses, and round down good things -si as income.
For example:
\Rightarrow A 12-month data plan at $\$ 38$ n becomes $\$ 40 \times 12=\$ 480$.
\Rightarrow Potential pay of $\$ 62.50$ per si + ecomes $\$ 60$.
Money rounding is also important for purchase transactions using cash because many items are priced at odd numbers such as $\$ 1.99$, but the smallest currency unit is 5 c . This rounding applies to the total of the bill, not each item.
Totals ending in 1c \& 2c and 6c \& 7c are rounded down to the nearest ten or five.
Totals ending in 3 c \& 4 c , and 8 c \& 9 c are rounded up to the nearest ten or five. As this only applies to cash transactions, digital payments are charged at the exact amount.

Rounding enables you to estimate the cost of contracts and payment plans on the spot.

1. Use appropriate rounding techniques to express these numbers as whole numbers.

| a. 1.7 | b. | 24.9 | c. | 127.2 | d. | 57.3 | e. | -1.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2. Use appropriate rounding techniques to express these numbers to 1 decimal point.

| a. | 1.25 | b. | 20.82 | c. | 19.82 | d. | 17.58 | e. | 11.26 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| f. | -0.75 | g. | 5.5 | h. | 158.24 | i. | 750.51 | j. | -27.3325 |
| | | | | | | | | | |

3. Use appropriate rounding techniques to express these numbers to 2 decimal points.

4. When dealing with money estin ¢es why should you round up expenses and round down revenue?
\square

Applied

Your uncle Elmer (who's very careful with money) tells you that you should always put an extra 2 cents of petrol in the tank above an even number, such as $\$ 40.02$, as you then get that extra fuel for free. Is he correct for all, some, or none of the time?

1.25 Rounding, Powers and Roots

Powers

A number expressed with a power is a simpler way of writing a number that is multiplied by itself a certain number of times.
We see 'powers' when numbers are expressed like this: 4^{2} or 10^{3} or 7^{7}. In others words, $4 \times$ 4 , or $10 \times 10 \times 10$, or $7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7$.
The number to be multiplied is called the base. The

1000000000000000000000

 number of times it is to be multiplied is called the exponent, or more commonly the power.Powers are commonly used in measuring, e.g. area: units squared or ${ }^{2}$ and volume: units cubed or ${ }^{3}$. Powers are used in computing, e.g. for file and drive sizes, in science, finance and many other fields, especially where big numbers need to be simplified. 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000

Do you know the name of this number? It can be written more simply as 10^{100}.
e.g. For the first example above:

The base is 4 and the power (or the exponent) is 2 .
So: 4 to the power of 2
\Rightarrow or: $4^{2}=4 \times 4=16$
\Rightarrow or: 4 squared equals 4 times 4
\Rightarrow or: Four is multiplied twice.
Say these out loud and you'll see it's nc prefer? And what about an object th es

If you have to calculate

If the base numbers are the scrim simp, subtract the powers.

$$
\begin{aligned}
& \text { e.g. } 3^{2} \times 3^{3}=3^{5} \quad \text { ie. }(3 \times 3) \times\left(3 \times 3 \times 243 \text { which equals the same as } 3^{5}\right. \text {. } \\
& \text { e.g. } \left.4^{5} / 4^{2}=4^{3} \quad \text { ie. }(4 \times 4 \times 4 y) / 4 \times 4\right)=1024 / 16=64 \text { which equals the }
\end{aligned}
$$

If the base numbers are not ane then one way is to work out each power then do the calculation. But your ar might show you 'easier' ways.
It is important to note that this rule for powers only relates to multiplication and to division (which is the opposite of multiplication). This is because a base with a positive power is how many times you multiply a number (the base) by itself. So these types of calculations using powers (or exponentials) are one particular numeracy train of action. If we want to deal with adding and subtracting with numbers with powers then we need to catch a different train!

Addition and subtraction

To work this out you have to solve for the powers first, because you always do multiplication (and/or division) before adding and subtracting. So after you have 'done the powers' you then add or subtract the numbers as required using basic maths. It makes sense if you stop and think about it!

$$
\text { e.g. } 3^{2}+3^{3}=? \quad \text { i.e. }(3 \times 3)+(3 \times 3 \times 3)=9+27=36
$$

Roots
A root is the opposite of a power. A root is shown by the symbol $\sqrt{ }$ so $\sqrt{ } 25=5$ (or the square root of $25=5$). A perfect square is a number whereby the square root is a whole number and not a fraction, i.e. it does not have any decimals after it.

Perfect square roots														
1	4	9	16	25	36	49	64	81	100	121	144			
1	2	3	4	5	6	7	8	9	10	11	12			
169	196	225	256	289	324	361	400	441	484	529	576			
13	14	15	16	17	18	19	20	21	22	23	24			

Some imperfect square roots													
2	3	5	6	7	8	10	20	50	200	500	1,000		
1.41	1.73	2.24	2.45	2.65	2.83	3.16	4.47	7.07	14.14	22.36	31.62		

Pythagoras' Theorem

The ability to calculate a square root is very useful when working with right-angled triangles. You might have heard of Pythagoras before. Well the Pythagoras' Theorem allows you to calculate the length of the longest side of a triangle. This is really useful in construction, tiling, design and when working with areas.
For a right-angled triangle, the length of the longest sid (the hypotenuse) will always equal the square root of the sum of the squares of she the of the 2 sides. It is easier to show this as: $a^{2}+b^{2}=c^{2}$ For example

NUM SUPER SKILLS

1. In your workbooks, calculate the fall i

3^{2}	10^{2}	50^{2}	2.5^{2}	$3^{2} \times 3^{2}$	$4^{2} \times$.	$2^{2} \times 3^{2}$	$6^{4} / 6^{2}$	$2^{2} \times 3^{4}$	$2^{2}+3^{3}$	$3^{3}-2^{2}$	$10^{5}-10^{2}$

2. Calculate the square root of these numbers. (Not all will be perfect squares.)

4	400	4,000	10	100	1,000	5	500	5,000	4.8	10,000

3. Draw these right-angled triangles and calculate the length of the longest side.

i. 30 mm and 40 mm	ii. 12 cm and 15 cm	iii. 20 cm and 10 cm	iv. 64 mm and 100 mm

Applied

Jum is an apprentice cabinet maker. His boss is on-site and texts Jum saying to cut 4 doors for a kitchen install. The message says that one door needs to be $2,500 \mathrm{~cm}$ square, the next is $1,600 \mathrm{~cm}$ square, the third is $1,200 \mathrm{~cm}$ square and the last one is a right-angled triangle that has a height of 50 cm and a width of 35 cm .
Draw sketches to help Jum out. Calculate and show the dimensions of the doors.

1.27 Assessment Task

AT1 Party by the Numbers Personal Numeracy // or Recreational

For this assessment task, you and a partner are required to use and apply numerical skills and tools to help plan a party for your friends.
Of course, parties are not just about eating and drinking. They can also have games, music, dancing and other fun activities to bring everyone together to have a good time. So you also have to plan a range of party activities to keep the fun happening.
Now planning a party is hard work and requires full-on use of numerical tools and techniques, and applied use of the problem solving-cycle at all stages.
Work in pairs and start planning. Complete the following tasks.

1. Predict the likely number of guests that will attend.
2. Identify if you need to cater for special dietary needs, intolerances; and especially allergies.
3. Estimate and calculate the amount of food and drink needed per person, and in total.
4. Estimate and calculate the cost of food anridrink needed per person, and in total.
5. Estimate and calculate the amounts ts of other party fours needed.
6. Estimate, plan and calculate for C
7. Estimate, plan and calculate
8. Estimate, plan and calculate \% jetraL ©e-uff.
9. Estimate, plan and calos ar or a party a . Ay or game.
10. Prepare a summary
 as your workings) to answer questions 1-9 above. Your t/ach mightash ou to prepare a report to the class.

Starting draf* ${ }^{\circ}$ your i ty .-<quirements here.

Cupcake Delight
 (Surprise version)

You are going to make enough cupcakes so that everyone at the party can have 3.
But you want to add a little 'surprise' to a select few. You are going to insert a super-sour flavour-burstie into some of the cupcakes. But how many should that be to make it a special treat?
So you need to estimate:
\square How many cupcakes you will need to make?
\square The ingredients needed to make these.The cost of the ingredients needed for these cupcakes
\square How many 'surprise' cupcakes to create?
You will do this by calculating the square root of how many cupcakes you are making.
e.g. 12 people coming $=36$ cupcakes.

Square root is 6 ; so 6 surprise bursties!
\square But keep in mind, most square roots will give a fraction, so you will have to use rounding to get to a whole number.

Pass the Parcel
 (Sustainable version)

Remember the children's party game, Pass the Parcel?
Well, you're going to bring that back for your party, but with a 2020s twist. But who's got the time to do all that wrapping? And what about the cost and the waste of paper?
In the old days, they used newspaper - that's not as easy to come by now.

But boxes. Everyone's got boxes now, because they get so many things delivered to their home.
So you need to:
\square Make a home-made gift or choose an item to re-gift.
\square Work out the size of the item
\square Calculate the volume of the box need d to contain that item
\square Call e the volume of 9 more boxes, er than the previ, is, to
eate a 10-rgund game 1 - Luw ma joparce (ou could the' 5 s too big to

So consider:
\square What numerical techniques will.pply?

So consider: ical techniques will apply?

What numerical tools will I use?
\square How will I check, evaluate and reflect?
\square What numerical tools will I use?
\square How will I check, evaluate and reflect?

1.29 Assessment Task

The Great Dance-off (Retro version)

What's a party without dancing? It's fun, it works off the cupcakes and it's groov-ie! So you want your guests to get up and boogie to some vinyl tunes from the past. Your uncle is lending you his 7 " single of Tina Turner's, Nutbush City Limits.
So you need to estimate:
\square How many people will be in the danceoff?
What floor area does each person need to get their moves on?
But some people are bigger dancers than others. Longshanks Larry breaks all over the place, whereas Morticia the Morbid barely moves off her spot.
\square How many total 'steps' are in the dance?
\square What total floor area will you need for all the dancers to get their moves on?
\square If you eliminate 2 of the least groovin' dancers each round, for how long will you have to play Tina's song until y< decide the dance-off winner?
What about if you had the 12
You choose another fun activity.

1.31 // Problem-Solving Cycle // Maths Toolkit

Shape Up

2.01 Visual Numeracy 34
2.03 3D Objects.
2.09 Measuring Angles 36
2.15 Plans and Diagrams \qquad2.25 Assessment Task5848 2.27 Problem-Solving \& Toolkit60

Comments:

2.01 Visual Numeracy

Visual numeracy

Visual numeracy involves being able to 'think' visually in relation to shapes and objects. This ability leads to skills development related to designing and interpreting plans, diagrams, flowcharts, sketches, maps and other forms of visual numerical communication, including the manipulation of objects in 2D and 3D and seeing patterns in shapes and objects.
We call on visual numeracy in personal situations when we drive, cook, play sport, care for children, renovate, decorate, fix things, move house, as well as many other tasks.

Visual-spatial numerical skills are essential for people who work in design, trades, manual and practical jobs, technical fields, visual arts, ICT and multimedia, construction, hospitality and transport.
So have a read of this description of visual-spatial learners and 'see' how much this 'looks' like you.

These people tend to have well-developed observational skills and abilities with images (visual-spatial).
Characteristics include:
(:) reflective and quieter, with active eye
() able to interpret meaning from im
(). prefer visual instructions and m-s s
(-) can memorise and interpret
() likely to draw diagrams a © lan, or si h and cc (cert maps.

However, they:

(:) might seem distant and non (umn ynicati
(:) might not understand how oth peonle riollow visual or written instructions
(8) can have trouble following verbal insti troils.

More suited for occupations in fiel ${ }^{\prime}$ ch as:
\checkmark construction, mining and trada king with equipment and materials)
\checkmark technical and scientific (re. ars) ing and applying visual and written information)
\checkmark ICT \& multimedia (developins systems and interfaces)
\checkmark visual arts and design (by being able to draw, create and design).
Some other possibilities include:
\checkmark emergency services, such as a police officer paying visual attention to people's actions
\checkmark medical, such as physiotherapist visually assessing a patient's movement
\checkmark agriculture, such as a farmer surveying their land, crops, stock and the weather.
They might often say:
\Rightarrow "Just show me!"
\Rightarrow "Look here!"
\Rightarrow "Let's take a look at this"
\Rightarrow "Did you see what happened to so and so?"
\Rightarrow "I can't see what's happening!"

Visual Numeracy

1. How would you assess your own skills in visual numeracy? Use examples to support this as well as the info from p.34. (Perhaps you should use an image!)
2. Complete the table for these examples of the application of visual numeracy.

Add 2 more examples of your own choosing.
a. Explain how you might apply each in personal situations.
b. Describe how you (or a worker) might apply each in vocational situations.

2.03 3D Objects

3D objects

You might have investigated last year that a key part of visual numeracy is the ability to estimate and manipulate objects in three dimensions. One way to work with solid objects is to use object nets.
As an example, consider the 3D properties of a cube. A cube is a solid 3 -dimensional item and this shape is used for items such as dice, a block of sugar, a stool, a gift box and even sandstone bricks.
But if you were covering a plain cardboard cube with gift wrapping paper how should you lay out and cut your paper for maximum efficiency? To help you picture this (i.e. to use visual numeracy) you can use an object net. Visualising the 3D properties of a cube is fairly easy because we interact with cube shapes quite regularly. But how about a pyramid?
Triangular-shaped objects are less common than cubes but can be found in packaging, building materials,

Solid objects

Vertex: A vertex is a point where two or more lines, curves or edges meet, i.e. a corner! Of course, this meeting point will form an angle. The plural of vertex is vertices. e.g. A cube has 8 vertices. Vertices are often indicated by a dot.
Edge: An edge is a line segment between faces. e.g. A cube has 12 edges, and these will all be the same length. Edges are shown by lines.
Face: A face is a single flat surface. e.g. A cube has 6 faces. Faces are shown by a 2D shape. Have a go at counting the number of vertices, edges and faces for the objects on this page.

Part A

1. Print or create this object net on hard card or using foam core board.
2. Cut, assemble and glue your image to make the object

Part B:

1. Make an object net for a cube. Make tch.
2. Number the faces from 1 to 6 , takin to orient the numbers so that when assembled, the object will resen, (e) die, with the numbers 'reading' the right way up.
3. Assemble your net carefully into the object.
4. How did you go with the orientation of your numbers?
5. What does this way of thinking show you about how to form shapes, and how to successfully manipulate visual information in 3 dimensions?

2.05 3D Objects

Transforming objects

We have to make sense of objects in many different situations in our personal, recreational and working lives. To do this we have to transform or manipulate objects using visual-spatial skills in our head, in space, on paper, or by using digital design programs.

Some of the key recognition, drawing and design manipulations include symmetry, reflection and rotation.

Symmetry

Symmetry simply means that a shape or object is exactly the same on each side.
You establish symmetry by drawing an imaginary line down the centre of an object
It is important to realise that nothing that occurs in the natural world is perfectly symmetrical. Nature doesn't work that way.
However, many human-made designs, objects and structures aim
 for symmetry. Humans seem to have a need to place 'order' and 'perfection' on the natural world.

Reflection

Reflection is an important element Reflection simply means to 'flip' ar the RHS, and vice versa.
When you look at many In< (1) an and Tik winfluc cers, you will see that their pictures and ideos a \gg ped This because they are looking at themselves in hera hera r hei han looking through the camera. Text in the capt es is re roed and makes no sense. So if they are advertising MOM TUP on a t-shirt that's ok. Most anything else - not so r!

Rotation

Objects can be rotated by a set amount of degrees. One full rotation is 360 degrees. When rotating a shape or object:
$\Rightarrow 90^{\circ}$ is a quarter turn.
$\Rightarrow 180^{\circ}$ is a half-turn - and facing the other way.
$\Rightarrow 270^{\circ}$ is $3 / 4$ turn.
$\Rightarrow 360^{\circ}$ is a full turn - and back to where you started.
Commonly, shapes and objects can be rotated through their centres. However, rotations might also happen at any edge, join or other point, which tends to re-locate the shape or object.

Transforming objects

\Rightarrow Reflection: Flipping an object. The size and shape of the object do not alter.
\Rightarrow Rotation: Change an object by rotating it (or turning it around). The size and shape of the object do not alter.
\Rightarrow Symmetry: Something is symmetrical when it is the same on both sides. A shape has symmetry if a central dividing line (a mirror line) can be drawn on it, to show that both sides of the shape are exactly the same.
\Rightarrow Dilation: Change the size of the object. The shape of the object does not alter.
\Rightarrow Translation: Change the location of an object. The size and shape of the object do not alter.

1. Have a look at these image pairs. What type of transformation has been applied to the object in each image?

2. Transform these shapes and objects sin) a quick sketch, or software.

2.07 3D Objects

Compound shapes and objects
Working with simple and single shapes and objects can be pretty straightforward. However, in the real world, most objects are made up of compound shapes, that when formed together, make an entirely new, and non-uniform shape. Think of all the constructed items such as houses, buildings and skyscrapers. And what about the shape of vehicles and other man-made objects? This extends to textiles with clothing, to furniture and all of your electrical devices. In essence, nearly every complex human-made object that doesn't resemble a single shape will consist of a series of compound shapes and objects.
You should also consider the role of compound shapes in drawing, art, design and sculpture. Artists and designers often use their manual skills and/or drawing and design software and apps, to combine shapes and render representations of complex objects.
So when you are working with compound

1. Hand draw these shapes in 2D. What compound shapes would you use to create each?

A pyramid	A cone
A cat	A car

2. Turn those shapes into objects by making a quick sketch, and then by using software.

Investigation: The corn chip challenge

Many corn chips are triangular in shape Alt Jugh when they are cut they do not have 'exactly' straight edges, they power of the triangle. for an interesting case study in the

In pairs, get some corn chips and lay them out flat. Record the weight of the chips based on the package weight and using an accurate scale. The class should investigate different packaging sizes and brands.
Arrange the chips carefully into a rectangular 'sheet' to see how much surface area they cover. Calculate the perimeter of the most regular shape you can make. Measure the area of this shape. (Note: Due to 'gaps' these measurements will be approximates.)
Re-arrange the chips to make different shapes. Photograph these and see who comes up with the most interesting arrangements. Record these in your workbooks. Prepare a multimedia report to the class reporting on your findings. Discuss your findings as a class. (Tip: Handling food = wear gloves and clean up afterwards!)

2.09 Measuring Angles

Angles

An angle measures the 'distance' between 2 rays. When drawn these rays might be represented by lines. In the real

The major directional points on a compass each represent 90°. world, the 'rays' might actually represent the edges of physical objects or components of an object. For example, a carpenter and joiner building the roof for a pergola might have to affix 2 lengths of timber (the 'rays') with the edges at an angle of 90°. An angle is measured in degrees. One full turn of an angle equals 360°. Therefore a $1 / 4$ turn represents 90°, which is called a quadrant. Therefore, four quadrants make up an entire 'turn'. Just like if you face north and turn 90° to face west, turn another 90° to face south, turn 90° again to be facing east, and then 90° once more; you're back facing north. That's 360° in
 total. And you're back to the same direction you were in the beginning.
One of the most common ways of measuring degrees is to use a protractor. You probably are used to seeing them in sets of drawing and writing implements as part of your booklist. Y u've also probably used a protractor many times in the na

Personal application

Using angles is a natural part of our don't really think about them that in

(discomfort), we use visual © tia acuity ti tass (d accommodate angles on a daily basis.
\Rightarrow We use angles to assess how C our bodies.
\Rightarrow We open our mouths at different angle \rightarrow nding on how big the burger we are trying to fit in is!
\Rightarrow When singing, a different-angled OC: cavity can change pitch and volume.
\Rightarrow When dancing, angles can 5 ra to articulate line and to drive movement.
\Rightarrow We try to get the best angles n. n watching screens.
\Rightarrow We angle the cue stick and angle how we hit the cue ball when playing pool.
\Rightarrow Angles are very important when parking a car, such as parallel parking, 45° parking (which is called angled parking!) and when making tricky turns.
\Rightarrow Self-obsessed people try out angles when taking selfie after selfie in the mirror!

Using any kind of trailer requires a good sense of angles.

Types of angles

Acute: An acute angle is less than 90°.

Right: A right angle is exactly 90°.
Looking front-on:
Wall meeting a
floor.

Obtuse: An obtuse angle is more than 90° but less than 180°.

Looking side-on:
A reclining chair.

Straight: A straight angle is exactly 180°.
Looking side-on: Laying down flat.

Reflex: A reflex angle is greater than 180°.

Looking side-on:
Doing a hyperextension on a bench.
Full: A full angle is 360°.

Work-related applications

Being able to measure angles is very important in manvork-related situations. Many experienced and skilled employees actually do this $5 \sim$ Jping and applyiry their visualspatial skills, or through kinaesthetic application an . Mscle memory.
\Rightarrow Carpenters and joiners assemble timber frá
\Rightarrow Tilers have to cut tiles for geometric $p z$ and aser al in calcu atl c. angles.
\Rightarrow Multimedia designers rotate desigr, el \quad is bree in anglr
\Rightarrow Furniture makers design and bu. <chairs \downarrow din rent s.ar $\%$ angles.
\Rightarrow Nurses and carers have to support prant at diffe ent ngles, often using a motorised bed, trolley or chair.
\Rightarrow Truck and lorry drivers use angles to make turi and to reverse park their vehicles and loads.
\Rightarrow Hairdressers style and cut geometric 1.1 pes and patterns.
\Rightarrow Furnitu r novalists calculate angles when moving large-
 Thinkstock as footballers and soccer players kicking for goal, cricketers when bowling and batting, hockey players hitting the ball, soccer goalkeepers making a save; and many more diverse applications in basketball, archery and even darts!

2.11 Measuring Angles

Triangle

A triangle is a plane figure that has three straight lines that are joined. In 2-dimensions (such as when drawn) it is one of many polygons because it has more than one 'edge' (in fact it is a trigon with three 'edges').
The three angles inside a triangle will always add up to 180°. By applying this Euclidean principle, you can calculate the value of a missing angle.

Triangle shapes are used in many activities from cutting food, clothing, and craft, through to using a ladder, constructing frames as well as for bracing structures to add strength.
Triangular objects in 3D form into pyramids with the addition of a base. As an example, think of the pyramids! Some pyramids use a rectangular or square base with the apex directl $<\sqrt{ } \rightarrow$ ve the centre of the base.
A pyramid with a non-rectar a jase is tetrahedron.
And of course, a triangular object ath a Fircula or f ipseshaped base is called a cone.

Right-angled: Has a 90° angle ir

"Are you sure that the ladder will be safe against the wall?"

Isosceles: Has 2 sides of equal length, therefore 2 angles will be the same.

"Look at that tall spire on that old church building."

Equilateral: All 3 sides of equal length, therefore all 3 angles are the same.
"Now that is a very symmetrical hat you are wearing!"

Scalene: All the sides are of different lengths; therefore 3 different angles.

> "Don't think you should iump that on your bike, it's too steep!"

1. Use a protractor to measure each of these angles. Where might you experience, use, or apply these shapes or angles in the real world?
2. If you've measured 2 angles correctly do you have to measure the third? Try and create a formula for this as a shortcut.

You should also be able to estimate and quadrilaterals. A quadrilateral has 4 sid
3. Estimate, and then measure, the

sure the angles of other shapes such as d therefore 4 angles and 4 vertices. es for these quadrilaterals.

2.13 Measuring Angles

2G Angles at play

Physical activity is good both for your physical health and mental wellbeing. Dancing is fun, hard work but a good workout. Ballet dancers in particular, have to reach the ultimate level of fitness, skill and grace.

Measure the angles made by different body parts of this dancer, Susan, as she demonstrates various moves. Could you do that? Why/why not?

Images: Adapted from Alina Fedorova/iStock/Thinkstock

Applied

Research and explain how angles are important in a physical activity you are interested in, such as working out, a ball sport, swimming, diving, cycling or some other recreational pursuit.

By now some of you might already have your license or be well on the way to building up your hours as part of your 'L's. Driving motor vehicles is one of the most common, and important, ways that we use angles on a day-to-day basis.
If you get the angle wrong when parallel parking for your test - you fail! If you get the angle wrong when reversing into a driveway, you might take down the letterbox and dent your panel. And if you get the angle wrong when turning into a dualcarriageway, you might almost have a head-on! Nobody wants that to happen!
Describe when angles are important as part of motor vehicle use. Trucks, motorcycles, trailers and other specialty vehicles also have their own issues with angles. Explore these if they relate to you. Add some of your own.

Example	Importance/ \& type of angles	What should/can you do?
parallel parking		
angle parking		
reversing out of a park		
reversing into a park		
rounding a bend		
turning into a dual carriageway		
U-turn		
hook turn		
3-point turn		
towing a trailer		
driving in the rain		
off-road driving		

2.15 Plans and Diagrams

Sketch

A sketch generally refers to a quick and stylised visual representation of an object or scenario. Sketches often act as the first stage in the development of an image-based, or object-based, project. The quality of a sketch is not usually reliant on the quality of the drawing; but rather on the ability of the sketcher to clearly illustrate their intentions.

For example, if you are going to build a new deck, you might draw a rough sketch to help visualise its size, its placement and the materials needed as part of your project. Then you take that to Bunnings and get advice on what you need. Bunnings might also supply you with a more technical set of instructions using properly drawn diagrams and plans.
Perhaps you have an idea for a new clothing range? Initially, a designer will draw quick sketches to get an idea of cut, line, shape, colour and other elements of the clothing. They might then show these sketches to a dressmaker to assess their feasibility. If things seem feasible then they might work with an illustrator to render the drawing in a finished form.
Advertisers and media producers use sketches to storyboard films and ads. Illustrators and costume designers mish sketch drafts as they go through tr development phase of a new cy tiv work. Industrial designers atetch new ideas for prototype pre cts. And a sketch artist, of course, maes
sketches to order; be that a portraito a loving couple; or a photo-image of a wanted criminal!

Old-school vs nu skUL
\Rightarrow In the 'old days' drawing. were done by hand. People worked as draftpersons or commercial artists and made sketches to order.
\Rightarrow Nowadays the use of CAD, multimedia drawing programs, apps and other computerised tools and platforms means that the job of, drafties, illustrators, designers and commercial artists has evolved.
\Rightarrow But which is better; old-school or new-school? Is this a matter of quality, accuracy, aesthetics and/ or efficiency?
\Rightarrow What do you think? Discuss as a class using examples sourced online.

You are required to develop 2 sketches. One is of a personal item, such as a car, bike, item of clothing, jewellery or a personal effect. The second sketch is of a process such as a home improvement, vehicle enhancement, idea for a project, idea for a product, a design layout, a storyboard, a character or another similar concept idea.

Now this isn't a test of drawing skills, although those of you with good drawing and design skills will produce well-rendered sketches. Rather, this is a test of your ability to communicate information simply, clearly and effectively using a fairly quick sketch to convey your idea.

2.17 Plans and Diagrams

Visual plans

Plans are generally technical in nature and are prepared and used by workers in various industries. Diagrams are usually less technical and can include words, symbols, steps and explanations.
Some of you were introduced to plans in VM Numeracy 1\&2. Many of you would also have been exposed to plans as part of your day-to-day personal lives, and in vocational and VET situations you have experienced.
Plans are an essential component in developing and communicating numerical information visually.

$$
\begin{aligned}
& \text { Types of plans } \\
\Rightarrow & \text { plan } \\
\Rightarrow & \text { map } \\
\Rightarrow & \text { diagram } \\
\Rightarrow & \text { floorplan } \\
\Rightarrow & \text { blueprint } \\
\Rightarrow & \text { schematic } \\
\Rightarrow & \text { diagram } \\
\Rightarrow & \text { circuit diagram } \\
\Rightarrow & \text { technical drawing } \\
\Rightarrow & \text { sketch }
\end{aligned}
$$

Plans can take many forms, ranging from a menu plan for an event, a seating plan for a wedding, a stylised floorplan for a house for sale, or an architectural technical drawing for a building.
On a macro level, plans are also used to denote the location of civil infrastructure such as sewerage systems, electrical and gas supply lines, road and rail networks, telecommunications systems and many more.
On a more focused micro level, plans may denote:
\Rightarrow the exact location of underground electrical cables, gas lines and wate. pipes
\Rightarrow circuit diagrams or schemati-s l. 4 how the wiring of a house or ela. \quad devi
\Rightarrow blueprints and technical awitigs frr prototype products and designs
\Rightarrow maps to show location, travel ruid store layouts and many more.
\Rightarrow When preparing plans and Scale
it is important to make use of a scale.
\Rightarrow If a plan is drawn to scale is leans that an allotted distance on the plan corresponds with a distance... real life. (However, not all plans are to scale.)
\Rightarrow A scale measures a ratio, such as $1 \mathrm{~cm}=1 \mathrm{~m}$. Scale might be written as 1:100 (e.g. $1 \mathrm{~cm}=1 \mathrm{~m})$. So each measurement of 1 cm will equal an entire metre in 'real life'!
\Rightarrow Scale allows us to make an accurate reproduction of an object either smaller (1:100), larger (5:1) or exact (1:1).
\Rightarrow Floor plans usually have a scale of $1: 50$ or (1:100) of actual size (see below).
\Rightarrow Site plans usually have a scale of 1:200 or (1:500) of actual size; because the object is larger, the scale is smaller.
\Rightarrow Technical and industrial drawings might use a scale of 2:1 or larger; because some technical objects are very small and need to be drawn oversized for design and instruction purposes.

Take some time to study this house plan then complete the following tasks.

1. Does this plan seem to be drawn to scale? Why so/why not?
2. Estimate the size of the overall block and the size of the house (and in 'squares').
3. Apply a reasonable scale and estimate/measure the internal size of each room.
4. List the features shown on the plan. Are they to scale? How do you know?
5. What do you think of this house plan? Would it suit your family; or suit you in your future? Explain your answer.

2.19 Models and Prototypes

Models and prototypes

A prototype is a physical model of a product in development, and is used for testing and evaluation purposes. Organisations are increasingly making virtual prototypes using computer-aided design (CAD) that can be modified quickly and efficiently. This requires a high degree of visual acuity, design skills as well as advanced training on CAD software.
However, many models are still rendered in 3D. As humans, we

Image: UmbertoPantalone/
iStock/Thinkstock respond to three dimensions. This is, after all, how we live! So people continue to make scale models, dioramas, prototypes, set designs, mini-cities and other 3D models. And seemingly, more adults are playing with Lego than kids are!

Model-making

Model-making is a sophisticated occupation
 that involves highly-developed visual numerical skills. Model-making combines eye-hand coordination, accurate measurements, artistic and craft-based talents and a committed discipline to accuracy, precision and quality.
Model-making involves estimating, measuring, crafting, carving, casting, layering, scraping, baking, setting, colouring and many more skills an activities. Wood-modelling may involve wood-turning, metals modelling - lathing, plan delling - casting, foreglass modelling - moulding, confectionary modelling - shann anc so n. Many industries still use model-makers p ate sc. cife-s. $Q_{3 D}$ models of their products.
\Rightarrow The automotive industry matis 42 clov, dels of achicles and then full-size clay models of new vehicla. the the clay are really cool!
\Rightarrow Industrial designers will k with \sim nde naker produce prototypes of new products.
\Rightarrow Toy manufacturers will make fot es fro wh to develop casts. (This makes Star Wars collectors very happy!)
\Rightarrow Other industrial makers stamp dies, ca- nuids or make other shapes from models.

Old-schoo u skUL
\Rightarrow Have you ever used a 3D printer? Has your school got one?
$\Rightarrow 3 D$ printing is an innovation that can help people render their prototypes, designs and products in real-life form. 3D printers have been used to make industrial components, medical components, jewellery, action figures, weapons, household items; and even houses!
\Rightarrow However, a 3D printer can only render what it is told to. It can't make a bad design better nor can it make a dud product sell!
\Rightarrow Quality 3D printing is not yet at a cost-effective stage whereby it can replace mass production, but it is good for niche products, and for hipsters (remember them?!)

Draw, render or design a scale model based on a product or object you like. Perhaps you can design a prototype for a new concept or innovation?
\square Include an original image of the object.Make accurate measurements and develop a scale.
\square Produce your 2D image by hand or using multimedia; or render your 3D model.
Drafting, measurements, planning and images.

2.21 Scaling

Representing size

It takes a special set of skills to represent objects accurately. Both scale and size ratio are important applied design and representational concepts when working with objects. Of course, large-sized objects get represented as smaller design elements or images, such as the drawing for a concept car, or for the graphics in a computer game.
Smaller shapes and objects are represented bigger, such as multimedia graphics for a biological model.
For this topic it's best to use as few words as possible, so let's get into the drawing!

Scale and ratio

A scale is used to represent the relative distance or size of a map, diagram, shape or object compared to itself in real life.
Scales use quantity ratios, e.g. 1:4, 1:20, 1:10,000 or even 2:1!
A map scale of 1:10 (in cm) means that every 1 cm on the map represents 10 cm in real life. Or, the map is $1 / 10$ th the size of real life.

An action figure might be in 1:6 scale. This means that every 1 cm of the action figure represents 6 cm in real life. So the action figure is $1 / 6$ th the size of the character it is representing.
A small object such as a fly might be drawn at 4:1. This means that the drawing is increasing the real-life size of the fly by a factor of 4 .

Do you like models, miniar dioram< d Aer reo ser titions like this? Many people love this old-sch ith $^{\text {th }} \mathrm{mc}$ In. . Indee man> lew-skul' designers and computer modellers, who are stu Steir chat screens d come home and unwind by doir Q ys al draw vaftin and modelling!

1. Estimate the dimensions (size) of these objects as shown on the page.
2. Measure these images. How did you go with your estimates?
3. Estimate the depth dimension measurements of these objects.
4. Estimate the scale of the drawings of each icon compared to the object that each represents in real life.
5. Sketch or draw these objects first by hand, and then using multimedia, at 1:1, 1:2, 2:1, 1:4 and 4:1 scale (you don't have to do every scale for each). If you have good drawing and design skills, use perspective to create a sense of depth.

2.23 Scaling

2M Mixing scale

1
4 PS 2
3 \rightarrow

Sometimes scale may be used to deliberately mix up imagery to create drawings, images or objects that convey greater meaning through using contrast, symbolism and metaphor.

1. What is being communicated by these images?
2. Create an image like these. Consider using a collage of visual effects. Have classmates suggest what they think the image is communicating. Give them feedback about how close they were. You will also have to take feedback from them about your image as well!

The ability to read, interpret, communicate and even create technical drawings is an important numeracy skill for a lot of applied work situations.
Designs, floor plans, blueprints, schematics, prototyping/modelling renders and other technical drawings all get created and interpreted by varied users at different stages; such as concept development, design, technical planning and engineering/ constructing.

Calculating and communicating accurate measurements are key skills for these processes, especially the ability to turn 2D representations and measurements into 3 dimensions.

1. Carefully estimate the 3D dimensions for this rendering of a house, its rooms and some other key features. Make sure that your estimates are in relative scale to each other.
2. Sketch this house by hand or using multimedia, and add the measurements.
3. Create a sketch or image of your own dwelling (or some other dwelling you like). Add accurate 3D dimensions You could have a g- constructing a model of this

AT2 Make Me Up Personal Numeracy // or Recreational // or Vocational

For this assessment task, you are required to use your skills in estimation, shape and design to complete one of these 3 projects. Each project draws on similar skills but you will have to apply your skills in varied ways. You should also use applied measurement skills (from Section 3).
You will be expected to use both hand drawing and modelling skills, as well as digital software rendering techniques.
Your teacher will discuss the suitability of each project for you and your class; and which 'numeracy' your choice will apply to.
The three projects from which to choose are as follows.
a. Develop your ideal house plan to scale and make a 3D model or diorama. (Personal)
b. Accurately measure, draw and render a model of a 'product', such as a motor vehicle, or another object. (Personal or vocational)
c. Accurately measure, draw and render a model of a person or an animal. This could be rendered like a toy, a doll or eve action figure! (Personal or recreational or vocational i.e. a prody ((cype.)

you investigate and develop more ar lie numern 1 Kills
a. Ideal house plan
\square Estimate size of exterior, interior rooms and fixtures and fittings.Measure and use scale to produce a plan.
U Use software to refine sketches and drawings.
\square Create scale 3D model of exterior and interior rooms; and at least one room with fixtures and fittings.
\square Research costs, and compare proposed house with actual houses.
\square Comment on the accuracy of plan and model versus reality; and any issues. List sources, measuring tools and methods.
House budget = \$300,000
Other info:

\rightarrow to refine sketches na drawings.

scale 3D model ect' in material of hoice.
search and/or outline costs of rendering model in a permanent form.
Comment on the accuracy of plan and model versus reality; and any issues.
\square List sources, measuring tools and methods.
Other info:

Estimate size of the person/animal and size of model.
\square Measure and use scale to produce a sketch or technical drawing.
Use software to refine sketches and drawings.
\square Create scale 3D model of the person/animal in material of your choice.
\square Research and/or outline costs of rendering model in a permanent form.
Comment on the accuracy of plan and model versus reality; and any issues.
List sources, measuring tools and methods.
Other info:

2.27 // Problem-Solving Cycle // Maths Toolkit

Measuring Up

3.01 Measurements
62
68 3.19 Measure It Out. 80
3.07 Measuring in Action
72 3.23 Assessment Task84
3.15 Measurements and Safety . 76 3.25 Problem-Solving \& Toolkit 86

Comments:

3.01 Measurement

Units of measurement

When we measure something we use some type of unit to establish size.
You already know about the metric system and how it works in 1s, 10s, 100s, 1,000s and 10,000 s and so on. Each metric unit measurement is sized relative to another unit. For example: $10 \mathrm{~mm}=1 \mathrm{~cm}, 100 \mathrm{~cm}=1$ metre, 1,000 metres $=1$ kilometre.
It is important to be able to convert between different units to suit different circumstances. In work-related situations, most trades and practical jobs use millimetres for measuring and not centimetres. But a client might have done the measurements in cm . The tradie will have to convert to mm when ordering the materials.
In other vocational situations, workers need to convert 'up', because they are often dealing with inputs in bulk quantities. So, if a chef needs 100 millilitres of oil for each meal they are cooking, they will need to bulk order in litres.
It is important to also understand the measures of time. Time is not a metric measure. Time uses seconds, minutes and hours with a relationship based on 60. Days and years are based on the rotation of the Earth on its own axis, and on the rotation of Earth around the sun.

Weighing in at 250,000 grams or $1 / 4$ of a tonne is the great Yokozuna!

Time (time is not metric)					
second	s	$1 \mathrm{~s}=1,000 \mathrm{~ms}$			
minute	min	$1 \mathrm{~min}=60 \mathrm{~s}$			
hour	hr	$1 \mathrm{hr}=60 \mathrm{~min}$			
day		1 day $=24 \mathrm{hr}$			
week		1 week $=7$ days			
fortnight		1 fortnight $=14$ days			
year		1 years $=365$ days*			
decade		1 decade $=10$ years			
century		1 century $=100$ years			
A leap year is 366 days					

Measurement 3.02
Units of measurement

1. What units do we most commonly use for these measures? Describe situations.

length	The measure used for building materials is usually millimetres. The measure used for			
fluid capacity (volume)	The measure used for a small fluid volume is usually The measure used for			
distance	The measure used for close personal distances is usually metres. The measure used for a travel distance is usually			
height	The measure used for a human's height is usually The measure used for			
weight (mass)	The measure used for a human's weight is usually The measure used for			
time	The measure used to calculate a wags fusually The measure used for			
temperature	The measure used for heat ; is ally The measure used for			
2. Which of these is correct?				
elephant 5 kg or 5 tonnes?		b. C. 1 litre:		small pass 1 kg or 1
d. can of soft drink 375 ml or 375 gm ?		e. Olympic swim $2.5 \mathrm{Mi}-\mathrm{r} 2.5 \mathrm{I}$ I?	f.	$\begin{array}{r} \text { an hou } \\ 60 \text { s or } 60 \end{array}$
cup of coffee 80° or 800°		h. to LA 15,00) or $13,000 \mathrm{~km}$	i.	AFL men's 2002 cm or

3. Convert these units of measurement.

a.	3.5 kg in grams	b.	750 ml in litres	c.	0.75 km in metres
d.	29.5 cm in mm	e.	1.25 litres in ml	f.	3,500 metres in km
g.	210 secs in minutes	h.	2.5 hours in minutes	i.	$100^{\circ} \mathrm{F}$ in Celsius

Have you heard of the Imperial system?

3.03 Measurement

Measuring up

As part of our day-to-day personal and vocational lives, we have to measure many different things. Measures might include:
\Rightarrow times for cooking, or how much time it might take for a client's hair appointment
\Rightarrow distance for a weekend road trip, or distance to a client's premises
\Rightarrow cost of our petrol bill, or cost of petrol to run a courier business
\Rightarrow mass (weight) of food ingredients, or mass (weight) of a package to be sent to a customer
\Rightarrow depth of a swimming pool, or depth of a foundation hole on a construction site
\Rightarrow area of a house and land package, or area of a field to sow
\Rightarrow volume of a gift package, or volume of a shipping container
\Rightarrow speed of a car, or the speed of a passenger jet.

Measuring units and devices

A measurement unit is a particular and precise unit that is standard. Standardised measuring units make it easier to do calculations and comparisons. They also make it easier for people to communicate more effectively in personal and work-related situations by sharing a common language, and by developing chnical and professional vocabulary.
Measuring units are calibrated to produce readings on measuring devices. We can re ne chyoie in our personal lives; such as a thermon ten ior cook. or to assess health, or to measure urpe.sona' in At work we might use a thermome'n wher' wh a chf, or as a vet nurse, or as an

3B Measuring

1. What measuring devices do ycomm ry use? How are they calibrated?
2. How do you know just what is an acce table reading? e.g. Too hot or too heavy?

| Measuring device | Calib | Understanding of reading | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

Units of measurement

Key measuring units you should be familiar with include:
\Rightarrow Temperature: how hot or cold, measured in degrees Celsius, or ${ }^{\circ} \mathrm{C}$
\Rightarrow Length: how long or short, measured in $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ or km
\Rightarrow Mass: how heavy or light, measured in $\mu \mathrm{g}, \mathrm{g}, \mathrm{kg}$, tonne
\Rightarrow Perimeter: how far around, measured in m (metres)
\Rightarrow Area: how much spread or coverage measured in $\mathrm{mm}^{2}, \mathrm{~cm}^{2}$ or km^{2}
\Rightarrow Volume (fluid): how much, or the capacity, measured in $\mathrm{ml}^{3}, \mathrm{l}^{3}$ or cc .
\Rightarrow Volume (solid): how much, or the capacity, measured in $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$ or m^{3}.

Measuring devices

1. What do each of these measuring devices measure, and what units do they commonly use? Add 2 of your own.
2. Explain how you might use each of these in personal and/or work-related applications. Find images of these and include them in your work folios.

Measuring device	What does it measure?	
thermometer		
calliper		
altimeter		
odometer		
scale		
speedometer		
measuring tape		
barometer		
pedometer vane		
sphygmomanometer		

3.05 Measurement

Measurement

Useful and accurate measurements rely on the use and application of estimates, calibrated measuring devices, calculations, experience and transferable and work-related skills.
Some measurements rely on estimates and approximates. For example, how much paint to buy to paint a bedroom, what sized clothing to order online, and the distance and duration of a journey to drive to the beach. Other measurements will rely on more accurate calculations, such as lengths of timber needed to build a carport, amount of tiles needed to complete a patterned wall feature, and appropriate temperature at which to safely cook meats, such as chicken, or to heat baby formula.
You might also encounter macro-measurements in construction, mining and agricultural industries, such as the mass of concrete needed for an apartment block's foundations, floor and structure, the mass tonnage that a mining dump truck transports each trip from a coal mine, or the area of crop that needs to be sprayed with insecticide.
In some cases you might need to know how to perform accurate micro-measurements, such as in precision trades like jewellery making, in health-care for pharmaceuticals and medicaments, and in engineering and the manufacture of components in hi-tech electrotechnology devices.

3D Ye olde measures

Most of our modern meas θ ar stanc rid usir thy metric system. (But not in the US of A). How or, Fere we lany δ len measures used by people.

1. Find out the meaning oveach oi D olr mares and what they measured.
2. Explain how they compare (it and if they are still in use today.

Old measure	Definition		Comparison/ \& are they still in use?
cubit			
hundredweight			
furlong			
league			
peck			
ell			
chain			
other:			

Investigation

Use online tools to convert between the main metric measures and the main imperial measures. See if you can create formulae to show these relationships.

Key measurements

Some key measurements that you need to know how to calculate are covered here. Many of you might have already developed your numeracy skills in using some of these, so let's consider this as a recap and upskill activity.

\Rightarrow Length

Length is a simple measurement. How long is that object? Length measures distance. Long distance might be better said as 'how far', e.g. "How far from Melbourne to London?"; or how close, e.g. "Where are you now?", "I'm just a km away". In reality most of the lengths we measure are quite small, such as the length of our body, the length of our clothes and the length of the distance of our eyes from our screens!

\Rightarrow Perimeter

The perimeter is the distance around an object; or in other words, the combined lengths of all the sides or edges. Therefore, to calculate perimeter we simply add up the length of all sides of an object. Note: The perimeter of a circle is called circumference.

\Rightarrow Area

Area is a 'how much' sort of calculation and measures the 2-dimensional coverage of an object or shape. i.e. How much area does that lawn crever? Surface area relates to how much of something is needed in 2D to cover the s. of a 3D object, such as gift wrapping a present.

\Rightarrow Volume

The volume of an object refers to how mur' a e liocc area in that it relates to 3 dimensions; le. $4 t^{\prime}$, wiuth 20 e. $:$ (orc oth In theory volume is actually measured by how oh. Ace a b) at displ es. Nuwever, it is fine to think of an object's volume as b, it hi its capacity, like a 600 ml bottle of Pepsi Max.
\Rightarrow Temperature
Temperature can be commonly referred to the inte Noy of heat of an object, fluid, surface or other substance. Temperature is u. anty measured using a calibrated thermometer or similar device.
\Rightarrow Mass
Mass is the appropriate term to descrit $b)_{N}$ much matter is in an object. This then determines how 'heavy' an object is.
Objects of the same size might have a different mass depending on the density of the matter from which the object is made. Consider the different mass of a gold bar and a chocolate bar of the same size.
We often use the word 'weight' when describing how heavy an object is. But technically this term is incorrect as weight describes the force of gravity on an object. (Yep; think about astronauts leaping about on the moon - same 'mass' as on Earth but different weight.) But you can use the word weight in most practical applications as long as you understand that what you are really referring to is an object's mass!
We commonly measure weight (mass) in grams (or multiples thereof), but there are other measures of weight (mass), such as carats for gemstones.

3.07 Measuring in Action

Measurement in action

You need to be able to estimate and calculate perimeter, area and volume. These measurements all rely on the use of straightforward formulae that is not necessarily based on mathematical expertise, but rather on the application of logic.
Often these measurements might start as an estimate, even moreso as you become experienced and build your suite of transferable and work-related skills. However, you will have to calculate exact measurements of objects and numeracy scenarios to determine exact perimeters (e.g. fencing), area (e.g. fabric cover), and volume (shipping and transport). Especially when you move from a quote to an actual billing or buying stage.

Perimeter

\Rightarrow The perimeter is the distance around an object.
\Rightarrow To calculate perimeter we simply add up the length of all sides of an object.
Perimeter: Rectangle
Perimeter of rectangle $=$ length + width + length + width or $l+w+l+w$; or ($\mathbf{2 l} \boldsymbol{l}+\mathbf{2 w}$)
Calculate perimeter of rectangle: $=35 \mathrm{~cm}+50 \mathrm{~cm}+35 \mathrm{~cm}+50 \mathrm{~cm}$
$=170 \mathrm{~cm}$ or $(1,700 \mathrm{~mm})$
(Note: Nearly all trades use mres measurements rather than Cr

Circumference (perimeter): Circle

Circumference (perimeter) of circle

 $=$ diameter $\times 3.142$(Note: 3.142 is pi or π) or $c=d \pi$
$=50 \mathrm{~cm} \times 3.142$
$=157.1 \mathrm{~cm}$ or ($1,571 \mathrm{~mm}$)
Pi is always used for circles as it is a mathematical constant that measures the ratio of a circle's circumference compared to its diameter.
As the circle gets wider, its circumference gets proportionally bigger!

\Rightarrow Area measures the 2D surface coverage of an object.
\Rightarrow To calculate area we multiply the key dimensions; the answer will always be in units ${ }^{2}$.

$$
\begin{aligned}
& \text { Area: Rectangle } \\
& \text { A = length (I) } \mathbf{x} \text { width }(\mathbf{w}) \\
& \text { Calculate area of rectangle: } \\
& \text { A }=50 \mathrm{~cm} \times 35 \mathrm{~cm} \\
& A=1,750 \mathrm{~cm}^{2}\left(\text { or } 0.175 \mathrm{~m}^{2}\right)
\end{aligned}
$$

Note: Here the unit, cm, is squared (2). That's because cm is multiplied two times in the calculation (i.e. $\mathrm{cm} \times \mathrm{cm}$). And of course you are working in 2 dimensions with area, hence cm^{2} !

Area: Triangle

$A=1 / 2 \mathbf{x}$ base \mathbf{x} height
(or $A=1 / 2 b h$)
$A=1 / 2 \times 5 \mathrm{~cm} \times 4 \mathrm{~cm}$
A $=1 / 2 \times 20 \mathrm{~cm}^{2}$

$$
\mathrm{A}=10 \mathrm{~cm}^{2}
$$

Now, this formula makes sense because when you think about it, the right-angled triangle is basically half a rectangle. So the formula for calculating the area of right-angled triangle is the same as that calculating a rectangle, but halved:

Area: Circle

$\mathrm{A}=\pi \times$ radius 2
(or $A=\pi r^{2}$)

$$
\begin{aligned}
& \mathrm{A}=3.142 \times(2.5 \mathrm{~cm})^{2} \\
& \mathrm{~A}=3.142 \times 6.25 \mathrm{~cm}^{2} \\
& \mathrm{~A}=19.6 \mathrm{~cm}^{2}
\end{aligned}
$$

The radius is half the diameter, or half th 'width' of the circle.
You know how with circumference a circle gets wider, its circumference 9-is proportionally bigger; well of course so too does its area.
There's that good old pi again!

NUM
SUPER
SKILLS
Perimeter and area
Calculate the perimeter and then the area for each of the following.

i. A circular rug that has a radius of 260 mm.	ii. The roof of a rectangular garage that is $4.6 \mathrm{~m} \times 270 \mathrm{~cm}$.	iii. A triangular sail that has a height of $1,400 \mathrm{~mm}$ and a base of 0.75 m.
iv. The room in which you are sitting/standing right now.	v. Your backyard (or a friend's backyard).	vi. A 4 hectare property.

3.09 Measuring in Action

Volume

\Rightarrow The volume of an object measures its 'capacity' or 'size' in 3 dimensions.
\Rightarrow To calculate volume we multiply the key dimensions; the answer will always be in units ${ }^{3}$, because now you are working in 3 dimensions!

Volume: Rectangular prism (cuboid)
Volume of a cuboid $\mathbf{V}=\mathbf{I} \mathbf{x} \mathbf{w} \mathbf{h}$
$V=20 \mathrm{~cm} \times 50 \mathrm{~cm} \times 35 \mathrm{~cm}$ $V=35,000 \mathrm{~cm}^{3}$ (or $0.035 \mathrm{~m}^{3}$)
Note: Here the unit, cm, is cubed (${ }^{3}$). That's because cm is multiplied three times in the calculation (i.e. $\mathrm{cm} \times \mathrm{cm} \times \mathrm{cm}$).
And of course. you are working in 3 dimensions with volume, hence cm^{3} !

Volume: Cylinder
Volume of a cylinder $\mathrm{V}=\boldsymbol{\pi} \mathrm{r}^{2} \mathrm{~h}$
$V=3.142 \times(25 \mathrm{~cm})^{2} \times 40 \mathrm{~cm}$ $V=3.142 \times 625 \mathrm{~cm}^{2} \times 40 \mathrm{~cm}$ $V=1963.75 \mathrm{~cm}^{2} \times 40 \mathrm{~cm}^{2}$ $V=78,550 \mathrm{~cm}^{3}\left(\right.$ or $\left.0.079 \mathrm{~m}^{3}\right)$

3F Volume

1. In your work folios calculate the volume based on these dimensions. Draw each.

a. A prism with dimensions of 10,20 and 40 cm .	b. A cylinder with a radius of 20 cm and a height of 100 cm .	c. A sphere with a diameter of 50 cm .
d. A compound object featuring the prism from 'a' and the sphere from 'c' on top.	d. A compound object featuring the cylinder from 'b' on a base of a 40 cm cube.	f. A compound object featuring 2 spheres from
c', 1 cylinder from 'b' and 3 prisms from 'a'.		
Draw this - what object might this resemble?	Draw this - what object might this resemble?	Draw this - what object might this resemble?

2. List and discuss practical examples when you would have to apply volume calculations.

Old-school v nu skUL

\Rightarrow As technology increases we are seeing a growing incidence of digital measuring devices replacing analogue ones. The claims supporting digital devices are that they are more precise and therefore more accurate, faster and safer.
\Rightarrow Many devices use lasers for measuring levels, distances and angles. Others are used in technical and construction activities for locating electrical cables, gas lines, water pipes and other hidden dangers.
\Rightarrow Digital laser rangefinders calculate accurate distances and support one-person operation. These devices can also store information, perform calculations and calculate area and other required measurements.
\Rightarrow If you pay enough to invest in state-of-the-art, industry-standard devices, then the device can also send data to a smart phone app that can be stored in a spreadsheet to save having to transcribe while on the job.
\Rightarrow Old school measures involve the user physically

Images: (l) nikkitok/ (r) Tuned_In/
iStock/Thinkstock making the measurement and writing the data. This can cause measuring inaccuracies and transcription errors.
\Rightarrow But manuals measures canh have the advantage of a hands-on approach, w reby a person uses their physical expertia Neye' and their experience to meas janu estimate) accuran .

Getting it right
When you use digital devices know that the readout that yo measurements (unless the batteries digital devices you might not be meas ane the or perhaps you are not operating the device properly, or you mis in record the measurements incorrectly; i.e. mixing up height and width whic, could cause problems if you start working with materials. So how will you <nc 1 ?

1. Start by estimating the dimensi $\$ 9$ this room. Calculate its perimeter and its area. Use an app or online calculan to calculate its volume.
2. Use a digital measuring device to record the perimeter and area of the room. Use these measurements to calculate the volume of the room.
3. Use manual measuring instruments to measure the perimeter and area of the room. Calculate the volume.
4. Compare your initial estimates, the digital measurements and the 'manual measurements. How close are the results? Which are correct? How do you know? And how would you check?
5. Research digital measuring devices and find out usage instructions, tips, guidelines and troubleshooting information. Summarise these and present the information in a short report to the class.

3.11 Measuring Volume

Volume - Fluids

Volume measures abound in our everyday lives for cooking, medicine and of course, for fluid containers.

What was the volume of the last bottle of soft drink you consumed? What volume of sauce is in a bottle? This type of volume is called capacity. Or in other words, how much something can hold. e.g. How much liquid in a bottle?
Most fluids are measured in millilitres or ml . $1,000 \mathrm{ml}$ equal 1 litre.
A millilitre is the same volume as a cubic centimetre (cc). So therefore a cube that has sides of 1 cm will have a volume of 1 millilitre. The measure of cubic centimetres is often used in medical settings and in mechanical and other engineering measures.
You are likely to use fluid volume measures in your personal lives when it comes to hydration, cooking, gardening and various recreational and hobby pursuits.
People also pay particular attention to one common volume measure expressed as a cost. This is the cost of a litre of petrol. How does $\$ 1.70$ per litre sound? And if your vehicle's fuel tank has a capacity of 60 litres, then at $\$ 1.70$ per litre, it will cost just over $\$ 100$ to fill.
Many work-related tasks require a good working knowledge of fluids. Occupations such as chefs, baristas, gardeners, plumbers, painters, nurses, hairdressers, farmers and others need to have a good working knowledge of fluic r rmes.
Fluid volumes are extremely important wher in with chemicals al d mixing chemical ratios; be that when diluting concentrate as bleach and pesticides) or when mixin n
chemical. This is a key area of wor'jan some workers.
Nurses and doctors have to medications, otherwise the So you should always make sure measures, read the product manumos rer's in tia nns, and be accurate with your measurements.

Image: @ emmeci74/ Depositphotos.com volume, but also uses volume meadares based on cooking utensils.
These measures might vary in different countries, but in Australia we accept these values to be accurate.

Fluids

$\Rightarrow 1$ teaspoon $=5 \mathrm{ml}$
$\Rightarrow 1$ tablespoon $=20 \mathrm{ml}$
$\Rightarrow 1$ cup $=250 \mathrm{ml}$
$\Rightarrow 1$ fluid ounce $=28.41 \mathrm{ml}$
$\Rightarrow 1$ pint $=568.26 \mathrm{ml}$
$\Rightarrow 1$ gallon $=4.564$ litres
Solids
The weights of solids vary so we should not really use 'utensil' measures.

1. In your own words, complete the following questions.

1. What is capacity?	2. Which is bigger, a litre or a millilitre?
3. When might diluting be important?	4. When will exact fluid measures be vital?

2. Find out the prices of 4 different-sized cola containers from the same brand, both in a milk bar, and in a supermarket.
3. Complete the following table; and then discuss th results as a class.
4. What volume of container do you recommey in why? (Think care illy!)

Applied: Treat or threat?

Complete the following tasks in your workbooks
a. If a recipe calls for 4 teaspoons of milk how many ml is this?
b. If a fruit dessert recipe calls for a sauce to be made from 100g of cooking chocolate, 6 tablespoons of cream and 2 tablespoons of icing sugar per person, and you are serving 10 people, what total quantity of cream, in ml , do you need?
c. What weight of both icing sugar (1 tble $=8 \mathrm{gms}$), and of chocolate, do you need?
d. Find out how much these ingredients might cost.
e. What do you think about this recipe? Discuss this as a class!

3.13 Measuring Volume

3I Volume - Fluid units

1. Complete these tasks related to capacity. Some you will have to research.

Note: There are 1,000 millilitres in a litre, and 1 million litres in a megalitre.

a. How many mls of fluid would be in 5 tablespoons?
b. How many mls of fluid are in nine x 3 teaspoons? litres bottles?

2. List situations from your own life when it is suitable to estimate fluid volumes.

3. List situations when you must measure fluid volumes exactly. Why so?

5. Healih \& Wellbeing	Recreation \& Hobbies	Vocational Stituations
When is measuring fluid volume important for me?	When is measuring fluid volume important for me?	When is measuring fluid volume important for me?
\Rightarrow	\Rightarrow	\Rightarrow
\Rightarrow	\Rightarrow	\Rightarrow
\Rightarrow	\Rightarrow	\Rightarrow

3.15 Measurements and Safety

Temperature

Temperature is commonly referred to as the intensity of heat of an object, fluid, surface or other substance. It is usually measured using a scaled mercury-based thermometer using degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$. Celsius is a comparative scale based on the freezing point of water, which is $0^{\circ} \mathrm{C}$, and the boiling point of water, which is $100^{\circ} \mathrm{C}$. (However, some slight variations to this definition do exist for scientific purposes.)
It is vital that you are aware of safe temperature ranges for personal and work-related situations. Too hot, and indeed too cold, can result in injury (burns and scalds), illness (food poisoning) and even the risk of death (hypothermia and hyperthermia).
There are so many safe temperature issues, too many to list here. It's better for you to be aware of common safe ranges and others that are relevant to you.

3J Goldilocks

Goldilocks never did her VM Numeracy, differently; and perhaps she wouldn't

Abstract

 -

Weight

Weight (mass) is another quantity that also needs to be safely estimated and measured. People get injured in their personal, social and work-related lives by lifting too much weight, lifting weight incorrectly, lifting weight repeatedly, moving weight incorrectly, bending and twisting while carrying weight, and even suffering crush injuries from weighted objects. Weight is also a safety issue in these situations, as well as many more (suggest some others as a class).
: Cooking, e.g. minimum cooking times for portions.
:) Transport, e.g. overloaded and unbalanced loads.
© Caring and nursing, e.g. safely moving and lifting patients.
) Health and medicine, e.g. dosages for body weight and drug micro-measurements.
(). Sport, e.g. physical stress injuries to muscles, joints and ligaments.
;) Personal life; e.g. too much body weight, straining joints.
Weight is also an issue in relation to packing and sending goods for postage and courier services (underpaying for parcel weight), when travelling (excess luggage charges) and even for buying selfpick lollies (people always seem to fill the bags with too much weight!)
"I don"t know why I keep doing my back when I bend over to pick up Tiddles?"

3.17 Measuring Temperature

Temperature in action

As you know, temperature refers to the intensity of heat of an object, fluid, surface or other substance. The most common unit of measurement for temperature is Celsius using a comparative scale, based on the freezing and boiling point of water.
An awareness of temperature scales, and associated safe temperature ranges, is a vital concept for many personal and work-related situations. Can you think of more?
\Rightarrow Personal health and wellbeing, such as surface air temperature.
\Rightarrow Personal care and safety, such as bathing an infant.
\Rightarrow Household situations such as hot surfaces, heating requirements and clothing needs.
\Rightarrow Health diagnosis and medicine, such as hypothermia, fever and other conditions.
\Rightarrow Food storage and preparation, such as perishables, dairy and meats.
\Rightarrow Employee OH\&S such as exposure, heat and cool hazards, and fire risk.
\Rightarrow Cooking, such as temperatures and times to avoid food poisoning.
\Rightarrow Manufacturing, such as engineering, food production and construction.
\Rightarrow Transport, such as refrigerated vans for 9 as.
\Rightarrow Exercise, such as energy burning andse anay tgmperature zones.
\Rightarrow Electrical goods, such as operarial, coar sostems ant radiant heat.

3L Temperature in action

Correct temperature is important in the beauty industry. Why so?

1. Estimate and then find out the tempe ture for each of the following.

Item	Estimated temp.	$(E x)$	Item	Estimałed temp.	Exacł temp.
The temperature in this room.			Hottest temperature ever in Australia.		
The temperature in Moscow today.			Coldest temperature ever in Australia.		
A caffè latte.			Car radiator fluid after a long drive.		
A bath suitable for a baby.			A shop fridge for milk.		
Healthy human temperature.			your choice		
A human with a fever.			your choice		

2. You are required to undertake an investigation into safe temperature ranges in a variety of personal, social/recreational and work-related situations. Complete the tasks specified in the table by describing relevant activities/items. You might also need to undertake some online research.

	Describe activity/item	Safe range/ hazard control	Potential hazards
Health \& wellbeing situations	Cooking of...		
	Temperature of a child...		
	other...		
	other...		
Recreation \& hobby situations	A day at the beach...		
	other...		
	other...		
	Working environment...		
Workrelated situations	Storage of perishables...		
	other...		
	other...		

3.19 Measure It Out

3M Measurements

1. Perform the following calculations showing all workings. (Tip: It might be a good idea to draw a sketch in your work folios!)
a. The perimeter of a fence around a rectangular yard measuring $10 \mathrm{~m} \times 8.5 \mathrm{~m}$.
b. The surface area of the lawn of this yard (assuming it goes right up to the fence).
c. The surface area of a right-angled triangular compost structure located in the yard that has a height of 90 cm and a base width of 2 m .
d. The area and volume of a rectangular 'cubby house' measuring 2 m by 3 m with a height of 120 cm .
e. The area of a circular concrete fountain with a diameter of 75 cm .
2. The owners are thinking of laying a synthetic lawn. Calculate how much surface area of lawn remains uncovered after the compost, cubby house and fountain are incorporated into the yard.
3. How much might a synthetic lawn cost apk oximately? Go online and find some more exact prices. What about naturaltu Which is cheaper and why?

Farmer Tony has been living on his 2.5 acre square patch of land for many years and as a retirement hobby he grows turnips, sprouts and of course his prizewinning onions.

His peace is shattered when Starlight Moonbeam and her partner Krusty Longshanks take over the vacant plot next to him. Living out of tents and their
 rainbow Bongo Van they pursue a sustainable lifestyle and as such they allow their goats Marcel, Pablo and Freida to roam free. The problem is that the goats are getting into Farmer Tony's vegie patch and gobbling up all of his hard work.
Tony can't take it any more when he comes out to all 3 goats greedily devouring his prize onions. He is even more galled that M/ popears to be smili, 5 at him as he chows down on one particular big bulb tha aryer Ty nothought mis have a chance at this year's county fair.
 I'm as reasonable as the next mar ot hav rop the gars. They reach agreement to build a fence and ${ }^{\text {a }}$ Usts.

1. Draw a sketch of the plan to s, n the δ
2. What length of fencing (in metres, be $\in \in$ de to protect the block's perimeter from the goats? What typ for would you recommend? Why?
3. Farmer Tony sees an opportunity in this and inks he might be able to increase the area of his vegie patch. What is t ets al area of Tony's block?
4. Tony uses 40% of the block for r ht se, outbuildings and other amenities. What area would potentially be an able for an expanded vegie patch?
Tony notices that his neighbours trap a lot of their water in tanks. Good thinking by these green folks - this could save him some money. He looks online and sees a cylindrical tank that measures about 1.6 metres in height with an internal diameter of approximately 900 mm .
5. What would be the approximate capacity (volume) of this tank in litres?
6. How much might a tank like this cost? How much might it save Tony on his water bill?
7. How long do you reckon this could last to water his expanded vegie patch?

3.21 Measure It Out

Compound shapes and objects
As you know from Section 2, in the real world most objects are made up of compound shapes. When combined together these simple shapes make an entirely new, and nonuniform shape.
When you are working with compound shapes and objects, always try to visualise the smaller components that have been used to make the final compound shape or object.
Use this breaking-down method to help solve any problems associated with measuring compound shapes.
When working with perimeters look for the outer edges. Also assess to see if there are any internal edges. You don't want to double-count these if you are only focusing on the outer measures.
With area, look for where the shapes overlap. When measuring, you might have to calculate a whole area of a shape such as a circle, and then halve it (or apply some other fraction), based on the overlap.

30 Combining shapes

Part A: Compound perimeter

When you have to find the e im.er ol hapes nd izes you should try to break the object into its ∞ in Fomet, rapes rectangles, triangles and circles. From this you can calcula, the pe $\rightarrow^{+\ldots}$, of n ch hape and then add them together. But watch out for do vuntin Flo is going to lay a funky shaped.awr as drawn a diagram. She wants to install as d quality drip system right on the f ge f the lawn.
a. In your workbooks, break Aovil down into its basic shapes and label t. $=$ component shapes with the correct lengths.
b. Estimate how much hosing Flo might need.
c. Calculate how many metres of hosing she needs to go around the perimeter of her lawn.
d. Estimate how much it might cost for Flo to buy the hosing.
e. How much hosing should she buy? (Think carefully.)
f. Do some research online to find out how much the hosing might cost.

Part B: Compound area: Combining shapes

If you are calculating the area for odd-shaped objects you should try to break them down into their basic geometric shapes (just as you learned for perimeters).

But there won't be any double-counting this time because each shape covers its own area. But you need to be aware that you might he working with half-circles or other portions or fractions of shapes.
Remember Flo and her funky-shaped lawn? F1 ors ine green (ish) and wants to
 the area of each component shape and 14 st \angle diffre ice - ates.
a. Will you need to create another ske Aor dias (1)

c. Calculate the area of each on e comk ner shaper. Note: triangle $\mathrm{h}=4.6 \mathrm{~m}$)
d. Calculate the total area of synthet dam that F O uld need to purchase.
e. Research prices online from 2 differe 'lorn' priers. Prepare cost estimates.
f. Are there any other issues Flo would need to onsider when laying the synthetic lawn for this shape? Explain.

3.23 Assessment Task

AT3 Measuring Up

Health Numeracy // or Vocational Numeracy

For this assessment task, you are required to investigate, collect, analyse and report on important quantities and measures related to health situations in your life, and/ or vocational work-related situations related to your career.
You will choose the focus area most relevant to your situation, and identify the most important quantities and measures to investigate at this stage of your life.
You will prepare an investigative analysis that explains relevant quantities and measures, why and how to estimate and measure these, the use of measuring devices and tools and techniques, how to ensure accuracy, and why these quantities and measures are important for your chosen focus area.

Health Numeracy: Quantity and Measures

You might investigate:
\square making recipes healthier by substituting ingredientshealthy eating and portion sizesamount of macronutrients, (protein, carbohydrates and fats) in different foodsamount of refined sugar in food ar beveragesgeneral health indicators anu measurescondition-specific hear Totors and measurescorrect dosages of medicationfitness measuresamounts of different physical activit needed to balance food intakesafe cooking temperatures and for different foods; or many other health qua: (iie. and measures relevant to

Vocational Numeracy: Quantity and Measures

You might investigate:
work-related task times
\square work-related measuring of shapes and objects
jpecific work-related measuring tools and devices
$\square y$ rle:elated + mpa tures including .nges
Inates and measures
worl rela'ed estimates and measures 5 size.
rk-related estimates and measures volume and capacity
vork-related estimates and measures of materials, ingredients, resources and inputs
\square work-related mixes, proportions and other measures;
or other relevant work-related and vocational quantities and measures.

As part of your investigation, you must explain the importance of numerical knowledge and skills; and an explanation of the applied use of maths tools.measuring units and devicestime measures and importanceamounts and quantitiestemperature measuressize and distance measuresperimeter and area measuresvolume and capacity measures
\square estimations and accuracy.
As relevant for Vocational Numeracy:
work task time measureswork temperatureswork measuring units and devices
\square work object and materials measures
\square work-related estimations \& accuracy.
Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

Additional information:

\qquad
\qquad
3.25 // Problem-Solving Cycle // Maths Toolkit

Got The Time?

4.09 Time Zones .96 4.19 Future Travel.104
4.11 Getting Around .98 4.21 Assessment Task 108
4.13 Timetables, Schedules \& Rosters .. 100 4.23 Problem-Solving \& Toolkit 110

Comments:

4.01 Time

Time

Time is an arbitrary construct that breaks life down into years, hours, minutes, seconds and so on. We use time to govern many facets of our personal, social and work-related lives. People talk about 'making' time, 'juggling' time, 'losing' time, 'gaining' time, 'costing' time, 'biding' time, 'marking' time and various other ways of dealing with time in
 their lives.
\Rightarrow Time is a counting tool. e.g. You can count how many minutes it takes you to get ready for work.
\Rightarrow Time is also an estimating tool. e.g. You can estimate how long it should take you to make a coffee at breakfast.
\Rightarrow Time is also a measuring tool. e.g. You can measure how long it will take you to travel for a night out.
\Rightarrow Time is also a costing tool, 'time is money'. e.g. You can measure how much labour work time is involved in doing a job for a cusini er or a client.

4A It's about time

Use an example from your own \&rience Q explai eaning of each of these time-related terms. Add 3

| Term | | |
| :---: | :---: | :---: | :---: |
| 24-hour time | | |
| taking your
 time | | |
| costing time | | |

People in certain situations, and workers in varied occupations and industries, prefer to use different time methods for displaying time.

1. Complete the table as a refresher on identifying times using analogue and 24hour time methods. (Don't forget about am and pm).

$15: 50$	$17: 15$	$21: 45$	$23: 30$
$06: 00$	$04: 25$	$09: 45$	$19: 30$
$20: 00$	$00: 00$	1200	$24: 00$

2. Outline different personal and worlacir mistan Θ here a particular time method might be used. Why so?

3. Which method do you prefer and Le? Why so?
4. What about your classmates? Who is wearing an analogue watch? Do you know anyone who communicates using 24 -hour time?
\square

4.03 Time

Time for play

We live our lives according to time, whether we realise it or not. As living beings, the passage of time is a constant reminder in our lives. We sleep, clean, eat, love, care, learn, socialise, exercise, relax, travel, visit, watch, listen and play. And of course - there's the time we spend on our digital lives.
If it wasn't for time we could do anything. But time forces us to make decisions, and prioritise the tasks in our lives. Some things are more important. These responsibilities must be met - regardless. As a result, we might have to put off, or give up, something else. So what are your priorities when it comes to time?

Time for work

The world of work is governed by time. Most employees in Australia, about
Image: focuspocusltd/ Depositphotos.com $75-80 \%$, work for profit-making businesses. It's a cliché, but time is money. That's how most people get paid, according to an hourly wage. Even people who work for not-for-profits such as government departments, government agencies, and many schools, hospitals and community services, are also governed by the constraints of time.
There's rosters, schedules, timetables, appointments, production times, delivery times, travel times, ETAs, start times, e~0 mes, break times, open hours, after-hours and many other measures an the world of wrok.
Two key terms are productivity and effire. \& And the nain determinant of being a productive and e well you perform your work duties
you good at managing cime, or are you more of a 'last minute' person?
a. Personal Numeracy

\square Organising personal time.Estimating \& planning travel ti (es \square Using different timetables \square Using diaries and calendar

b. Civic Numeracy

Collecting time-based information.
\square Comparing data and statistics.
\square Allocating time to communities.

c. Financial Numeracy

\square Calculating wages and pay.
\square Filling out timesheets.
\square Planning budgets.
\square Developing savings plans.
d. Health Numeracy Measuring biological health. \square Maintaining work/life balance \square Organising healthy routines.

e. Vocational Numeracy

 \square Understanding rosters.\square Meeting work commitments.
\square Organising daily routines.
\square Understanding pay and wages.
\square Completing timesheets.

f. Recreational Numeracy

Maintaining work/life balance.
\square Sport and recreation measures.
\square Developing an exercise plan.
\square Organising healthy routines.

1. Which do you think is the best method to use for telling the time in personal, social and in work-related situations? Discuss as a class.

Personal situations	Social situations	Work-related situations

2. Describe examples of when you expect others to be on time, or situations when you need things to be running on time and to schedule.

Stituations	Personal	Social	Work-related
When I expect others to be on time.			
When I need things to be running on time and to schedule.			
3. Describe examples of when eers expect y ro b n time, or situations when others rely on you to ensure that thing. erun prime or on schedule.			
Situations	Personal		Work-related
When others expect me to be on time.			
When others need things to be running on time and to schedule.			

Applied:

What time management strategies do you currently use? What strategies and tools could you apply to improve the management of your own time?

4.05 Time

Time travel

Time is one of the most important measures related to travel. We have to estimate travel times and plan our schedules to take account of these times.

We rely on the timetables and schedules of transport providers so that we can get on with our personal, social, school and work life.

We 'use' up time to travel to and from school and work. We 'spend' time waiting for a train to arrive. We 'lose' time if traffic is heavy. And we 'waste' time waiting for others - you know that friend who is always late!
It is also important that we understand different time zones, especially for international travel and for doing business globally. This involves an understanding of time zones (based on longitude) and Greenwich Mean Time (GMT).
Airline tickets are always issued in the destination's local time and date which means that sometimes you can travel 'back' in time; i.e. you arrive at your destination before you even leave! Well sort of anyway. See if you can comell with an example of this.

i. Hours to minutes

To convert from hours to min
simply multiply the numk
60 . For example:
$\Rightarrow 3$ hours $=3 \times 60$ minutes $=18 \quad, \quad$ tasks a,
minutes $=150 / 60$
$\Rightarrow 20$ hours $=20 \times 600$ minutes $=1,200$ minutes
$\Rightarrow 2$ and a half hours $=$? (So let's dc the calculation)
$=2 \times 60$ minutes plus anothe of an hour
= 120 minutes +30 minutes
$=150$ minutes

ii. Minutes to hours

To convert from minutes to hours we perform a division calculation.
We divide the total minutes by 60 (which equals 1 full hour).
$\Rightarrow 240$ minutes $=240 / 60=4$ hours
$\Rightarrow 540$ minutes $=540 / 60=9$ hours
$\Rightarrow 900$ minutes $=900 / 60=15$ hours

2 hours 30 minutes (or $21 / 2 \mathrm{hrs}$).

iii. Adding time

To add time we add the hours first and then we add the minutes. e.g.
$\Rightarrow 1 \mathrm{hr} 30$ mins +1 hr 15 mins $=2 \mathrm{hrs} 45$ mins
If the total minutes part of the answer is greater than 60 then that is a whole other hour. So we have to take 60 away from this 'minutes' total and add it back as 1 hour to the 'hours' part of the calculation.
$\Rightarrow 1 \mathrm{hr} 30 \mathrm{mins}+1 \mathrm{hr} 45 \mathrm{mins}$
$=2 \mathrm{hrs}$ and 75 mins
$=2 \mathrm{hrs}$ and (75-60 mins)
$=(2+1 \mathrm{hrs})$ and 15 mins
$=3$ hours and 15 minutes

1. Convert the time for the following situations.

1 hour 50 in minutes	4 hours in minutes	7 hour 15 minutes in minutes	210 minutes in hours
4.5 hours in minutes	20 hours in minutes	72 hours in days	15 minutes in hours
7 minutes in seconds	2.5 minutes in seconds	10 mins $\& 45$ seconds in seconds	1,019 seconds in minutes

2. Estimate and/or find out the travel time for the wing situations.

Your home to the CBD by car on a weekday for work.	Your home to the hometo CBD by car on a Sunday night.	Yout rol to the n. © it truin station is for regional)
Melbourne to Perth direct flight.	Sydney to L (Hoba to ondon direct flight. fligk opover.	Melbourne to Tokyo fastest flight.

3. Choose 6 activities that you regularly do in your personal life. For each activity:
a. Estimate the time that the activity takes to complete.
b. Calculate this time in days, hours, in minutes and in seconds. For shorter activities, you might need to use fractions and decimals, e.g. 1/16th of a day.
c. Identify any rates that apply to this activity, e.g. travel speeds.
d. Discuss whether anything associated with doing the activity 'wastes' time. e.g. Waiting for a friend to turn up who is always late.
e. Describe methods that you use (or could use) to improve the efficiency of this activity. Consider tasks that you could do concurrently, or perhaps how changing the order of doing tasks would make better use of your time.

4.07 Time

Elapsed time (duration)

Elapsed time, which is also called duration, indicates how much time has passed between one time and another.

For example, the elapsed time in 1 hour $=1$ hour (or 60 minutes!). That's pretty straightforward! So therefore the elapsed time between 3pm and 4:00pm is 1 hour.
Or the elapsed time between 6:45am and 7:45am is 60 minutes. There you go!
Elapsed time or duration is used to calculate how 'long' something takes. This is vital for personal situations, such as cooking, for transport and travel times, for work times and rosters, for task times or even for leisure times.
Sporting activities rely on elapsed time such as football, soccer, netball and rugby. The game time dictates how long the play goes for. Other sporting activities use duration (or how long) to record achievement, such as the 100 m sprint, the $1,500 \mathrm{~m}$ freestyle, the marathon and the 200km cycling road time trial. Fastest wins!
We especially need to pay attention to elapsed time when cooking, when doing work tasks, in medical situations, when travelling, and in many other personal and work activities. Duration might be a key safety issue in certain tasks.
One method to work out duration or elapsed tirm by using a visual timeline. However, you shou' Na.e to work out elapsed time in your head; or on $2 y$ or by using a calculator for more complex situ the

4E How long?

Elapsed time (duration)

To count total duration in hours and minutes we need to see how much time has passed (or elapsed) between one period of time and another.
Some calculations are easy. e.g.
3 pm to $4 \mathrm{pm}=1$ hour (or 60 minutes).
$7: 45 \mathrm{pm}$ to $8: 30 \mathrm{pm}=45 \mathrm{mins}$ (15 mins to the end of the hour, plus another 30 mins).
11:30pm to 2:30am = 3 hours (or 180 mins).
But some calculations are a bit harder. To calculate elapsed time we use 3 steps.
i. e.g. 5:15am to 7:50am (later time minutes > than earlier time minutes)

1. First you subtract the hours (later minus earlier). = 7 - 5 (hours) $=2$ hours
2. Then subtract the minutes (later minus earlier) $=50-15$ (mins) = 35 minutes

Note: If the earlier time starts as a ' 12 '
e.g. 12:30am treat the 12 as a ' 0 '.
3. In this case (because the later minutes are higher ($>$) than the earlier minutes) you combine the answers as an addition. $=2$ hours plus 35 minutes
ii. e.g. $7: 45 \mathrm{pm}$ to $8: 30 \mathrm{pm}$ (later time minu sor an earlier time nutes)

1. First you subtract the hours (later r in slier< inote. ©the earlier = 8-7 (hours) = 1 hour
2. Then subtract the minutes (lar inus ea (1). tio ais as a ' 12 ' $=30-45($ mins $)=-15 \mathrm{mir} \oplus \rightarrow$ as a 12 as
 minutes) you combine the aswers o \square sintrish
= 1 hour minus 15 minutes
= 45 minutes
iii. e.g. 8:30am to 4:30pm (later tim CrO ses over am or pm)

For times that cross over into you do 3 steps.

1. Subtract earlier time from th xt 12.
= 12:00am - 8:30am
$=(12-8)$ hours $00-30$ (minutes)
$=4$ hours $\quad-30$ minutes
= 3 hours 30 mins
2. Add the time that has elapsed after the 12 (am or pm).
(This means that you are treating the 12 as ' 0 '.)
= 4 hours 30 minutes
3. Add these 2 times together.
= 3 hours 30 mins plus 4 hours 30 mins
$=7$ hours 60 mins
$=8$ hours

Note: If the earlier time starts as a ' 12 ' e.g. 12:30am treat the 12 as a ' 0 '.

4.09 Time Zones

Time zones

1. What is Greenwich Mean Time?

2. Use the map to identify the time zones for key cities in the world. Add 4 more.

Sydney \& Melbourne (GMT + or -)	$\begin{gathered} \text { London } \\ (\mathrm{GMT}+\text { or }- \text {) } \end{gathered}$	$\begin{gathered} \text { New York } \\ (\text { GMT }+ \text { or }-) \end{gathered}$	Tokyo (GMT + or -)
$\begin{gathered} \text { Beijing } \\ (G M T+\text { or }-) \end{gathered}$	Los Angeles (GMT + or -)	$\begin{gathered} \text { Berlin } \\ (\text { GMT + or }- \text {) } \end{gathered}$	$\begin{gathered} \text { Mumbai } \\ (G M T+\text { or -) } \end{gathered}$

 daylight savings). Add 4 more $<\otimes$ ui wn. w any h (ars interence is there, and is this forward or back?

| Melbourne: 11:00
 London? | London:
 Melbourne:30 | | Melbourne? 07:30
 Tokyo? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Beijing: 23:15
 Perth | Los Angeles: 17:1
 Sydney | Berlin: 05:30
 Adelaide | Mumbai: 12:00
 Brisbane |
| | | | |

4. So you fly out to Venice at 17:30 AEST. When are you likely to arrive local time? You have to call home. Will you be waking someone up? Calculate and explain.
5. You leave Venice at 06:15 local time for LA. When do you arrive?
6. You fly back to Oz from LA 21:30 local time. When do you land at the airport, and when do you get home?

4.11 Getting Around

Which way do I go?

Ever been lost? Of course you have. Well a good map would've come in handy.
The growing use of apps, satellite navigation systems and GPS demonstrate that people have trouble reading maps. They would rather be told where to go by a smooth, but insistent voice. Our use of contemporary digital maps is one of the most common ways that we use systematics. So how reliant are you on your digital guide?

```
    "Take High Street for another kilometre Marcel. Turn
right at 200 metres Marcel. You missed your turn
Marcel. Where are you going Marcel? You`re not going
to Hungry Jacks again are you Marcel? You know that you
                                    are trying to lose weight Marcel.
                                    Why have you taken your hand
                                    off the steering wheel Marcel?
                                    Why did you throw me out the
                                    window Marcel?" "I am now lying
                                    on Ballarat Road. Do a U-turn
                                    and..."
```


Distance

As you already know, distance is a "How far is it to the Melbourne CB°)
For some of you, not very far inner suburbs!

What about people in Melboun.e's pxp \downarrow rig o ve. ? And those living east, west, south, outer east, or north, or nort san ea i? What about those in Bendigo, Wangaratta, Benalla, Yarram or Bairsdar y about those in Mallacoota, Mildura, Wodonga or Swan Hill? And let's not forget Nout those of you in another state.
So what do you reckon? How far - fr ny lere you are sitting right now - to the city? How will you know?

Travelling: How long?

Time
When we are travelling, knowing the distance of our total journey from our origin to our destination is only one part of the equation. The more important number that we need to work out, is the time it might take to travel that distance.
Sometimes we don't even need to worry about the distance. If you are catching a train to the city for a job interview you don't really worry about how far you have to travel. What you are likely to be more concerned with is how long it takes you to complete the journey.
If you are travelling by public transport you will check timetables (using systematics). If you are travelling by car you will rely on someone else's expertise to advise you. They are likely to be able to estimate travel time based on their own knowledge and experience of travelling at this time of the day.
However, if you are getting there under your own power, such as by cycling, then you will need to know the distance. You will factor in how fast you usually cycle - let's say an average of 20 km per hour. Then there's the distance - let's say 20km. So that's 20km/ 20kmh which actually equals 1 hour! (You did this in Relationships).
You will need to add more time for traffic conditions, traffic lights, getting lost in the city, parking and locking your bike, freshening up, changing clothes, finding the building, getting to the right place in the building and so on.
So what time is the appointment? Better give it anotr inutes at least tc do those other things. Also better hope it doesn't rain; and you do "Nant a nuncture. That its of things to consider. Especially if you are giving directic

1. Estimate the distance to ear $?$ ione des. Jow much time do you think it will take to travel to these ctinatic $>$ sing those ansport methods?

| Journey | Estimated
 distance | Jourr
 by c | | fime: by | Journey time:
 by your choice |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a. Your school
 to your home. | | | | | |
| b. Your home
 to the nearest
 train station. | | | | | |
| c. Your home to
 the CBD. | | | | | |
| d. Your home to
 the airport. | | | | | |
| e. Your home to
 your workplace. | | | | | |

2. Research these distances and times using maps, GPS or other resources. Set up another table in your workbooks. How well did you estimate?

4.13 Timetables, Schedules \& Rosters

Timetables, schedules and rosters

Three important time management tools for personal, educational and work situations are timetables, schedules and rosters.
A timetable is a plan or schedule that sets out various times and durations for a particular activity. The most common timetables that you use include:
\Rightarrow your school subject timetable
\Rightarrow your VET timetable
\Rightarrow public transport timetables
\Rightarrow work timetables (rosters)
\Rightarrow services appointment timetables such as for a doctor or dentist, hairdresser or barber, and many others
\Rightarrow government services timetables such as 'Centrelink';
\Rightarrow and any other activity that uses set times and time durations.

Airline timetables are non-negotiable. The plane won't wait for you!

One person's timetable is designed to fit in with all the other timetables that are part of the sare ity, network or syptem. This means that timetables must be designed tc ancery rigid time sch les. e.g. Your school timetabler has to balart ek eed syitiolents θ chers, classrooms, facilities (such as prac puter ms, hd rat her variables to construct a suitable timetable. Of (se, you * ©) Mollow' (at netable. And then on your VET or work θ vu man wio dea wity your TAFE timetable, your employer's O ster, tra. ant tin ables, your personal or family commitments (such as lookin, after yc $D>$ siblins doing domestic chores) and perhaps even your own personal achat work r ster so it can get quite complex!

4H My timetable

So how 'good' is your school time 5 ?

1. In your workbooks (or usis s. tware) reconstruct your timetable based on your preferred times and days forclasses.
You must keep the same classes you are doing now, and the same lesson or period duration - but other than that - redraft your timetable to suit you.

Times	Monday	Tuesday	Wednesday	Thursday	Friday
e.g. Period 1 8:30-9:20am	Numeracy	PDS	Literacy	Work Related Skills	VET

2. See if you can find another classmate who created the same timetable as yours, or one that is close. How many matches did you get? Were there any classmates with totally different timetables from you? Why so? As a class discuss how hard it would be to please everyone; and why compromises need to be made.

One of the key types of timetables you might use regularly is public transport timetables. Some people have access to well-developed public transport systems. But those of you in the outer metro, regional or rural areas might find public transport to be quite scarce.
Go online to research information to complete the following tasks. Are there any apps that can help you? Find information for 1 more trip of your own choosing.

4.15 Timetables, Schedules \& Rosters

Schedules \& Rosters

A schedule is the general term used to describe planning, organising and doing all the tasks and meeting all the responsibilities and time commitments, of an individual, a team, or some other entity. e.g. "You free for a coffee today?" "Let me check my schedule, and l'll get back to you."

Some people organise their schedules using diaries, e-calendars and to-do lists.
KWhat 'tools' do you use to plan and organise your daily or weekly schedule?

Rosters

A roster is a planning and organising tool that sets out the labour (worker) needs of an organisation.
Rosters are used to make sure the appropriate amount of staff is available to complete the work roles and responsibilities needed for effective operating.
Rosters set out and communicate employees' scheduled work hours. This includes workers with specific skills to do particular job roles, as well as supervisory and management staff.
\Rightarrow Rosters need to be planned well in advance.
\Rightarrow Rosters are often drawn up using 24 -hour time
\Rightarrow Rosters need to be communicated to all an is involved.
\Rightarrow Rosters should ensure that an appropra arlancgofekills, traime and authority is covered by the workers.
\Rightarrow Rosters must be fair, and must Jt sed torticular workers.

Jack Fromage works at Hungry Macs serving customers on the register, and sometimes helping out on one of the kitchen stations. The boss has just texted Jack with the roster for next week.

Jack always thinks it's better to show information visually and he is also going to enter the roster in his e-calendar. He'll also print this out and put it on his fridge as a reminder.

1. Use the information below to show Jack's roster for the upcoming week. How many hours will Jack work for the week?

Monday: 7am to 5pm, Tuesday: 11am to 7pm, Wednesday: On standby, Thursday: Day off, Friday: 12 pm to 9 pm, Saturday: 10am to 2 pm then 6 pm to 10 pm , Sunday: 12 pm to 4 pm .

Name:					Dates: to		
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
7:00							
8:00							
9:00							
10:00							
11:00				-			
12:00							
13:00							
14:00							
15:00							
16:00							
17:00							
18:00							
19:00							
20:00							
21:00							
22:00							

2. Use the roster on p. 102 for Gramble Newsagency to tally the weekly hours for each worker. How many hours do staff work in total? When is the newsagency less busy? How do you know? Which shifts would you prefer? Why so?

4.17 Timesheets

Timesheet

A timesheet is a numerical tool that shows work times and how many hours a worker has worked for a week. Timesheets are used to work out your pay. Some timesheets are digital and some are hard copy. Timesheets often use a 24 -hour clock. Many casual workers, which is a lot of young people, have to complete timesheets at work.
You may also have to complete a timesheet for any work experience or work placements that you undertake - including as part of a diary/journal record for school or VET.
Timesheets are used to record:
\Rightarrow days and dates of work
\Rightarrow work start and end times
\Rightarrow break times
\Rightarrow daily hours worked
\Rightarrow rates of pay
\Rightarrow weekly hours worked
\Rightarrow as well as other information relevant to the particular work setting and employee.
Completing a weekly timesheet is often y responsibility as a worker. So it is vital you can fill out your own timesheet yrn.
If your supervisor or manager does cry times. At, you rec heck that it is correct. Otherwise, you migr ? yet peorrect on th for the week.
So that's why it is so impor to we ace. to rount alculate elapsed time or duration.

It's your responsibility to make sure your timesheet is correct and complete.

Crazy Cracka's Bisco X: Weekly Timesheet

Name:	Robbi Grenoble			Work perio	April 19 - April 25, 2024		
Employee number: 3875698			Retail Worker Level 2				Age: 17
	Date	Star	Finish	Break	Hours Worked	Rate	Total
Sunday	19/4	10:00	17:30	na	7.5	\$24	\$180
Monday	20/4	10:00	19:00	12:30-13:30	8	\$12	\$96
Tuesday	21/4	-	-	-	-	-	-
Wednesday	22/4	10:00	19:00	13:30-14:00	8.5	\$12	\$102
Thursday	23/4	10:30	20:00	13:00-14:00	8.5	\$12	\$102
Friday	24/4	12:00	19:30	16:00-17:00	6.5	\$12	\$78
Saturday	25/4	12:30	19:00	15:30-16:00	6	\$18	\$108
Totals					45		\$666

1. Why is it important to be able to check, or fill out, your own timesheet?

2. Complete this sample timesheet with the correct calculations for an adult retail employee working a standard, 38 -hour week, Monday to Friday.
\Rightarrow Sign-on is 8:15 am.
\Rightarrow Unpaid lunch break is from 1:00 to 1:45.
\Rightarrow The employee is paid $\$ 24.73$ per hour (as per the General Retail Industry Award 2020, as at Dec. 2023).

3. What other information do you think is missing from this timesheet?
4. Find an example of a timesheet for an occupation or industry you are interested in. Use it to complete questions 2\&3.

4.19 Future Travel

Next year and beyond

This time next year, your life is likely to have altered dramatically. Some of you will have made the transition to full-time work, perhaps as an Australian Apprentice or in some other type of employment. Others of you might be working one or two (or even more) casual and part-time jobs.
Some of you will be studying at TAFE or some other training institute and will be most likely be combining your studies with casual or part-time work. You might also be undertaking work placements as part of your studies. Others will be actively seeking work and participating in volunteer and/or community work. And a few of you might even be running your own micro start-up enterprise.
Then there's all the activities that come with being an adult that might include more socialising, more family responsibilities and generally more travel.
Whichever your situation, one thing is for sure; you are going to be clocking up the kms as you travel from one location to another. And that means lots of travel time; and of course lots of travel dollars!
$\frac{4 \mathrm{~L}}{\substack{1 \\ 4 \text { PS 2 } \\ 3}}$

Take a moment to look into your future jsee what your most oferred, or most likely personal, vocational (work-reld ar.d stu siteatio,) ight look like.

| be using for my personal, vol is ial and |
| :---: | :---: |
| study commitments? |\quad personal, vocational and study obligations?

Future Travel 4.20
My transport costs

1. List all of the potential costs that you will experience as part of your personal (P), vocational (V) and study (S) commitments. Label these with the letters in brackets. You might incur some of these daily (e.g. daily train fares, tolls or parking), weekly (weekly pass or petrol), monthly, or even annually (student concession, car rego, etc..) Some might even be unexpected, e.g. fines, repairs.
2. Calculate a weekly average and a total weekly average below.
3. How's your travel 'budget' looking? From where might you source this money? What can you do about this?

4.21 Assessment Task

AT4 Your Times are a'Changing Personal Numeracy and/or Vocational Numeracy

For this assessment task, you are required to project one year into the future and compare your use of time next year, to how you are using your time now. You will need to clearly establish your personal and/or vocational situation next year including full-time, part-time and/or casual work status, your study status and your changed travel requirements.

In your investigation, you should calculate potential differences in time commitments and responsibilities between next year and this year. You will then need to describe the changes you might need to make so that you meet these different time commitments.

Part A: Estimate my personal time

1. Identify the different main activities you do weekly now.
2. Estimate the proportion of time you spend on each activity in a normal week now.
3. List and rank these, showing your estimated hours and percentages. You could use a bar graph or pie chart.
4. Estimate what these proportions might be like for you this time next year.

Part B: My actual perso

1. Calculate the actual time you spend on each a.tivity in \square normal week now.
2. List and rank these, showing yoh. actual hours and percentages. Use a bar graph or pie chart.
3. Compare your calculations projections for one year in th future.

Part C: Improving my time use

1. Explain how 'wisely' you are using your time now. Why so?
2. What changes could you make to use your time better? Why so?
3. What changes will you need to make to meet your time commitments next year?
4. Describe tools \& apps that could help you better use your time.

Part A: Estimate my work time

1. Identify the different main work tasks you do in a day of work now.
2. Estimate the proportion of time you spend on each different work task in a normal work week now.
3. List and rank these work tasks, showing your estimated hours and percentages. You could use a bar graph or pie char
 oroportions of t be like for you this My actual work time alculate the actual proportion of a you spend on specific work tasks in a normal week now.
4. List and rank these, showing your actual hours and percentages. You could use a bar graph or pie chart.
5. Compare your calculations to your work projections for one year into the future.

Part C: Improving my work time use

1. Explain how 'efficiently' you are using your time for work now. How so?
2. What changes could you make to better use your work time? Why so?
3. What changes will you need to make to meet your time commitments next year?
4. Describe tools \& apps that could help you better use your work time.

4.23 // Problem-Solving Cycle // Maths Toolkit

Relationships

5.01 Relationships 112
5.05 Proportions and Ratios 116
5.09 Rates 120
5.13 Using Formulae 124
5.17 Applying Formulae 128
5.21 Visual Rates 132
5.25 Assessment Tasks 136
5.29 Problem-Solving \& Toolkit 140

Comments:

5.01 Relationships

Relationships

Numbers very really travel alone. In most applied situations, numerical quantities are linked in some way, with one numerical quantity (or more), influencing another numerical quantity (or more). In most cases, the combination of these results in a new numerical quantity expressed as a relationship.
So in simple terms, a relationship is a numerical situation where two or more quantities or measures are connected or linked in some way. Therefore, if change occurs in one of these quantities or measures, then the outcome of the relationship will also change. And that's how you can best understand the applied use of numerical relationships.
Some of the most common relationships are:
\Rightarrow proportions (I want half a cake, you two can share the other half; the percentage of young people on TikTok has grown to over 60\%)
\Rightarrow ratios (he doubled the sugar in the cake and it was too sweet; he played the old DVD at 16:9 when the screen should've been set to $4: 3$)
\Rightarrow rates of change (he sped off doing at least 60 km per hour, but it was a school zone; the DJ played the $12^{\prime \prime}$ EP at 33 rpm , and it sounded like the singer was half asleep)
\Rightarrow rates per unit (he got paid $\$ 20$ per hour normal time, but time and a half for weekends, that's $\$ 30$ per hour; they used 2 kg of mince e spring rolls, which meant they were able to make 50 , with each having about
\Rightarrow comparisons (the Great Dane weigh r a/ , but he coshihuar 3 m jght only 3 kg , so the big dog was 20 times heavier, hosaved $\$ \sqrt{2}$ this va and $\$ 2,000$ the year before - she only saved half as illon is
\Rightarrow averages (the full forward $k)^{2} \mathrm{~g}^{2}$ gor or 9 gar $\Theta \mathrm{S}$, wils an average of 3 goals per game; the gardener and anns which was an average of 5 per day).
Rates, proportions and ratios occle in iny wo ert ted tasks for just about all employees. Think about using materials, combinil inpui a easuring levels of performance by using time as a measure (productivity). \sim ut all workers who do manual, practical, technical, design and other hands-on minrk nararally apply ratios and proportions.
Percentages are a vital estimation a. (c) zulation skill for workers. Percentages are used for money, discounts, pay rates ac allocating time and tasks, breaking larger items down into smaller components, doubling alving and so on; and many other vocational situations. And time and money relationships govern wage rates and cost inputs - from both the worker's, and the employer's, point of view.
In our personal lives we use ratios and proportions for cooking, when budgeting, in sport and recreation activities and in many other day-to-day situations. So, it is important that you develop the ability to apply these skills in different numerical situations.
Can you cook? If so you will have an applied understanding of ratios and proportions.

Relationships

5.03 Relationships

5B Applied relationships

1
4 PS 2
3
Your teacher will explain and work through some common examples of proportions, ratios and rates with the class.

1. Pair up and describe how proportions, ratios and rates relate to these varied situations. Add 4 more situations.
2. Describe the numerical tools, both analogue and digital, that you could use to measure and calculate these in applied situations.
3. How can an understanding of proportions, ratios and rates help you to deal with and solve problems in each applied situation?

cooking	serving meals	reading maps	exercising
travelling	bicycling	driving	shopping
drawing		ign	building

4. Now, how would you describe your skills in identifying, understanding and calculating proportions, ratios and rates in applied situations? Give examples.
\square
5. Now pair up with someone who you wouldn't usually work with, or someone who has totally different vocational interests from you. Complete the table again. Have you got new or different responses this time?

5.05 Proportions and Ratios

Proportions

Pie charts are good for to the total amount. Proportions are often measured in percentages, decimals or fractions.
Proportions show portions or percentages of a whole. Proportions can also indicate one or more quantities or amounts as compared to others.
We can often estimate or indicate proportions visually by comparing size, or by representing relative proportions
showing proportions.

Image: DmitryRukhlenko/Depositphotos.com

For example: Proportions

Do you remember Rennie the cake guzzler? Well he's up to his old tricks again. From the family-size pizza he ate 7 out of 8 slices, which is $7 / 8$ or 87.5% or 0.875 . That Rennie sure likes to scoff large portions!
What proportion of students in the class have curly hair? Count them. Let's say it's 8 out of 20 students. That's 40%. The proportion of students in the class with curly hair is 40%. The proportion of students in the-lass who don't have curly hair is 60\%.
The total weekly earnings of 20 studeny in rclass might be \$2. 00 . So that's an average of $\$ 100$ each, which is 0 , 5% of + Otal. This era is a mean which only shows, as the word itsel ian an aver esut Jan, worked 40 hours last week and earned $\$ 1,500.8$, la earron 55 of th $\$ 40$. Janice's earnings account f/ ajorivo oortion (to Neekly earnings for the 20 students. The othe, Lily erno hetw nem. That's a much smaller portion to sha. Ana eack stut ne wor's proportion might be quite low, or even zero!
The proportion of teenagers he hovernment needs to phase out coal as an energy source colnd be that's 8 out of every 10 teenagers! The proportion of people aged 65+ who mig say that the government needs to do more to tackle climate change r Jn ie 40%. That's 4 out of every 10 people aged 65+.
But wait a second, that's 14 ft f 10 people! How can that be? Because these two proportions are derived from ufferent samples. They are based on two different measures, teenagers and people aged $65+$. You can't add them together. Do you remember something about not adding apples and oranges? And when you read closely, they are also responding to two different questions.
What proportion of people in Australia are vegan? Estimates say about $3-5 \%$. That's only a small proportion. But what proportion of people aged under 30 might be vegan? Do you think this would be a larger or a smaller proportion? 95% of students in your class now think that proportions are quite straightforward to understand. Do you agree? Let's try to make it 100\%. Can someone wake up Rennie, this time he is sleeping off his pizza!

1. Express the proportions as a decimal and also as a percentage.

| a. 6 out of ten | b. one in eight | c. 2 for every 5 | d. 99 times out of 100 |
| :--- | :--- | :--- | :--- | :--- |

2. Express these decimals in words as a proportion.

| a. 0.25 | b. | 0.75 | c. | 0.66 | d. | 0.01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3. Express these percentages in words as a proportion.

a. 50%	b.	12.5%	c.	85%	d.	6.25%

4. Estimate the proportions as percentages from ti e chart on p.116. Give examples of when these proportions might be clr situation in your dvn life.

Yellow:
Red:
Blue:
Green:
Purple:

Applied

The 3 macro-nutrients are carbohydra s. otein and fat. Our bodies need to source energy from each of these 0 the food and drinks we consume.
a. What is a healthy balance of thes.n our diet (and it's not $33 \%+33 \%+33 \%$)?
b. How can you ensure that you are getting a healthy balance of these?
c. Are there any variations in these proportions based on age, sex or other factors?

5.07 Proportions and Ratios

Ratios

A ratio shows one quantity as expressed in relation to another. It is another way of showing proportions. Ratios are used for comparison and are expressed in this form 2:1, 1:2; or communicated as "two to one", "one to two".
1:2 means that for every 1 , you need 2 . So this ratio indicates increasing size or amount or quantity. So for every person at the BBQ, you need 2 sausages.
$2: 1$ means that for every 2 , you only need 1 . So this ratio indicates decreasing size or amount or quantity. So for every 2 people you only need 1 vegie burger.
e.g. For the cake I am baking I have to use 0.5 kg of sugar for every kilogram of flour. So the weight ratio of sugar to flour is $1: 2$; and the weight ratio of flour to sugar is 2:1.
Ratios are often used in scale drawings and models. A map might indicate a scale of $1: 10,000 \mathrm{~cm}$ (reduction of 10,000). A model for an action figure might be expressed as $1: 6$ (reduction of $1 / 6$ th). A drawing of a very small component might need to be at $4: 1$ (enlargement by 4).
And of course, our devices use specific screen ratios to best display digital content.
One of the most common ratios people deal with every day, without even thinking about it, is $4: 5$. Another ratio related to this is a pixel resolu ratio of 1080 by 1350 px . So when do your \& those ratios?

Proportions and ratios
Proportions and ratios are quantities. They are also us to expr sistics imple sentences. People doing practical, manual, dr lan nd tec (ice tasks in their work situations and personal life, often work with and apt propd and ratios. They estimate these using their own experience, expertise and under morng practical numeracy. For example: \Rightarrow chefs estimate, measure and app' tios uf ingredients; and ratios for cooking times based on weight, especially for n (ats
\Rightarrow farm workers estimate, mea, re nd apply ratios of fluids, stockfeed and chemicals
\Rightarrow hairdressers apply ratios of che.nicals for dyes and colouring - this is an important part of OH\&S/WHS
\Rightarrow welders use ratios of air to gas, and ratios of metals for welds
\Rightarrow nutritionists, fitness advisers and sportspeople analyse and apply ratios of nutrients to improve diet for better performance
\Rightarrow coaches might calculate ratios to measure outcomes such as scoring from turnovers in AFL and AFLW
\Rightarrow all businesses had to apply density ratios during the COVID-19 pandemic, and to better seat patrons.
〔As a class, you can come up with many more examples relevant to you.

1. Which ratio is bigger, and which is smaller?

| a. $1: 2$ or $2: 1$ | b. 3 to 4 or 4 to 3 | c. $3 / 5$ or $5 / 3$ | d. $2.5: 1$ or $1: 2.5$ | e. $1: 10$ or $10: 1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

2. Ratios are often expressed as fractions. In fact, fractions are ratios. Express these ratios as a fraction. Then calculate the answer as a decimal and as a \%.

a.	$1: 2$	b.	$1: 3$	c.	$1: 4$	d.	$2: 1$	e.	7:8
f.	$3: 7$	g.	$4: 3$	h.	$16: 9$	i.	$4: 1$	j.	$1: 100$

3. Proportions and ratios are very important for app practical tasks and govern the relationship between different varis nd quantities.
a i. What proportions and ratios of ingredients constitute this burger?

5.09 Rates

Rates

A rate is a special type of ratio that allows us to combine two items or amounts expressed in different units. Rates show how much of one quantity is needed or consumed in relation to another. i.e. Something per something else. Got it?
The most common rates you experience use distance and time. Many rates are also used in financial situations. Do you recall these examples from last year?
$\Rightarrow 60 \mathrm{~km}$ per hour $(60 \mathrm{~km} / \mathrm{hr})$. Got it now?
\Rightarrow Petrol consumption. How about 7 litres per 100 km ? Is that good or bad?
\Rightarrow What about a shower? 10 litres of water per minute. Is that a lot?
\Rightarrow Dinner cost? $\$ 20$ per kg of beef. Is that expensive?
\Rightarrow Wage of $\$ 20$ per hour? Is that enough?
\Rightarrow Heart rate of 53 beats per minute? Is that healthy?
\Rightarrow Run at 10 metres per second? Is that fast?

Rate of change

When we combine different quantities and measurements (i.e. variables) we calculate a rate of change.
On a speedo, the rate of change is represented ow much distance is being covered in a set unit of time. That's two measures. The c^{\prime} rneasure is movind om point A to point B. The comparison measure is time - onfer he ree expressa km/hr. On the fuel gauge, the rate of change is pl sentad $1 /$ w mund quid (petrol) is being consumed over a set distance. Ad d than, twr es. T ec arige measure is the quantity of petrol being burned erence. The rate is expressed in litres/100 km (we use 1001 ake ther easic interpret).

1. What are the 2 measures used in these rates? What might these rates represent?

| a. $\mathrm{km} / \mathrm{hr}$ | b. litres/km | c. litres/min | d. $\$ /$ hour |
| :--- | :--- | :--- | :--- | :--- | :--- |

2. What might move at these speeds?

3. Which vehicle is more fuel efficient?

Applied

Investigate some efficiency rates such as the fuel efficiency of your family car, the water flow of the shower head, and how much electricity your family consumes per month.

Research ways to improve efficiency, save money and help the environment.

5.11 Rates

Example: Calculating rates 1

The speed limit on major roads might be expressed as 60 kilometres per hour. The relationship describes how far a vehicle travels within a specified period of time. The two numerical measures are distance (measured in kilometres) and time (measured in hours).

Together, the distance and time combine to give a rate.
The new outcome of this combination is a rate of speed i.e. $60 \mathrm{~km} / \mathrm{hr}$.

```
| speed = distance
    time
g speed = 60km
    1 hour (We divide the numbers. We also combine the units.)
=> speed = 60 km/hr
```


Example: Calculating rates 2

A chef needs to source some expensive truffles for a catered function. They have estimated that they will need 10 grams of truff' for each of the 20 meals. The wholesaler charges $\$ 500$ per kg for the truffle ey need to price this delicacy into the menu and submit a quote to the clie.
The two numerical measures are weir (. .sure (ivngond gos) a. al price (measured in dollars). Together, the int and he , cor-hir to give a rate. The new outcome of this comk $\&$ is ar A) At i.e. (v) $\$ / \mathrm{kg}$.
\Rightarrow cost $=\underset{\text { weight }}{\text { price }}$
\Rightarrow cost $=\$ 500$
1,000 grams
\Rightarrow cost $=\$ 0.50 / \mathrm{gram}$

Therefore each meal cost, just for the trun s alone, and nothing else, is:
$\Rightarrow=\$ 0.50 \times 10=\$ 5$

Example: Calculating rates 3

Fangio drives 30 km across town in 30 minutes. What was his average rate of speed?

$$
\begin{aligned}
& \text { Speed }(\mathrm{s})=\frac{\text { distance }(\mathrm{d})}{\text { time }(\mathrm{t})} \\
& \text { Speed }=\frac{30 \mathrm{~km}}{30 \mathrm{~min}} \\
& \text { Speed }=1 \mathrm{~km} \text { per minute }
\end{aligned}
$$

Do we say, 1 km per minute? Sounds a bit odd, we don't normally express this relationship like that!
How about...

Speed $=\frac{\text { distance }}{\text { time (in hours) }}$
Speed $=30 \mathrm{~km}$ 0.5 hr

Speed $=60 \mathrm{~km}$ per hour (approx.)
Now that sounds more like it!
But... 30 kms at $60 \mathrm{~km} / \mathrm{hr}$, town driving?
Could Fangio achieve this rate - legally?
What do you think? Who was Fangio?

Solve the following problems. Show your workings. Add 1 more situation related to your own personal or vocational life.

Numerical situation	This is an example of...	Workings
e.g. At my job I get paid an extra 50% for working on Saturdays.	- Calculating percentages - Calculating wage rates	I get paid $\$ 15$ an hour normally. Saturday = $\$ 15+50 \%=\$ 15+\$ 7.50$ Saturday pay = \$22.50 per hour.
a. Freddie is cooking fish cakes for a dinner party. Their recipe serves 4 , but 6 people are coming. So they have to adjust their portions of 750 grams of salmon, 2 eggs, 50 ml milk, 100 g Parmesan, 150 g rice, 4 spring onions and 2 garlic cloves.	- Using ratios - Estimating amounts - Measuring amounts	
b. Brig is using a ute for his job. He drives about $150 \mathrm{~km} /$ week to and from work, and another 150 km while on the job. The ute has a tank of 60 litres and he has to fill it weekly. How many litres/100km, and how much to fill the tank at today's prices?	- Estimating a calculating consumpt 7 rates	
c. The speed limit on most of the city roads near Jo is 40 or 50 kmh. But Jo says she only averages 30 kmh for city driving. Jo is doing a country trip on the highway. It will take her about 15 minutes of city driving, then 90 kms of highway driving. How many kms in total and total time?	- Using rates and/or ratios - Estir (ing SDP troll ne	
d.		

5.13 Using Formulae

What does $\mathrm{X}=$?

In reality, formulae are shortcuts that help you to deal with numerical information and solve applied numerical problems.
You would have been introduced to formulae before. Many of you doing VET courses in technical, practical, manual and other similar vocational fields need to have a working understanding of formulae for industry-specific applications.
Some people are afraid of formulae. But just about every numerical problem that you have solved in your past Numeracy studies is based on the use of formulae.

We naturally use formulaic principles when we cook, budget, measure objects, run our vehicles, build things, analyse sporting performances and many other tasks.
And your use of formulae is the applied problem-solving cycle in action. The Super Skills below will give you an insight into formulae and how you are going to apply these principles.

\Rightarrow Formula $=$ one (singular) $w^{\prime} \theta^{e a}$ imut formul $\beta=$ rere than one (plural).
\Rightarrow A formula expresses a r r mincal k nor arelar. Aip.
\Rightarrow A formula might use alg raic exp sio (sym.s such as X) in place of words or variables. Symbols can comuse na moun realy all they represent is a short way of writing the variables. e. rel eeded to get to Geelong' could be just written as ' F '; for fuel (and nc rreddion
\Rightarrow In computing, such as when using a spre sheet, formulae can do all the adding, subtracting, averaging and other complex work for us.
\Rightarrow When following recipes for coak, naturally use a formula to a, ly
eal ratios of ingredients or constituents.
So let's have a go.
\Rightarrow Do you know how to calculate the mean or simple average? You simply add up all the total values (sum of values) and then divided this by the number (n) of values.
So for a data set of $\$ 3, \$ 7, \$ 11, \$ 12 \& \$ 17$ you would add the 5 data values, which equals $\$ 50$, and then divide by the number of data values (which is 5) to get an answer of $\$ 10$. $(\$ 50 / 5=\$ 10)$.

$$
\text { mean = sum of values } / n
$$

\Rightarrow What about calculating the median average where the population number is an even number? You have to add the two central values and divide by 2 . This would give you a number exactly halfway between the two of these. Well the formula for this is:
median $=$ (the middle value before + the middle value after) $\div 2$
\Rightarrow So for a data set of 10 , you would add the values of data numbers $5 \& 6$, and then divide by 2 , to yield your result.

1. Find out the formulae to calculate each of the following. Some might surprise you.
2. Use the appropriate formula to undertake a calculation for each situation. You supply the variables based on realistic applied situations.

Situation	Formula	Apply the formula
Simple interest rate		
Compound interest rate		
GST to add to a price		
GST already in a price		
Male shoe size based on foot length		
Female shoe size based on foot length		$0 \quad 0$
Fuel economy of a vehicle - city driving		
Fuel economy of a vehicle - country driving		
BMI - Normal person		
BMI - Muscular athlete		
Cat years in 'equivalent' human years		
Dog years in 'equivalent' human years		
Labour participation rate		
Unemployment rate		
Your choice		
Your choice		

5.15 Using Formulae

Establishing a relationship

Formulae are useful because they allow you to express relationships that show ideal ratios. Once developed, you can apply this formula over and over again! This is especially useful in cooking and catering, when quoting and costing practical jobs you do on a regular basis, when estimating and planning time to do tasks, and working out efficiency measures that can save you money around the house.

For example: Recipes

A recipe requires 4 eggs, 1 kg of sugar for every 4 eggs, and 250 grams of butter for every 1 kilo of sugar. So we could express this as follows.

> Recipe $=4$ eggs +1 kg sugar +250 g butter (in plain English)
> or $R=4 E+1 S+0.25 B$ (in simple notation)
> or $A=4 X+1 Y+0.25 Z$ (in algebraic expressions).

Which of these notations do you better understand?
(Note: It is important that the person following the recipe knows that the whole numbers for sugar and butter represent 1 kilo!)
So again, what was ' E '? What was ' S '? And what was ' B '?

Pretty straightforward really! And just as a matter of interest what think about a recipe that uses sugar and a $1 / 4$ a kilo of butter ${ }^{50} \mathrm{~kg}$ of ingredients might be need

Other rates

Rates are often expressed per tir ©ics as 1 ckm ler hour; or per dollar, such as 0.5 kg per \$. These rates are often used to easure ruuctivity and efficiency in work-related situations.
KThere are also very important biolog al. :alth rates, such as 70 bpm for a heart rate, (what ba bpm stand for?) or $120 / 80 \mathrm{mmHg}$ for blood pres - e zadings; but what do these readings actually mean?
Rates are also used in percentage calculations to show proportions of a whole, such as a discount rate (25% of the total), an interest rate (10% of the principal) and even the unemployment rate (5% of the labour force).
Percentage change (see p.23) indicates rates of growth or decline. e.g. Sales were $\$ 100 \mathrm{~K}$ last year and $\$ 50 \mathrm{~K}$ the year before, so sales have grown by 100% for this year. Profit was $\$ 20 \mathrm{k}$ this year but $\$ 25 \mathrm{~K}$ last year, so profit has declined by 20%.

Is there a more productive way to increase the metreage of trenches dug per hour?

Calculating productivity

Productivity is a measure of the ratio of outputs, compared to the ratio of inputs. Common work-related output/input measures are per/worker, per/\$ or per/hour.
e.g. Sal can make 20 burgers per hour at a takeaway.
\Rightarrow Productivity $=\underline{20}$ (burgers) $=20$ units (burgers) per hour 1 hour (i.e. 1 burger every 3 minutes.)
e.g. Sal is paid $\$ 20$ per hour.
\Rightarrow Productivity $=\underline{20}$ (burgers) $=1$ unit (burger) per dollar.

\$20
 (And 1 whole burger 'costs' \$1 in Sal's labour.)

1. Develop relationship formulae for the following situations.

2. Calculate the following rates.

a. Travelled 30km in half an hour.	b. Took 60 minutes to drive 45 kms.
c. Made 41 spring rolls in 1 hour.	d. Did 1,000 push-ups over 1 week.

5.17 Applying Formulae

Solving for \mathbf{X} ?

Formulae are also very useful problem-solving tools because they can assist you to find out a missing value, variable or quantity. Being able to solve for a missing quantity by transposing a formula based on known variables, can assist you to deal with, and solve, personal and work-related problems much more easily.

For example: Formula - How much

Harriut went shopping with $\$ 300$ in her pocket. She has come home with $\$ 56.50$. How much did she spend? Some of you will work this out straight away using simple subtraction, and say that she must have spent $\$ \mathbf{2 4 3 . 5 0}$. Here's the formula.

$$
\begin{aligned}
& \Rightarrow X=Y-Z \\
& \Rightarrow \$ \text { total spent }=\$ \text { in pocket at start of shopping }-\$ \text { in pocket at end of shopping } \\
& \Rightarrow X=\$ 300-\$ 56.50 \\
& \Rightarrow X=\$ 243.50
\end{aligned}
$$

That was very easy, so let's step this up a little.
Harriut has the receipt from the supermarket which reads $\$ 122.75$ and a receipt from Blandbags which shows $\$ 69.95$. She bought a $\$ 30$ download card from Insanity Tunes. She also bought some lunch and coffees but she not sure how much she spent on these. So let's try again.

$$
\begin{array}{ll}
\Rightarrow & S=X-(A+B+C) \\
\Rightarrow & \$ \text { spent on lunch \& coffee }= \\
& \$ \text { total of Blandbags spend } \\
\Rightarrow S=\$ 243.50-(\$ 122.75 \\
\Rightarrow S=\$ 243.50-\$ 222 \\
\Rightarrow S=\$ 20.80
\end{array}
$$

So Harriut spent $\$ 20.80$ on Jod and ∇ Sut r. How much is this as a percentage? Is it too much? In t'sana niple nc (ice) ow we kept X as the notation because we had worked that out e ler. M/e er used different letters for the other variables because they are new to the cal Fitun. But we could have just used words or even single letters. Whatever works rou.
Harriut's friend Lombago also likos mos retail therapy. But he's a bit obsessive and only buys things ending in even an Un . So Lombago bought 4 items at $\$ 10,6$ items at $\$ 20,3$ items at $\$ 30$ and 2 items at $\$ 40$. . has offered you this formula for his own total spend.

$$
\begin{aligned}
& \Rightarrow X=4 A+6 B+3 C+2 D \\
& \Rightarrow X=4(10)+6(20)+3(30)+2(40) \\
& \Rightarrow X=\$ 40+\$ 120+\$ 90+\$ 80 \\
& \Rightarrow X=\$ 330
\end{aligned}
$$

So Lombago's total spend, that is, his ' X ', was $\$ 330$.
Because Lombago likes patterns, next week he goes out and buys items of exactly the same dollar amount, but in different quantities.

He presents you this formula: $X=2 A+12 B+4 C+1 D$. Did he spend more or less than last week? And given that he has bought items of the same price (which means the variables are the same, even though the quantity has changed) are you permitted to add the formulae together to get his total fortnight spend?

1. Calculate using the following formulae. For each try and suggest what the variables might represent.

i. $\mathrm{X}=24+47+123$				
ii. $\mathrm{X}=10+4-2 \times 5$				
iii. $\mathrm{X}=76-4^{2} \times 10$				
iv. $\mathrm{X}=27+33+2 \mathrm{Y}$				
whereby $\mathrm{Y}=12$			\quad	
:---				

2. Develop appropriate formulae for the following applied situations.

5.19 Applying Formulae

Shifting things around

Sometimes you might have to shift things around in an equation (based on a formula) in order to find out what you really want to know. This shifting about is called transposition.

For example: Formula - Shifting things around
Your friend Rhikkie is a nice guy but he has a funny way with language. But that's no problem, you're used to how he talks. You ask him how he went at cricket yesterday and he tells you that he scored:

$$
\Rightarrow x-15=43
$$

So how did he go? While you congratulate him, your other friend Blurtos hasn't got a clue! So we better set him straight.
When solving for ' X ' or any other unknown, but that unknown isn't isolated on its own, we have to transpose the formula to get it on its own. The rules for transposition are simple. Equations have two sides. What we do to one side we have to do to the other. It's a very even-handed approach. So we want to get the ' X ' on its own, that represents Rhikkie's score.
$\Rightarrow X-15=43$
$\Rightarrow X-15+15=43+15$ (we add 15 to both sides. That'll leave the X on its own on the LHS) which is what we want to do.
$\Rightarrow X=58$
Rhikkie made a half century, which is prett
Now Blurtos thinks he has got the hang
to last week. He probably should har
responds with:
$\Rightarrow X=2 Y+18$
Once again Blurtos is stum, arı turns tc (o. for (in! Well you know X (it's 58):
$\Rightarrow 58=2 Y+18$
You can do some transposition to 2 er wer ' γ ', on its own:
$\Rightarrow 58-18=2 Y+18-18$ (this time W oo take 18 away from both sides to get the variables on their own)
$\Rightarrow 40=2 Y$ (but we are not the -ye as we are actually solving for ' γ ' this time, which is last week's score)
$\Rightarrow \frac{40}{2}=\frac{Y}{2}$ (we have to divia sth sides by 2 to isolate Y on its own)

$$
\Rightarrow 20=Y
$$

So last week he made 20. Would have been easy if he just said that, but in life problems don't solve themselves, that's why you have to do the thinking most of the time!
Blurtos thinks this is all a bit too complex so he goes for a final 'easy' question. "Well Rhikkie, what is your lowest score this season?" Rhikkie of course, replies obtusely and says:
$\Rightarrow Z=X^{0}-Y^{0}$
"Oh well", replies Blurtos "me too, you can't win them all!"
So what was Rhikkie's lowest score for the season?

1. Transpose, and then calculate, using the following formulae. For each try and suggest what the variables might represent in an applied situation.

2. A good way to calculate whe or it is ishour will working, based on a particular hourly wage amount, is ' us estimi (or) calculation, comparison and analysis.

Estimate a weekly amount using 40 hours 200
Calculate an annual estimate using 50 we 200 (per week).
$\$ 1,200 \times 50=\$ 60,000$ (per year).
Compare to average weekly earning Au ralia for Nov. 2022 about $\$ 93,600$ full/time). So $\$ 60,000 / \$ 93,600 \times 100 \%=63 \%$ of age income.
Analyse this. I'd say that's a decent, but not great, hourly wage. It is about $2 / 3$ s of the annual income (wages and salaries) of all full-time workers. However, this is a good wage if you are a younger worker receiving $\$ 30 /$ hour.
What about
$\$ 10$ per hour?

What about
\$40 per hour?

What about wage?

5.21 Visual Rates

Seeing the change

We can often see when numerical change is happening by looking at data in tables, and visual representations such as charts and graphs.
Household electricity, gas and water bills should show your usage over different periods of time. They could do this in a table, but it is usually in the form of a bar graph. Why is that? You could use a line graph to represent the change in the price of petrol over an extended period of time. The line of this graph is likely to be quite 'jumpy'. You might also use line graphs to represent and compare personal activities on a weekly basis, such as time spent working vs time spent in social activities.
Pie charts are good for showing relative proportions of a whole quantity. Just think of cutting a pizza or a cake into slices. Those are like the segments of a pie chart.
One way to analyse change is by comparing 2 or more different variables, data sets, tables, charts or graphs, or images over time.
You can also create graphs and charts that include more than one set of numerical information. This enables an easy visual comparison, provided that the graph doesn't become too busy!
©For example. the graph on the right might compare total sales in dollars over different months (a time series) with a gross profit margin for the same period. Of course, these will be measured using two different numerical scales, $\$$ on the LH θ do on the RHS.
Conversion charts are a ver cusefill i ∇ enz is s to quickly convert between different units (e.g. metres into m riterentr eas systems (e.g. metric vs imperial) and other convertible variables.
Specific conversion 'calculators' will come ut irst in a Google search. There are also many apps that perform the same functior (Th ie are especially useful for applied work-related tasks in technical, mechanical, and other practical vocational sin ati is.

Six Year 12 students were asked to document their time spent on different social media platforms in a week. The results are shown by the pie charts.
Students could choose up to 6 main platforms. Any platforms with under 1 hour of engagement were excluded, as was that time. So there is no 'other' category.
Each colour represents the same social media platform. The size of the portion represents how much time each person spent on that platform in a week, as a proportion of total time spent on social media.

Complete these tasks in your workbraks

1. What would be the heading for the F^{P} charts ame the data was collected last week.
2. Estimate the relative proportion of tr ments for each of the 6 students.
3. Assume they have similar demog arinatiles to students at your school. What social media platform might each ur represent?
4. Is there a pie chart that reflects your own balance of social media engagement? Explain your response.
5. When you completed q.3, did you infer any patterns of use based on an assumed gender for each student? Is this sexist, or are there possible relationships between demographic characteristics such as gender (and age) and the types of social media platforms used?
6. Peter does photography. Peta loves cooking. Pietor is a big gamer. Jordun is into politics. Jordan loves social chatting. Jordanne loves performing. Would you change the social media platforms you allocated to each? Why, or why not?
7. Do this survey as a class, develop pie charts, and discuss your patterns of use.

5.23 Visual Rates

Visualisation
Last year you would have explored how in the contemporary digital world, we now view a lot of rates communicated in visual form. And new visualisations are being developed every day. So you have to stay up to speed.
At times these visualisations are combined with numbers, such as on a speedo, a temperature gauge, or even a graph or chart that displays goal progress on a fitness app. At other times they are visual only, such as a graphic equaliser or set of danger zones and warning displays (although those might be accompanied by sound).
So when do you look at and 'read' rates, ratios and relationships communicated visually? And how are these usually calibrated and displayed?

Now, sit back and create images in your mind of these visual rates, and how they are communicated to you.
\Rightarrow Power bars on devices or in gaming.
\Rightarrow Graphic equalisers in audio and music recording.
\Rightarrow Colour-based warnings such as overheating and fire danger.
\Rightarrow Performance visualisations in fitness trackers and apps.
\Rightarrow Vehicle dashboard displays of speed, fuel economy, rpm and other measures.
\Rightarrow Heat maps in sports performa analysis.
\Rightarrow Travel indicators on $\mathrm{S} \rightarrow$ ค ${ }^{\text {an }}$ maps and travel apps.
\Rightarrow Charts and graphs in bankinc enns that show your spending and salys ratios.
\Rightarrow Health indicators, measures an visualisations of scans.
\Rightarrow Safety indicators, measure (on warnings such as vehicle proxirity.
\Rightarrow Digital animations set up as dynamic infographics.
\Rightarrow And many, many more - including a whole range of visualisations used for industry-specific situations to measure and communicate a range of information, including safety information.

1. Find or create images that show rates (or relationships) in the situations below. Start drafting your ideas here and then complete in your work folios.
2. Explain what the image is showing and measuring.
3. Describe how each visualisation communicates numerical information more effectively and/or efficiently.
4. What tools and/or technologies might have been used to create these visualisations?

5.25 Assessment Task

AT5a The Beat Goes On

Health Numeracy // or Personal // or Recreational // or Vocational

Context: The Beat Goes On

In life, there are many rates, ratios and relationships that govern how we do various tasks and activities. Do you remember last year when you investigated an important 'Rhythm of Life'? Well the beat goes on. And it's your responsibility to keep marching along!
From beat and rhythm in music and dance through to health measures such as heart rate, blood pressure, respiration and blood glucose levels.
There are also relationships related to food and beverage intake, health and nutrition, cooking, drawing, arts and crafts, hobbies, pet-care, gaming, exercising, sports performance and even safe driving.
For this assessment task, you are required to explore a range of relationships that exist in health situations, and/or in personal situations, and/or in recreational situations and/or in vocational situations - depending upon the applied numeracies you are investigating for Unit 3.
You will negotiate the type of relationships ! Then you will prepare an annotated or
will investigate with your teacher. a or video repor on your findings.

Report: The Beat Goes On

1. Describe your focus area and, is portan
2. Use maths tools and
3. Explain what might happen ca se cha ge in che variables, or changes in the outcome of the relationship.?
4. Collect visual evidence of relationsh. Sard/or change in action.
5. Create a table, chart, or graph jow a key relationship.
6. Summarise how being abl erstand and measure these relationships can improve health, or persol recreational outcomes.

Ren is going to track the evolution of dance rhythms by comparing the Charleston, the Jive and Hip Hop.

> Al and Bo are going to analyse and share how many hits and strikes are needed to beat level bosses in popular games.

Jen will compare biking, motor scooter, car and train options, to work out the best way for her to get to work.

Cam is going to develop recipe guides to help turn their special meal creations into dinner party-sized amounts.

Mo is going to create a word meter guide so that he can get the lyrics in his raps to fit better and pop with varied beats.

Lai is going to investigate the vital life measures in different domestic animals and make comparison charts.

[^0]

5.27 Assessment Task

AT5b The Right Proportions

Health Numeracy // or Personal // or Vocational

Context

In our lives we get bombarded by messages about health and wellbeing and what we should do to look after ourselves better. These messages are amplified through social media. But it really comes down to you to make healthier life decisions. And the use of relationships, rates and proportions can help guide you.
It is important to consider that next year, post-Year 12, your patterns in life will change dramatically. Your work/life balance is likely to alter significantly. You might be spending more time at work and travelling for work. You might be combining TAFE, employment and other activities. And some of you might have to take on more of the responsibilities of being an adult, especially if you move out of home.

Required

This assessment task is a free-form activity whereby you investigate how you can apply your numeracy skills to develop a better 'formula for life'. Then you are required to compare your work/ study/life situation now, with your most likely work/study/life situation next year.
To do this you will complete an annotated report which investigates the following.

1. Food and nutrition: Images - Ratios, proportions, formulae.
2. Time: Tables - percentages and formulae.
3. Physical activity: Relationships and rates.

Your teacher will discuss the suitability of these

1. Food and nutrition: Images - Ratios, proc

Create an image that shows recommended can research the Australian Guide to y an $=$ the ratios suggested by the guide.
Then you might analyse your ov (1) nsLimption te is, and lakg diagram or infographic that illustrates your current con

Compare your food and nutrin situatic next year. You can then suggest stratgie. \quad make
2. Time: Tables - percentages and for.iD ae
ost likely food and nutrition situation diet and nutrition choices.

The management of time is an important was health and wellbeing.
Develop a series of formulae to show how'vou carently spend each day doing different activities.

$$
\begin{gathered}
\text { e.g. } 2+0+4 s+7 e+1 t+2 \mathrm{o} . \\
(\mathrm{z}=\text { sleep, } \mathrm{x}=\text { exercis } \mathrm{t}
\end{gathered}
$$

Use variables to suit your own life, \downarrow ' levelop different formulae for varied 'types' of days, e.g. School day, VET day, work day and weekends. You could also create pie charts.
Develop a series of formulae to show how you are most likely to be spending your time doing different activities next year. Analyse your use of time and suggest strategies to help you better manage your time.

3. Physical activity: Relationships and rates

Analyse your current daily movement according to sleeping, sitting, strolling, walking (rolling), household chores, and higher-intensity movement such as biking, skating and exercising.
Calculate how much time you spend in these physical states, on an hourly or daily basis. Show these over the course of a usual week. Find out how much physical activity is recommended for your age and ability. Compare this to your own physical activity. Analyse your movement intensity. When you move, what rates of speeds and intensity levels are you achieving?
Compare your physical activity situation now, with your most likely physical activity situation next year. Suggest strategies to help you improve, or maintain healthy physical activity guidelines.

5.29 // Problem-Solving Cycle // Maths Toolkit

[^0]: Lil is analysing which foods might be the best source of essential nutrients for a healthy vegan lifestyle.

