Unit 3

1. Doing The Numbers
2. Shape Up
3. Measuring Up
4. Got The Time?
5. Relationships
6. Data and Systematics
7. Location and Direction
8. What's the Chances?
9. Working With Money
10. Managing Money

Important: All material, advice and assessment tasks are provided as a guide only and do not constitute official advice. As always you must check with the VCAA and any other relevant authorities about the suitability of a task.
Copyright notice/License information:
\Rightarrow All material in this printed workbook may only be reproduced by the school or institution named on each page in accordance with its purchase of a master license.
\Rightarrow All use of material must include the copyright and license notices at the bottom of each page. You are not permitted to electronically re-engineer or extract material from a page. Please see the Read Me First file for full licensing information in relation to a master license.
\Rightarrow Unauthorised copying and reproduction of this material constitutes a breach of the Copyright Act.
\Rightarrow For best results the material has been formatted to be reproduced from the master file.

VCE: VM Units 1\&2: From 2023

\Rightarrow Literacy VM 1\&2: Coursebook
\& Applied Vocational Booklet
\Rightarrow Numeracy VM 1\&2: Coursebook
\& Skills Development Portfolio
\Rightarrow Personal Development VM 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VM 1\&2: Coursebook
\& Applied Vocational Booklet
VPC Units 1\&2: From 2023
\Rightarrow Literacy VPC 1\&2: Coursebook
\& Applied Vocational Booklet
\Rightarrow Numeracy VPC 1\&2: Coursebook
\& Skills Development Portfolio
\Rightarrow Personal Development VPC 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VPC 1\&2: Coursebook \& Applied Vocational Booklet
www.delivereducation.com.au

VCE: VM Units 3\&4: From 2024

\Rightarrow Literacy VM 3\&4: Coursebook
\& Applied Vocational Booklet
\Rightarrow Numeracy VM 3\&4: Coursebook \& Skills Development Portfolio
\Rightarrow Personal Development VM 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VM 3\&4: Coursebook \& Applied Vocational Booklet
VPC Units 3\&4: From 2024
\Rightarrow Literacy VPC 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Numeracy VPC 3\&4: Coursebook
\& Skills Development Portfolio
\Rightarrow Personal Development VPC 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VPC 3\&4: Coursebook \& Applied Vocational Booklet
michael@delivereducation.com.au

Copyright © 2023 Michael Carolan Developed and written by Michael Carolan Cover by Michael Carolan
First published November 2023 by DELIVER Educational Consulting, PO BOX 40, Moonee Vale, 3055, Victoria, Australia.
Contact: www.delivereducation.com.au michael@delivereducation.com.au (03) 99391229
Carolan, Michael
Numeracy: VM 3\&4 (ISBN 978-1-925172-89-8 for printed coursebook)
Images: © 2023 Depositphotos.com, © 2023 Thinkstock, © 2023 Photos.com (where noted within text); others: © 2023
Jupiterimages Corporation; and Copyright DELIVER Educational Consulting and its licensors.
This book is copyright and may only be copied in accordance with the Copyright Act. For information contact the Copyright Agency Limited. Students may copy pages from their own workbooks for their own educational purposes.

Advice to students

You are about to embark on a learning journey into Numeracy Units $3 \& 4$ subject of your Vocational Major. Use this coursebook to build and develop knowledge and skills to assist your numeracy development over the year. But also be sure to apply what you are learning in classroom situations to your work placements, your VET course and other applied situations, and vice versa! And of course, you should cross-apply knowledge and skills both to and from Literacy, Personal Development Skills and Work Related Skills.

1. In Numeracy Unit 3, you will investigate 4 areas of study through 3 applied numeracies.
2. In Numeracy Unit 4 you will investigate a further 4 areas of study through 3 more applied numeracies.
You will need to apply the 4-stage Problem-Solving Cycle for all activities and tasks that you do. In the beginning stages, your teacher will lead you through the application of the problem-solving cycle. Then as you further develop your numeracy skills, you will be expected to apply this cycle independently.
Throughout the year you will also develop applied skills in the use of many mathematics 'tools' and resources, as well as other tools and resources that relate to your own vocational, health and recreational, financial, civic and personal circumstances. These will form part of your 'Maths Toolkit'.
Use this coursebook by completing the tasks in the spaces and pages provided. You will also need to maintain your own work folios to complete some tasks, as well as others given to you by your teacher.
You may need to collect and keep a work folio with copies of resources, handouts and evidence of you applying numeracy skills.
You should also use your Numeracy Skills
Development Booklet to help build skills for various
topics throughout the year. Look for the icon to show the corresponding topic.
You might be directed to complete some or even all of the assessment tasks, as well as others supplied by your teacher.
Throughout this coursebook there are a number of quick-reference Numeracy Superskills. Use the table opposite to locate these.
When dealing with problems related to visual numeracy it is a good idea to draw a diagram.
Remember that your development of numeracy skills will provide you with the tools for a more successful personal, social and vocational life. So best wishes with your numerical journey.
Numeracy Super Skills
Unit 3
1.07 Order, order! 8
1.10 Addition 11
1.10 Subtraction 11
1.11 Multiplication 12
1.13 Division 14
1.16 Fractions: Addition \& subtraction 17
1.16 Fractions: Multiplication \& division 17
1.21 Estimating percentages 22
1.22 Percentage change 23
1.25 Power calculations 26
1.26 Pythagoras' Theorem 27
2.03 Solid objects 36
2.06 Transforming objects 39
2.10 Types of angles 43
2.11 Types of triangles 44
2.17 Scale 50
2.21 Scale and ratio 54
3.04 Units of measurement 65
3.07 Perimeter 68
3.08 Area 69
3.09 Volume 70
3.11 Fluids \& Solids 72
4.05 Converting time 92
4.08 Elapsed time (duration) 95
5.13 Formula for success 124
5.16 Calculating productivity. 128
Unit 4
6.11 Effective checksheets 152
6.15 Spreadsheets 156
6.19 Line graphs 160
6.21 Bar graphs 162
6.23 Pie charts 164
6.25 Mean 166
6.27 Median 168
6.29 Mode 170
7.11 Mapping features 190
8.07 Tree diagram 212
9.03 Discounts 230
9.21 Calculating productivity II 248
9.23 Fixed and variable costs. 250
10.03 Budgeting 258
10.07 Main types of income 262
10.13 Managing your money 268
10.17 Loan repayment calculator 272

VCE: Vocational Major

--- All U1-4 now available ---		Applied Vocational Booklet	Master license PDFs	$\begin{gathered} \text { e-version } \\ \text { Masterlicense } \\ \text { PDFS } \end{gathered}$
Literacy VM: 3\&4	_ @ \$49.50	27.50	-@ \$38	or__@ \$495
Numeracy VM: 38	\$49.50	\$27.50	—@ \$38	\$495
Pe	\$49.5	\$27.50	—@\$38	__@ \$495
Work Related Skills VM: 3\&4	_ @ \$49.50	__ @ \$27.50	\$38	_ @ @ 495
Literacy VM: 1\&2	_ _ @ \$49.50	__ @ \$27.50	_ @ \$385	__ @ \$495
Numeracy VM: 1\&2	\$49.5	__ @ \$27.5	_ @ \$385	-_ @ \$495
Personal Develo	__ @ \$49.50	__ @ \$27.50	_ @ \$385	r _ @ \$495
Work Related Skills VM: 1\&2	_ @ \$ ${ }^{\text {49.50 }}$	_—@ \$27.50	_ @ \$385	or__ @ \$495

$\left.\begin{array}{|lllll|}\hline \text { Vocational Pathways Certificate } & \\ \hline \text {--- All U1-4 now available --- } & \begin{array}{c}\text { Printed } \\ \text { Coursebook }\end{array} & \begin{array}{c}\text { Applied } \\ \text { Vocational } \\ \text { Booklet } \\ \text { Literacy VPC: } \mathbf{3 \& 4}\end{array} & \begin{array}{c}\text { Master license } \\ \text { PDFs }\end{array} & \begin{array}{c}\text { Mastersion } \\ \text { PDFs }\end{array} \\ \text { License }\end{array}\right)$

Order Details

Numeracy Skills

Comments:

1.01 Introduction

Numeracy 101

Numbers play a significant role in our everyday lives. Numbers are not just abstract figures but essential tools we use for various purposes.
Numeracy exists all around us so we need to perform calculations to better manage our personal and vocational activities and responsibilities. When do you apply numerical skills to these situations?
\Rightarrow Time: We rely on numbers to plan and schedule our day and keep track of time.
\Rightarrow Travel: Numbers help us with distances, speeds and travel planning.
\Rightarrow Work and income: We use numbers to manage our finances and income.
\Rightarrow Shopping and budgeting: Numbers guide our spending and budgeting decisions.
\Rightarrow Health and wellbeing: Numbers are crucial for tracking health metrics.
\Rightarrow Cooking: Precision in measurements, temperatures and timing is all about numbers.
\Rightarrow Sports, recreation and social activities: Scorg; times and stats involve numbers.
\Rightarrow Measurements and design: Numbers arevita for sizes, dimensions and blueprints.
\Rightarrow Data analysis: Numbers enable analyse and make informed decisio
\Rightarrow Life itself: Our daily routines arn 2 iv jre sti人 0 are governed by numbers.
You have to keep on builc v yec 0 in . ? improve your personal, socica, educ.tic cal ia working lives.
Ⓓo you?

Numerical Language

One of the key skills related to numeracy is being able to use appropriate numerical words, terms and descriptive phrases.

1. Create numerical statements that use each of the terms on $p .2$ with an applied example. e.g. The price of electricity seems to keep rising every year and our bill has gone up by about 10\% since last year.

Numerical skills are requi particularly well-developt pract al and nical numeracy.
2. Identify the occupation of these wup rs. What work-related problems would they have to solve? Which numeracy skills and tools would they apply to do their work tasks? Source another image for your work folio and do the same.

1.03 Introduction

1B Numeracy for Oz and me

Part A: Aussie estimates

Numbers are used to describe amounts and relative quantities and sizes.
Estimate what you think might be the numerical answer to these questions about Australia. Go online and find out the answers. Note: Some will require you to include the period of time, (e.g. Employment as at Dec. 23.) How did you go?

Part B: Me and numeracy

Consider these situations that involve numeracy.

1. For each one, explain how numeracy relates to that situation.
2. Describe a specific numerical example of that situation that relates to you.
3. Briefly explain how/when you have to solve problems related to this.

Numbers in my life	Explanation	Example	Problem
e.g. My health and wellbeing	It is vital that I get enough sleep every night otherwise I get very grumpy.	I need to get 8-9 hours sleep per night which is about 60 hours per week.	It's a problem fitting everything in the day, so I need to use a daily planner.
a. My time			
b. My shopping			
c. My money/ C. budget			
d. My health and wellbeing			
e. My meals			
f. My sport and recreation			
g. My social life			
h. My measuring			
My design i. and creative tasks			
j My practical/ j. technical tasks			
k. My work tasks			
I. My timetable			
m. My travel			

1.05 Applied Numeracy

Working it out

As you know, there are many skills associated with numeracy. In VPC Numeracy $3 \& 4$ you are expected to demonstrate a suite of numeracy skills that not only master adding, subtracting, multiplying and dividing, but go well beyond these four basic calculating skills.
As you saw last year, people have varied levels of numerical capability. You would have seen that some of your peers are stronger in particular numeracy skills than you. And you might also have found it easier to master some other skills compared to your peers. This is a bit like in Literacy where people have preferred literacy styles as well as preferred learning styles.
In life we can't be good at everything. But like all skills, numerical skills can be improved and developed. When you are meeting your personal and vocational numerical responsibilities, you need to be willing and ready to step-up and improve in areas that you are weaker.
In these unit $3 \& 4$ studies you will revisit fundamentrameracy skills that you have been building throughout your life, and especialy ias vear in VPC 1\&2. In units 3\&4 you will consolidate what you already know, larr sme more sophisticated and challenging skills, and then develop and anty aly concepts to varied personal and vocational situations.
The aim is to assist all of you to improw the confidence (and the skills and $n j$) make you more confident in vo liv Spefully, this will also make you more employable in the
The main skills or topic area (liste in the iyram below) are explored throughout varied modules over the course of the yos. And at all times you will need to apply the 4-stage Problem-Solving Cycle when you are developing and applying the required numeracy skills in these modules.

Use it or lose it

It doesn't matter how much you develop your numeracy skills while you are in the classroom. If you don't apply these skills on a regular basis, then you will become deskilled!

The saying, "Use it or lose it" is a valuable reminder that goes beyond the classroom, especially when it comes to numeracy skills like basic calculations. No matter how sharp your numeracy game is when you are on-task at school, keeping those skills alive requires daily practice in real-life situations.
Imagine the lifelong and very real problem of managing your own budget. If you don't regularly apply your numeracy skills - like addition and subtraction - while handling expenses, you might find it harder to keep track of your money. Whether it's calculating your weekly spending, or figuring out the best deals while shopping, integrating numeracy into your daily routine is crucial.
And it's not just about personal life; your future career will demand these skills too. All workers have to deal with data and information, most workers have to handle financial elements as part of their work, some rs s of day-to-day 'number crunching', and all practical, manual and tec'unl work is essentially applied numerical problem-solving for all tasks. So, use your numeracy skills both in your personal life and for your vocation experiences. Apply them regularly, challenge yourself with real-w th problems, and remember you engage with these skill, now, en the more you'll keep and strengthen them.
And if you do this well, then you should be able to handle many of the numerical challenges that come your way.

Describe varied examples to show how you use numerical skills and tools every day of your life. Images would be good too!

1.07 Applied Numeracy

Day-to-Day Personal Numeracy can involve...

Day-to-Day Vocational Numeracy can involve...

1.09 Numeracy Skills

Everyday Numeracy Skills

1. Write each everyday numerical skill in the table. Give yourself a rating of High, Medium or Low for each of these. Add up to 5 more.
2. In what type of situation did you last use each skill?

1.11 Numeracy Skills

Problem-solving cycle

You will need to apply the 4-stage Problem-Solving Cycle at all stages throughout the year, for all activities and tasks you do. In the beginning stages, your teacher will guide you through the application of the problem-solving cycle. Then as you develop your numeracy skills, you will be expected to start to apply this cycle independently.

4-Stage Problem-Solving Cycle

1. Identify the maths

Find, identify and interpret the numerical information. Look for:

\square numbers	\square quantities	\square shapes	\square times	\square problems
\square words	\square symbols	\square sizes	\square patterns	\square data
\square images	\square measures	\square directions	\square sequences	\square proportions
\square amounts	\square dimensions	\square angles	\square questions	\square relationships.

4. Communicate $\&$ report

Communicate the results and findings using a range of different methods and media. Consider:selecting
\square explaining
\square describing
\square summarising
\square graphingevaluatingwords
\square numbers
\square format
\square method
\square media
\square technologies.

2. Act on and use maths the estimates or calculations ctions; and apply suitable
logies. Such as:
crmating
measuring
\square calculating
\square comparing
\square analysing
\square solving
\square making
\square sketching \& drawing
\square designing
\square rendering
\square constructing
\square building.

3. Evaluate and reflect

Check and review to make sure that the right information is being used and that appropriate maths has been performed. Ask yourself:
\square Did I perform the appropriate steps?
\square Did I apply the correct tools?
\square Does my answer seem correct?
\square What did I do well?
\square Is the result close to my estimate?
\square What do I need to improve?
\square How can I double-check?

Mathematics Toolkit: Analogue // Digital // Technological

Throughout the year you will develop skills in the use of many mathematics 'tools' and resources, as well as other tools and resources that relate more to your own vocational, health and recreational, financial, civic and personal circumstances.

\square Measuring devices	\square Calculators	\square Timing devices
\square Software	\square Apps	\square Spreadsheets
\square Tables	\square Graphing	\square Mapping
\square Counters	\square Designing	\square Making
\square Inputs	\square Scanners	\square Outputs
\square Planners	\square Organisers	\square Rosters
\square Drawing	\square Recordiň	\square Processing
\square Data	\square Statist	\square Information
\square Collecting	\square Analysing	

At the start of this year, what ? Noun maths toolkit?

I can...	I can...
I can...	I am able to...
I am able to...	I am able to...
I am able to...	I can use...
I can use...	I can use...
I can use...	I can apply...
I can apply...	I...
I...	

1.13 Calculating

Calculating

As you know, calculating is vital to every numeracy situation. When you solve numerical problems in personal or work-related situations you will be expected to make some type of numerical calculation (or many!).
So you need to keep developing and applying your suite of basic numerical calculating skills. Numerical calculation is important for:
\Rightarrow personal activities such as cooking, shopping, socialising, and planning and organising travel and transport
\Rightarrow financial activities such as purchasing goods and services, banking, earning an income, and managing your budget
\Rightarrow health and recreation activities including playing sport, engaging with hobbies, creating, making and crafting, and even gaming
\Rightarrow community and social (civic) activities including understanding data and information, analysing social and community issues, and dealing with government processes
\Rightarrow work-related activities such as taking orders /en working in a retail store, packing orders, making coffee for a customer, and ∇ ang your work duties and roster.

So how are you doing?

Right now, how would you rate your sk. subtraction, multiplication and a isigs ?
What about calculating percen issolu ant s, using decimals, and being able to estimate and measure and time?
Can you construct and interpet gra, hecl rts and infographics? What about visualising and manipulating shapes and bjects both in real life and when using software? And then there's money - managing dollars needs sense! Well as we said previously, use it or lose it!

Basic calculations

Basic calculations are the 'sums' that you need to be able to do in your head, or on paper for more complex problems. Both these methods require you to act on and use mathematics. In complex situations you might need to use a calculator (or app), or use this digital tool to check your 'head' or 'paper' calculations. Sometimes you have to think on your feet, so being able to do calculations in your head is important. For example, doing the shopping. Sometimes you have to do calculations on paper. For example, if the cash register breaks down and you have to add up orders manually.

And you always need to be able to check if the answer a calculator gives you is correct. For example, putting an extra zero at the end of a big number can turn 1,000 into 10,000 very quickly. And that can have disastrous consequences!
It is important to remember that a calculator will only do calculations based on the numbers you enter. People can make errors when entering data.
You need to be confident that the calculator's answer is correct. This is an important part of being able to evaluate and reflect. So that's why you also have to be able to predict and estimate using your own in-built calculator - which is your brain!

1. Set these out as appropriate calculations to apply the maths.
2. Check your answers as part of evaluation and flection.

3. Sadie has just done these 'sums' using a calculator. Do the answers seem correct?
4. Now, check the answers using a calculator. You might need to do some research.

| a.$9+9+9+9+9$
 $=59$ | | b.5 cans of Passiona
 $=\$ 7.50$ | |
| :--- | :---: | :--- | :--- | ---: | :--- |
| c.$95-25-70$
 $=-5$ | | d.3 Cheeseburgers
 $=\$ 6.60$ | |
| e.20×14
 $=280$ | | f.50 litres of petrol
 $=\$ 110$ | |
| g.$10+110 / 5$
 $=24$ | | g.Paid $\$ 500$ a fortnight
 $=\$ 26,000$ per year | |

1.15 Addition and Subtraction

Addition

Addition is the adding of amounts or numbers to get a total or a sum. Essentially addition involves counting.
You would have performed addition problems by one or more of these methods.
To apply the problem-solving cycle, you should know how to use each method effectively. So let's do a recap of these.

Physical counting
This involves counting the number of items based on pictures or images; or even counting physical items, objects and people. For example:
\Rightarrow a teacher will do a head count when you are getting on a bus for an excursion
\Rightarrow you will count the number of plates when
\Rightarrow you can count the number of beats $\omega 4,0 \%$, ytart your dance moves

Addition (plus or sum or adding) ...shown by a '+' sign
Addition can involve combining two numbers into a sum. e.g.

$$
\begin{gathered}
5+4=9 \\
14+18=32 \\
1 / 4+3 / 4=1 \\
\$ 50+\$ 24.95=\$ 74.95
\end{gathered}
$$

Addition also involves combining more than two numbers. e.g.

$$
\begin{gathered}
6+2+1=9 \\
15+25+150=190 \\
1 / 2+1 / 2+3 / 4=1 \text { and } 3 / 4 \\
25 c+99 c+\$ 1.50=\$ 2.74 \\
19+11+85+15=?
\end{gathered}
$$

Total number of workers in this photo?

Number lines

You can make use of a number line to add up a total amount. A number line allows you to visually mark out different amounts to 'see' a total.

When you are using rulers to measure distance, and thermometers to measure temperature, you are actually using a number line.
For example, tradies use measuring tapes, rulers and digital devices all the time in their jobs. A measuring tape is an applied number line! This is a key applied tool for problem-solving.

Mathematical sums
 numbers become larger and n, jr ma.
To do this, you set out the sis sur the numbers are right
 same place value (ones, tens, hundreco ld so on) underneath each other. Then you use an addition method to work out the sum. Your teacher will show you a preferred addition method, and some of you will have already mastered the common methods for doing this. But for now we'll use this method shown below.

Tip: Always perform any calculations in brackets first!

Addition: Using calculations

e.g. Calculate the total of: $23+66$
e.g. Calculate the total
of: $8+43+175$

$43+175$	of: $34+7+350$
11	11
8	34
43	7
+175	
226	

e.g. Calculate the total of: $34+7+350+115$

$$
34
$$

7
350 506

1.17 Addition and Subtraction

11 Calculating - Addition

Part A: Complete the following addition calculations. Make sure that you show appropriate workings out.

Applied

Think of personal or work-related situations where you have to use addition.
When do you need to perform addition? Why?
What methods do you use? What tools and techniques do you use?
How would you rate your addition skills? Why so?

Applied addition

People need to use addition in many personal and vocational situations.
Some common situations are listed here. Can you think of some more?

Personal

\Rightarrow Calculating how much food to cook and serve for family meals.
\Rightarrow Adding up the grocery shopping.
\Rightarrow Working out the time it might take to travel between destinations.
\Rightarrow Measuring and calculating the timber needed to make a garden border.
\Rightarrow Counting the number of steps as part of a personal fitness routine.
\Rightarrow Planning a personal diary to balance school, personal and work commitments.

Work-related

\Rightarrow Calculating the total of a customer's bill in a café.
\Rightarrow Adding up total sales for the day.
\Rightarrow Calculating the business costs for a week.
\Rightarrow Adding up wages as a part of a timesheet.
\Rightarrow Planning the time schedule for a courier delivery run.
\Rightarrow Working out how much is needed to do a spec. work task, such as a house painting job.

Part B: Applied

Choose a work-related or volunteer situation you have participated in. Describe situations when you used addition in your 'work' roles. What 'tools' did you use?

Work/volunteer situation:			

1.19 Addition and Subtraction

Subtraction

When you subtract you are taking away amounts or numbers to get a total or a sum.

Just like addition, subtraction involves counting. This means you can use a number line. Number lines are particularly helpful for dealing with negative numbers. In common calculations, subtraction should result in an answer that is smaller than the original. e.g. 25 take away 10 equals 15. Subtraction problems can also be solved by setting out mathematical sums.
Your teacher will go through these examples, as well as others, with you.
The answer determined by subtraction gives us the difference between the original amount and the new amount. e.g \bigcirc The difference between 50 and 30 is Subtraction using physical counting can also result in finding out the rith , So between an original amount an ans amount. This is often imp and business situations.

For example, for our PDS fundraiser we made 5 dozen cupcakes (60). At the end we counted that we had 5 left. The difference is 55 (i.e. 60-5 = 55). Therefore we must have sold 55 cakes. But we can't be sure that we 'sold' 55 . How could we find this out?

Subtraction (take away or minus) ...shown by a '-' sign
Subtraction involves taking a number away from another, i.e. finding the difference between two numbers.

$$
\begin{gathered}
9-3=6 \\
50-28=22 \\
4-1 / 2=31 / 2 \\
\$ 85-\$ 23=\$ 62
\end{gathered}
$$

Subtraction can also involve taking away more than two numbers. e.g.

$$
\begin{gathered}
6-2-1=3 \\
1-1 / 2-1 / 2=0 \\
\$ 100-\$ 55-\$ 46=-\$ 1
\end{gathered}
$$

1.000-500-250-100=? 'hen subtracting more than number you can take the first taver away to get an answer, then

Physical counting

Just as with addition, this involves counting the number of items based on pictures or images; or even counting physical items, objects and people. But this time the focus is on taking away.

Subtraction: Using calculations

e.g. Calculate the total of: 58-15	e.g. Calculate the total of: 175-80	e.g. Calculate the of: 105-53-22	
58	175	105	Tip: You can do the 1st calculation to get an answer; then do the 2nd calculation to get your final answer!
- 15	- 80	- 53	
43	95	52	
		- 22	
		30	

1.21 Addition \& Subtraction

1J Calculating - Subtraction

Part A: Complete the following subtraction calculations. Make sure that you show appropriate workings out.

Applied

Think of personal or work-related situations where you have to use subtraction.
When do you need to perform subtraction? Why?
What methods do you use? What tools and techniques do you use?
How would you rate your subtraction skills? Why so?

Applied subtraction

People also need to use subtraction in many personal and vocational situations.
Discuss those below and once again, can you think of some more?

Personal

\Rightarrow Keeping track of spending in a bank account for a personal budget.
\Rightarrow Taking away the essential bills before working out how much is left over to spend in a household budget.
\Rightarrow Subtracting the travel time when working out what time you need to leave to meet your friends in the evening.
\Rightarrow Subtracting how much timber to saw off when making a garden border.
\Rightarrow Subtracting the time taken for school, personal and work commitments as part of a daily schedule.

Work-related

\Rightarrow Making change for a customer paying for a purchase.
\Rightarrow Taking away lunch breaks from actual wo time as part of a timesheet or staff ros θ
\Rightarrow Calculating how much stock is left $A=$ end of a day's trading.
\Rightarrow Working out a business's prit (NK less expenses) for the wok.
\Rightarrow Working out how much ne is ∇^{2} ainable ∇ a work day after answering emans in morning.

Part B: Applied

Choose a work-related or volunteer situation you have participated in. Describe situations when you used subtraction in your 'work' roles. What 'tools' did you use?

Work/volunteer situation:				

1.23 Multiplication and Division

Multiplication

When you are multiplying you are calculating an answer based on the repeated 'adding' of a particular number.
The best way to clearly understand multiplication is by saying the words in the calculation out loud.
For example:
\Rightarrow Calculate: Three times five.
\Rightarrow This means you have to work out the total of three fives.
\Rightarrow Three fives is just: five plus five plus five; i.e. 3×5.
\Rightarrow The answer to this, is of course, 15 !
Can you hear how saying the words out loud helps make multiplication much easier Multiplication is simply: something times some
\Rightarrow Ten times ten? Well ten tens is a hil
\Rightarrow What about 20×5 ? Well 20 time. 5
\Rightarrow And how about nine by five? wer pe θ^{2} ay' multiplication this way; i.e. something by sometr, sme is $(9+9+9+9+9=45)$.

What is 20×5 ?
Well here we can show this visually.
$\Rightarrow 5$ boxes (in rows) repeated 20 times (and a nice pattern!)
\Rightarrow If we count the boxes you find there's 25 in each rectangle.
\Rightarrow If you count all of the boxes you will eventually get to 100 . But this is going to take a long time. And your eyes will go blurry!
So it's easier just to do multiplication.
\Rightarrow Multiplication involves a particular number, multiplied by another number.
\Rightarrow So in other words, you count the first number, by the amount of times of the second number. i.e. 5×20. (And now you can do the calculation both ways because 5×20 is the same as 20×5 !)

Multiplication calculations

When performing multiplication it is important to know these instructions.
\Rightarrow You have to set out the question in the proper way. This includes making sure that you right-align the numbers.
\Rightarrow You might also have to carry a number (or numbers). Your teacher will explain how to do this.
\Rightarrow For bigger numbers you might have to include a 0 to show place value for 10 s, and another 0 to show place value for 100 s and so on. Once again your teacher will explain how to do this.
These might sound a bit confusing written in words. But when your teacher works through examples it will be much easier. This is because most people learn better from watching and doing numerical calculations, rather than from reading how they're done! Do you agree?
Tip: Always perform any calculations in brackets first!

In your workbooks complete the following multiplication calculations.
Make sure that you show appropriate workings out.

a.	$7 \times 9=$	b.	$6 \times 7=$	c.	$10 \times 8=$	d.	$15 \times 11=$
e.	$9 \times 4=$	f.	15 * $12=$	g.	7 by $14=$	h.	$18 \times 12=$
i.	20 * $10=$		$0.75 \times 16=$		$20 \times 25=$	I.	\$\$30 $\times 5=$
m.	fifteen times six $=$	n.	four hundred by $25=$	0.	Eight times fifty- two $=$	p.	$12 \times 45 \mathrm{mins}=$

1.25 Multiplication and Division

Division

With division you are calculating an answer based on how many times one number (the divisor) goes into another number. You can better understand division by saying the words in the calculation out loud. e.g.
\Rightarrow Calculate: 30 divided by 10.
\Rightarrow This means you have to work out how many 10s there are in 30 .
\Rightarrow So if we say "10", "10", "10" we quickly count up to 30 .
\Rightarrow The answer to this, is of course, 3 !
But dividing for 10 s is easy, as is working out division for small numbers by counting. To deal with less uniform numbers, as well as bigger numbers, you will need to learn and apply the skills for calculating division. And you should also know that doing the sil the multiplication calculation.

$$
\begin{aligned}
& \text { 1e multiplication calculation. } \\
& \Rightarrow \text { Multiplication: } 20 \times 5=100 \text {. Rivision } 10
\end{aligned}
$$

Division (how many) ...shown by a ' \div ' or '/' sign)
Division involves finding the quotient of 2 (or more) numbers. In other words, how many times one number goes into another. e.g.

$$
20 \div 4=5
$$

(How many 4s are in 20?; there's 5 !)

$$
\begin{array}{r}
36 \div 6=6 \\
150 / 15=10
\end{array}
$$

Sometimes not all numbers are divisible (or go into each other) equally, which leaves a remainder.
You might express this remainder as a decimal or as a fraction. e.g.
$11 / 2=5.5$ (Remainder a decimal.)
$=51 / 2$ (Remainder a fraction.)

Division calculations

When performing short division it is important to know these instructions.
\Rightarrow You have to set out the question in the proper way. This includes using a division box as shown below.
\Rightarrow You set out the dividend (the number you are dividing into) by the divisor (the number you are dividing by). i.e. 20 (the dividend) divided by 5 (the divisor).
\Rightarrow You might also have to carry a number (or numbers) if you get a remainder. Your teacher will explain how to do this.
Remember that most people learn better from watching and doing numerical calculations rather than from reading how they're done! That's why your teacher will do some examples for the class and then get you to try some on your own.
Tip: Always perform any calculations in brackets first!

In your workbooks comple 2 the Noind AVision calculations.
Make sure that you show appropriate vid kings out.

a.	$30 \div 15=$	b.	$24 \div 4$ -	c.	$90 \div 9=$	d.	$56 \div 7=$
e.	$36 / 6=$	f.	$125 \div 25=$	g.	140 / 7 =		$200 / 8=$
i.	$500 \div 20=$		1000 / $25=$		$77 \div 38.5=$		$17.5 / 5=$
	eighty divided by five =	n.	$\begin{gathered} 121 \text { divided by } \\ 11= \end{gathered}$		one hundred how many fours =		how many halves are in $8.5=$
g .	\$50 / \$5 =	r.	\$280 \div \$ $7=$		16 hours divided by 4 =		how many 15 mins in 2.5 hours $=$

1.27 Putting It Together

Addition and subtraction

In your personnel and vocational activities you are likely to have to done calculations that involve both addition and subtraction. This requires more than a one-step calculation process and is a more advanced numeracy skill.

The idea is to deal with two numbers at a time, get an answer and then deal with the next number; and so on.

```
For example: Addition and subtraction
\(\Rightarrow\) You have \(\$ 900\) currently in the bank.
\(\Rightarrow\) You are paid \(\$ 500\) in wages.
\(\Rightarrow\) You spend \(\$ 200\) on a new pair of sneakers.
\(\Rightarrow\) You spend \(\$ 150\) on a celebration dinner for friends.
```

How much is left in your bank account?
So let's look at this as a calculation. You can just work left to right.

Applied numeracies

People naturally apply add _n an fubtrad to many personal and work-related activities. Discuss these and suggest one applied examples.
\Rightarrow Keeping track of time. e.g. If you have a meeting at 2:30pm and it's currently $1: 45 \mathrm{pm}$, you might calculate the time remaining by subtracting the current time from the meeting time ($2: 30 \mathrm{pm}-1: 45 \mathrm{pm}=45$ minutes).
\Rightarrow Completing a timesheet. e.g. If you worked from 9:00am to 5:30pm and took a 30-minute lunch break, you would add up the hours worked (5:30pm - 9:00am) and then subtract the break time to get the total hours worked ($8.5 \mathrm{hrs}-0.5 \mathrm{hrs}=8$ hours).
\Rightarrow Planning a travel itinerary. e.g. If your flight is at 11:00am and you need to be at the airport two hours before, you might subtract two hours from 11:00am as well as your travel time to determine when you should leave home. (11:00am - 2 hours = 9:00am less your travel time).
\Rightarrow Managing your bank account. e.g. If you have $\$ 500$ in your account and you spend $\$ 75$ on groceries, you would subtract the expense to calculate the remaining balance ($\$ 500-\$ 75=\$ 425$).
\Rightarrow Following a recipe. e.g. If a recipe calls for 2 cups of flour and you've already added 1 cup, you would need to add another cup to meet the requirement (1 cup + 1 cup = 2 cups).

Putting It Together 1.28

Testing time 1 M

1. Do the following calculations in your head or on paper. Your teacher will set a time limit.
2. Now do the same calculations using a calculator. Time this.
3. Estimate how many calculations you have done correctly.

Your teacher will give the answers after the class has done both tasks.

a.	$53+48$	$=$	$53+48$	$=$
b.	89-37	$=$	89-37	$=$
c.	$75+20+49$	$=$	$75+20+49$	$=$
d.	120-50-30	=	120-50-30	=
e.	18+24-15	$=$	$8+24-15$	=
f.	38-19+55	$=$	2 $9+55$	$=$
g .	95-12-38	=	97-12	$=$
h.	$120+30+45-60$		30+45-60	$=$
i.	$68+75$	-	$68+75$	$=$
j.	84-29	=	84-29	$=$
k.	\$30 + \$25 + \$18	$=$	\$30 + \$25 + \$18	$=$
I.	\$200 + \$15.75	$=$	\$200 + \$15.75	$=$
m	\$80-\$40	$=$	\$80-\$40	$=$
n .	\$250-\$75 + \$125	$=$	\$250-\$75 + \$125	$=$
o.	45 minutes + 2 hrs	$=$	45 minutes + 2 hrs	$=$
	stimated correct	/15		/15
	Total correct:	/15		/15

4. As a class discuss how you went. What were the patterns around your own areas of strength and weakness? What about for the class as a whole?

1.29 Putting It Together

Order of operations
In life we follow orders and procedures that assist us to accomplish tasks accurately and efficiently. For example:
\Rightarrow if you are changing a tyre you need to follow a sequence of operations to do the task properly,
\Rightarrow if you are baking a cake you need to follow a sequence of operations to do the task properly, and
\Rightarrow if you are performing brain surgery you also need to follow a sequence of operations to do the task properly!
The same goes with calculations. You need to follow an order of operations. The basic rules, in order (and as explained below) are:

1. First, calculate anything in brackets.

The tasks and responsibilities associated with occupations require workers to follow ell-planned and systematic order of operations.
2. Move from left to right, and perforr. Q Le cation or division.
3. Move from left to right, calcıatingor nns and and subtraction.

When performing a calculation, the order of operations is as follows.
Firstly, you must always evaluate any brackets before doing anything else:

$$
\text { e.g. } 5+(10 \times 6)=5+60=65 \text { (and not } 90!!!)
$$

Secondly, you move from left to right performing any multiplication or division. It doesn't matter which of these you do first as long as you move from left to right. Tip: You can show this as a bracket ().

$$
\begin{aligned}
& \text { e.g. } 6 \times 5+3 \times 13= \\
& (6 \times 5)+(3 \times 13)= \\
& 30+39=69 \text { (and not } 429,624 \text { or } 1,170!!)
\end{aligned}
$$

Finally, you move from left to right performing any addition or subtraction. (Again, it doesn't matter which of these you do first, as long as you move from left to right.)

For example:	And another:
$3+9 \times 7=? ?$	$6 \times 5-9 \div 3=? ?$
$3+(9 \times 7)=? ?$	$(6 * 5)-(9 \div 3)=? ?$
do this 1st	do this 1 st do this 2nd
$3+63=66$	$30-3=27$

And one more:

$$
\begin{aligned}
& 17-(15 \div 3)+5 \times 25=? ? \\
& \text { do this 1st } \\
& 17-5+(5 \times 25)=? ? \\
& \text { do this } 2 \text { nd }
\end{aligned}=137 .
$$

1. Perform the following calculations using order of operations.

a. $15+6 / 3$	b. $24 \times 2+10$	c. $50 / 5+20$
d. $15 / 7.5 * 10$	e. $16 * 15 / 5$	f. $1,000+1,000 / 25$
g. $(9+3) \times 2+6$	h. $15 \times 12 / 30-10$	i. $\$ 49.95 \times 2+\$ 50 \times 5=$

2. Perform the following 'tricky' calculations.

3. Gilbert has a $\$ 5$ note $3 x \$ 2$ coins and $1 \$ 1$ coin. He has to buy 6 cans of Breaked Beans which are $\$ 1.99 \mathrm{c}$ each. 3-packs of beans are $\$ 5.50$ per pack. Which purchase option should he make? Why? (Show your workings below.)

1.31 Assessment Task

AT1 The Power of the Triangle Personal Numeracy

There are not many people who can resist the allure of a freshly-made triangle sandwich. And these tasty treats are the go-to food choice for many a luncheon, party, celebration, commemoration or event.

Required

Apply your numeracy skills and tools and use the 4-stage problem-solving cycle to plan for a
 'spread' of home-made triangle sandwiches for an 'event'.
Assume you are catering for 30 people. As usual, these people will reflect the cultural diversity that makes up Australia. So you must consider allergens, cultural issues, ethical choices and other suitable menu cb ices.
So how many 'triangles' will you need to make' int fillings will you choose and how many of each? What menu options mi $+\cdots$ need to include, such as glutenfree and vegan? What ingredients shoul ave o be safe? Which sandwiches will cost more per item? Which will cor por ar you keep costs down? How can you speed production up? What vevis. an do you need to meet? How long will this all take? And iwmis illis ast?
Well, most of the answers $r \in$, matication, division and some subtraction, as well as or a cons (e cially for \$ amounts).
Pair up or form into group. start areine our menu, and in your work folios use the table headings to identify how you p an to deal with all of these issues.
Then, as you apply your numeracy and other skills and tools to complete this task, briefly describe what you did in your table. (e.g. Division: We used division by 4 to estimate total triangles from full sandwiches.)
Prepare a final report to the class. Share and compare menu items, calculations and costs. Is it viable to cater for your class? What does your teacher say?

Estimation	Ingredients/Fillings	Allergens
Religion	Culture and Ethics	Hygiene
Addition	Multiplication	Division
Subtraction	Order of operations	Cost
Time	Storage \& Transport	Waste
Legal issues	Labelling	Plating/Serving

Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

Additional information:
1.33 /| Problem-Solving Cycle // Maths Toolkit

More Numeracy Skills

2.01 Doing the Numbers36 2.17 Bar Graphs52
2.03 Fractions and Decimals 38 2.19 Pie Charts 54
2.07 Percentages 42 2.21 Line Graphs 56
2.11 Estimating 48 2.23 Assessment Task 58
2.15 Data and Tables 50 2.25 Problem-Solving Cycle \& Toolkit.. 6 60

[^0]
2.01 Doing the Numbers

Numeracy 201

In the previous section you explored the basic numeracy functions for varied purposes and also how numeracy is an important part of your personal and work-related life. You also built your calculating skills by focusing on addition and subtraction, and multiplication and division.
In this section you will start by exploring fractions, decimals and percentages. Then you will build your numeracy skills in estimating. Estimating numerical information is often done in relation to:
\Rightarrow money (e.g. when budgeting)
\Rightarrow time (e.g. when working)
\Rightarrow temperature (e.g. when cooking), and
\Rightarrow measurements (e.g. making things or travel distances).
Later in this section you will move on to developing your skills in the use of data, tables and common graphs and charts.
Of course you will be expected to continue impry ing your understanding of written and spoken numer al words and language. Being able to recognise as numbers, and interpreting terms and phrases as numerical concepts (e.g. bigger than), will assist you to apknumerical understanding to allaton, life.

Shat? questions they might use the same term for questions that relate to varied numerical concepts. At first, this can be confusing.
To sort this out you will have to apply the problem-solving cycle very carefully, especially in Stage 1: Identify the maths!
Asking questions can help you clarify.
For example, they might say the term,
'how much' in relation to:
\Rightarrow cost (i.e. "How much is that jacket?") or
\Rightarrow size (i.e. "How much chicken do you want?").
As another example, they might say the term 'how long' in relation to:
\Rightarrow size (i.e. "How long does the belt need to be?") or
\Rightarrow time (i.e. "How long is your performance?").
And they might say the terms, 'how near (or close)' or 'how far' in relation to:
\Rightarrow distance (i.e. "How far is it to Bendigo?") or
\Rightarrow time (i.e. "How near (or how far) away are you from finishing that order?").
So the different use of numerical terms and language, especially when speaking, can cause misunderstandings.
This is because sometimes the specific word that is used, such as 'far' or 'close' has its own meaning. (e.g. 'Far' usually = a long way away, whereas 'close' usually = quite nearby!)
So what do you usually say?

How... 2A

1. What types of words do you commonly use when communicating numerical information, such as when asking questions?

\square far
How \qquad ?
...twice your height.
\square little
\square long
How \qquad ?
...usually 25-30 years.

\qquad ? ... 3 for each person is enough.
\square many
\square much How \qquad ? ...just \$3 a week. How \qquad ?
...only a 10 minute drive.
\square small
\square tall
\square tall

How \qquad ?
...enough to do 2 even coats.
\qquad ?
...about 200 kil metres.
2. Match these 8 examples below with the win. rical amounts that might best suit.

3. Match the 8 'How' terms with examples you would most likely use these for.

2.03 Fractions and Decimals

Fractions

A fraction represents a part or a portion of a whole number. Essentially a fraction divides the top number (numerator) by the bottom number (the denominator).

For example: Fractions

\Rightarrow An orange cut equally in two portions $=1 / 2$ an orange $+1 / 2$ an orange. If you eat one of these portions you have eaten $1 / 2$ of an orange.
And 1 divided by 2 = 1/2. (Or, "how many 2 s go into 1 : a half!")
$\Rightarrow 25$ cents $=$ a quarter of a dollar or $1 / 4$ (in the US they have 'quarter' coins and not 20c coins like in Australia; so our 20c = 1/5 of a dollar).
\Rightarrow A pizza sliced in 8 portions $=8 \times 1 / 8$. Each slice is $1 / 8$.

Peckish?	2 slices $=1 / 4$	(or 2 eighths or $2 / 8$)
Hungry?	4 slices $=1 / 2$	(or 4 eighths or $2 / 4$ or $1 / 2$)
Famished?	6 slices $=3 / 4$	(or 6 eighths or $6 / 8$ or $3 / 4$)
Starving?	8 slices $=1$	(or 8 eightry or 4 quarters, or 2 halves)

Do you remember greedy Igor? Igor eats t. F vhule pizza, which is cut into 4 pieces.
So that's 4 quarters (or 2 halves) $d \in \odot$ id. how big his mouth is!
His friend Frankie goes to geisome Ta asto sauce and Igor quickly scots a. 4 anomior? Igor has now eaten 0. ana quarte $\nabla>$ as
(or $5 / 4$ which is $4 / 4$ plus another
Now that is a very improper thing to do!

Image: ekizv/ Depositphotos.com
Now that is a very improper thing to do!

Fractions

Proper fraction:

A proper fraction is one where the number on top (numerator) is less than the number on the bottom (denominator).
This means that the number represented by the fraction will be less than 1 (for positive numbers). e.g.

$$
\begin{array}{llllllllll}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{3}{5} & \frac{1}{10} & \frac{5}{6} & \frac{1}{8} & \frac{3}{7} & \frac{13}{20} & \frac{25}{100}
\end{array}
$$

Improper fraction:

An improper fraction is one where the number on top (numerator) is more than the number on the bottom (denominator).
This means that the number represented by the fraction will be more than 1 (for positive numbers) e.g.

$$
\begin{array}{llllllllll}
\frac{3}{2} & \frac{4}{3} & \frac{5}{4} & \frac{10}{5} & \frac{11}{10} & \frac{14}{6} & \frac{12}{8} & \frac{10}{7} & \frac{60}{20} & \frac{200}{100}
\end{array}
$$

Decimals

A decimal is another way of representing a fraction. Decimals are based on our number system which uses the power of 10s, i.e. 1, 10, 100, 1000, 0.1, 0.01, 0.001 . Some numbers include a decimal point. These represent a whole number, such as 2 , plus a fraction of a whole number, such as 0.8 . Written together this will be 2.8 (or 2 and four fifths). 2.8 can also be written as 2 and 4/5.

For example, Igor eats 2 garlic bread loaves plus 4 of the 5 slices from another one before he had to stop due to a pain in his guts! In decimal terms, Igor consumed 2.8 garlic bread loaves.
For really accurate numbers such as in medicine, pharmacy and other technical and scientific jobs decimals might go up to the hundredth (i.e. 2 numbers after the decimal point; 0.01); or even to the thousandth, (i.e. 3 numbers after the decimal point; 0.001). For this stage of numeracy we can keep decimals to the hundredth, which is two numbers after the decimal point, e.g. 0.15.
When dealing with money you will need 2 decimal >laces; and when converting measurements you might also require 2 (or everno) decimal places. Why is that?

1. Colour in the shapes to indica

2. Write each of these as their correct decimal or fraction.

$1 / 2$	$1 / 4$	$1 / 3$	$1 / 8$	$1 / 5$	1	$3 / 4$	$1 / 3$	$4 / 5$	$9 / 10$	$3 / 8$
0.5										
0.25	0.4	0.5	0.33	0.9	0.125	0.33	1.0	0.6	0.75	2.5

2.05 Fractions and Decimals

Working with fractions
Sometimes when you apply numeracy to financial, personal and vocational situations you might have to add or subtract using fractions. One way to do this is to say the numbers in your head. e.g.
\Leftrightarrow "One half plus two halves means that l've got three halves (or one and a half)."
\Rightarrow "One quarter plus two quarters equals three quarters."
\Rightarrow "One minus a half $=$ a half."
\Rightarrow "Three quarters minus a half $=3 / 4$ minus $2 / 4$ which equals $1 / 4$."
But if the calculation gets more complex then you will need to follow a numerical method. Your teacher will work through a number of examples with you.

Fractions: Addition and Subtraction

If the fractions have the same bottom number (denominator) then simply add or subtract the top numbers (numerator).
e.g. i
$\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1 \quad \frac{6}{8}-\frac{2}{8}=\frac{4}{8}=\frac{1}{2}+\frac{4}{2}-\frac{3}{2}=\frac{13}{2}-\frac{3}{2}=\frac{10}{2}=5$

But, if the fractions have different hott irs bers (denominators) then you will have to find the lowe ry denominator (or lowest common multiple). After this y 10 na add r subtract the top numbers. e.g. i

$$
\frac{1}{2}+\frac{2}{4}=
$$

Working with decimals

Working with decimals is common in life, especially in workplaces and job tasks that deal with money, and for measurements using the decimal system. The easiest way to do this is to use the same rules for calculating by setting this out vertically. But the key is to make sure your numbers are aligned based on the decimal point.

Adding and subtracting decimals				
e.g. Calculate				
the total of:				
$0.7+0.2$	$0.4+0.35$	$3.5+5.4$	$0.75+3.2$	$2.5+3.1-1.45$
0.7	0.40	3.5	0.75	2.5
+0.2	+0.35	+ 5.4	+3.20	+3.1 5.60
0.9	0.75	8.9	3.95	-1.45
				4.15

1. Calculate these fraction and percentage amounts.

a.	$1 / 4$ a dollar	b.	$3 / 4$ of $\$ 100$	c.	$1 / 2$ of $\$ 250$	d.	$1 / 2$ of $\$ 99.50$
e.	75% of $\$ 1,000$	f.	15% of $\$ 2,000$	g. 25% of $\$ 50+\$ 50$	h.	20% of $\$ 99.95$	

2. Perform the following calculations in your head or on paper. Time this.
3. Now do the same calculations using a calculator. Time this.
4. Estimate how many calculations you have done correctly.

Your teacher will give the answers after the class has done both tasks.

a.	$0.75+0.25=$	$=$	25	=	
b.	$2.25+1.75=$	$=$	2. $1.75=$	$=$	
c.	$1 / 8+3 / 8=$	$=$	/18	$=$	
d.	$151 / 2+73 / 2=$		1. $/ 2+73 / 2$	$=$	
e.	\$5-\$2.50 =		\$5-\$2.50 =	$=$	
f.	$2-1 / 2=$		$2-1 / 2=$	$=$	
g.	\$75-\$32.75 =	$=$	\$75-\$32.75 =	$=$	
h.	$0.25+1 / 4+0.2=$	$=$	$0.25+1 / 4+0.2=$	$=$	
i.	$1 / 16+7 / 16-1 / 8=$	$=$	$1 / 16+7 / 16-1 / 8=$	$=$	
j	$3 / 5+2 / 5=$	$=$	$3 / 5+2 / 5=$	$=$	
k.	$2 / 3+1 / 3-1 / 6=$	=	$2 / 3+1 / 3-1 / 6=$	$=$	
I.	$0.5+0.25+0.125=$		$0.5+0.25+0.125=$		
	Estimated correct	/12			/12
	Total correct:	/12			/12

5. Discuss with the class how you went. What were the patterns around your own areas of strength and weakness? What about for class as a whole?

2.07 Percentages

Percentages

A percentage represents a portion (or a fraction) of a whole amount. A percentage represents a fraction out of 100%. With percentages the whole amount is 100%.
Half of that whole amount equals 50%. One quarter of that whole amount represents 25%. One tenth of the same whole amount represents 10%.
Percentages are used a lot when dealing with money including for discounts, for cost mark-ups and even for weekend penalty rates on wages.
Percentages are one of the most straightforward calculations going around, because a percentage simply represents a proportion of a whole! Every percentage is going to be between 0% (none) to 100% (all) of a total. But sometimes people can get confused. So the 4-stage Problem-Solving Cycle can be your 100\% best friend here! If you have a look at this image of the percentages of an orange we are showing the fractions as a percentage.

1 = 100\%

$1 / 2=50 \%$

$1 / 8=12.5 \%$

2D Fractions \& percentages

1. Complete this table + sha traiol as decimals then as percentages.

$1 / 10$	$1 / 8$	$1 / 6$	$1 / 4$	$1 / 3$	$1 / ?$	$6 / 10$	$2 / 3$	$3 / 4$	$4 / 5$	$9 / 10$	$1 / 1$
			0.25								
								75%			

2. Colour in each of these shapes to show the percentage.

Calculating percentages

If there are 10 people at a KFC, and 8 of these buy a serve of chips, then the percentage of chip buyers in this KFC is 80%. See it's easy in words. It's easy in numbers as well.
$\frac{8 \text { (number of chip buyers) }}{10 \text { (total number of people in KFC) }} \quad \times \frac{100 \%}{1}$
$=\quad 0.8 \times 100 \%$
$=\quad 80 \%$

So to work out percentages you divide the amount or the portion you are focusing on, by the total amount. This gives a fraction or a decimal (such as $8 / 10$ or 0.8).
You then multiply by 100% to express this as a percentage.
So if there are 12 people in Red Rooster who buy chips with their order and there are 24 shoppers in total, what percentage of Red Rooster diners bought NUM chips? The fraction is $1 / 2$ and the decimal is 0.5 , so the percentage is 50% !

Proportion as a percentage

A percentage represents a smaller proportion examples. And while you're are it, discus. 0. might be?
$\Rightarrow 90$ out of every 100 Australians aged arrart phone. That's 90\%.

$\Rightarrow 33$ out of 100 people 2 res rest arried. That's 33%.
$\Rightarrow 40$ out of 50 people surveyed agree the watching TikTok influencer videos made them dumber. That's 80%, i.e. 80 out 100 .
$\Rightarrow 99$ out of 100 Numeracy: VPC students believe that after doing this topic they will know how to calculate percentages. That's 99%, do you agree?

Calculate each of these percentages.
$\left.\begin{array}{|ll|ll|ll|ll|}\hline \text { a. } & 10 \% \text { of } 100 & \text { b. } & 10 \% \text { of } 200 & \text { c. } & 50 \% \text { of } \$ 250 & \text { d. } & 20 \% \text { of } \$ 400 \\ \hline \text { e. } & 75 \% \text { of } \$ 1,000 & \text { f. } & 25 \% \text { of } 500 & \text { g. } & & 10 \% \text { of } \$ 5+ \\ 20 \% \text { of } \$ 10\end{array}\right)$ h. 67% of 300

2.09 Percentages

Percentage change

Percentage change is a measure used to express the difference between two values, as a percentage of the original value. i.e. How much something has changed by (up or down) compared to what it was originally.

When we use percentage change we can more easily see any increase or decrease in a particular quantity. Percentage change is commonly used to measure:
\Rightarrow changes in financial amounts, such as sales or profits
Image: dimdimich/ Depositphotos.com
\Rightarrow changes in size, such as height and weight
\Rightarrow changes in health measures, such as a child's weight gain
\Rightarrow changes in performance, such as personal bests and strength gains
\Rightarrow changes in time, such as productivity measures and travel times
\Rightarrow changes in weather, including rainfall and temperature averages.
And thousands more applied situations in specif sen and vocational situations.

Percentage change
Percentage change is a way of comparing performance for one outcome, or time period, with another.
It involves looking at growth (or decline), then calculating this as a proportion of the original. For example:
If you earned $\$ 1,000$ in year 1 , then $\$ 1,500$ in year 2 what is the $\%$ change?

$$
\begin{aligned}
& \frac{\text { amount in year } 2-\text { amount in year } 1}{\text { amount in year } 1} \times \frac{100 \%}{1} \\
& =\frac{\$ 1,500-\$ 1,000}{\$ 1,000} \times \frac{100 \%}{1} \\
& =\quad \frac{\$ 500}{} \times \frac{100 \%}{1} \\
& =50 \% \text { (That's a lot of growth!) }
\end{aligned}
$$

What would be the \% change if year 2 was $\$ 3,000$; or if year 2 was $\$ 500$?

Example: Percentage change

Biggie Bojangles has always been shorter than the other kids in class. His height at the beginning of the year is only 150 cm . But then, after experiencing a growth spurt, his height increases to 180 cm by the end of the year.
Percentage change $=\left(\frac{\text { New height less Original height })}{\text { Original height }} \times \frac{100 \%}{1}\right.$
Biggie's change $=\frac{(180 \mathrm{~cm} \text { less } 150 \mathrm{~cm})}{150 \mathrm{~cm}} \times \frac{100 \%}{1}$
$\%$ change calculation $=30 \mathrm{~cm} / 150 \mathrm{~cm} \times 100 \%$
\% change = 20\%
Biggie has experienced a 20\% increase in height in one year due to a growth spurt. And that is a big change!

Percentage change
 2F

1. Calculate each of these to find out the percer change. Explain whether this is a positive outcome.

| a. Jackie, aged 8, has grown |
| :--- | :--- | :--- |
| from 100 cm to 110 cm over |
| the year. | | b. Jackie's Grea |
| :--- |
| has gone fi |

2. When might you need to calculate percentage change in personal and vocational situations?

2.11 Estimating

Estimating accurately

Estimating is one of the most important and useful skills to help people better manage their personal, social and work-related lives.

Sometimes we don't always have enough time to make exact calculations. So it is important to be able to do quick and fairly accurate estimates.
You might make estimates related to:
\Rightarrow money
\Rightarrow time
\Rightarrow size
\Rightarrow length
\Rightarrow distance
\Rightarrow weight
\Rightarrow temperature
\Rightarrow quantity (amount).
Examples are shown in the diagram

Estimating

\Rightarrow Estimating involves making an initial 'guess' or coming up with a 'rough figure' based on a person's knowledge, skills and past experience.
\Rightarrow Numerical estimating is important for things such as size, cost, time, distance and shape.
\Rightarrow At home you might estimate the time taken to mow the lawns; or the amount of cash needed to shop at the market.
\Rightarrow At work a carpenter might make estimates as part of a quote to build a new deck. 4 retailer might estimate how many staff they need to roster n for a busy shift.
other examples as a class.

> Total cost of purchases when shopping.

> Time needed to get ready for school.

Safe distance required between cars when driving.

Quote for a

 practical job or work task.

Estimating 2.12
Make an estimate

1. Estimate answers for these questions. But make sure that you do this quickly and without calculations.

Your teacher will then work through each example with the class, and show you how to best go about doing these estimates.
2. Work in pairs to calculate the actual answers to these examples. How close were your original estimates? Why so?

Question	Estimate	Exact calculation
1 Estimate the height of the table at which you are sitting.		
Estimate your foot length in centimetres.		
3 Estimate the length of your greatest arm span from fingertip to fingertip.		
4 Estimate how many students are enrolled in your school.		
5 Estimate how many students are absent today.		
6 Estimate the number of hows spend a week using social ne		
7 Estimate the number of yirs yo spend a week exercising.		
8 Estimate the number of hours you spend a week sleeping.		
9 Estimate how many weeks it would take you to save up $\$ 1,000$.		
10 Estimate how long it would take you to 'run' (or wheel) 1 km.		
11 Estimate how much money your family spends on food each week.		
12 Estimate how long it would take to drive from your school to the CBD.		

3. Complete this sentence using appropriate examples.

It is important for me to estimate things such as:
because...

2.13 Estimating

Round numbers

As part of your development of numerical skills you are expected to be able to do calculations on paper, by using a calculator, and in your head.
When you do calculations in your head you might not need to work out exact amounts. Rather you can make estimated calculations using round numbers. This enables you to get an idea of the result.
Sometimes this is called a 'ball park' figure. Then afterwards you can check the estimate on paper or with a calculator.
Rounded estimates are very useful when shopping, giving quotes, planning a dinner or a party, comparing deals and many other times.
Using rounded numbers for estimating can also help you to balance your own personal budget, make sure you have enough money to pay for day-to-day purchases and also avoid being trapped by tricky salespeople.

Rules for rounding

\Rightarrow Round to nice, even friendly numbers that are more easily calculated in your head. e.g. 5, 10, 20, 50, 100.
\Rightarrow Remove all fractions and decimals when rounding (e.g. 1.5 becomes 2, 1.4 becomes 1.)
\Rightarrow Round up for bad things. (e.g. Costs, time, quotes, materials, expenses, etc.. This means that you are playing it safe and over-estimating potential costs.)
\Rightarrow Round down for good things. (e.g. Income, revenue, time saved, etc.. This also means that you are playing it safe and under-estimating potential benefits.)
e.g. Suzie is shopping for a new TV. The salesperson says that she can pay it off using 18 payments of $\$ 41$. So Suzie works this out in her head.

- Suzie rounds the 18 payments up to 20.
- Suzie then rounds the $\$ 41$ amount down to $\$ 40$.
- Suzie estimates that the TV will cost about $\$ 800 ;(20 \times \$ 40=\$ 800)$.
- So how close was Suzie's estimate?

1. Do these estimates and then calculate the result to see how close you were.

i. 11 Weeks pay @ \$90/ week.	ii. 9 monthly payments of $\$ 52.50$.	iii. 93 crowdfunding supporters each give $\$ 11$.

2. The following estimates are based on sound numerical logic. But it is important to be able to prove that logic by doing the maths. It's also a good skill to be able to turn spoken or written words into numbers. One way to do this is to underline all the numbers, as well as all of the numeracy concepts. This has been done for the first problem.
Discuss these estimates as a class and then dr ne calculations.
a. Nancye estimates that she walks at about Snetres per hour. She reckons it will take her about 3 and a half hours to $\gg=0 \mathrm{kms}$.
i. If Nancye walks for 3 hours, wha 0 ita Ne likely to travel?
ii. Do the calculations to assess he he aye timates are valid.
iii. What other factors might rou ness. censin renen doing these estimates and calculations?

b. Vinh and Joy are making spring rolls for a multi-cultural lunch as part of a PDS group activity. It takes them 20 minutes to chop all the ingredients, and approximately 2 minutes to assemble a spring roll. They estimate it will take them about 1 hour to prepare and assemble 20 spring rolls.
i. Do the calculations to assess whether their estimates are valid.
ii. How many spring rolls do you think they could assemble in the 2 nd hour? Why so?

2.15 Data and Tables

Data

Data is a term used for various types of numerical information. When we collect, organise and analyse data we are more able to make informed decisions based on the numerical information we have collected.

For example, when you are comparing mobile plans from different providers you are comparing data such as call costs, download speeds, data limits and so on.
Data sources can include a survey which is a direct (or primary source) of information, e.g. surveying customers on their buying preferences. Data also includes other (secondary) sources, which involve looking at data that comes from external sources, such as government information about employment statistics. Data can also include both written and numerical information about customers, employees and other workplace stakeholders that might be stored in a database.

Data collection

Data collection involves collecting information and doing research to find out information. This might involve:
\Rightarrow surveying people about their views
\Rightarrow researching different information sources t ris prices
\Rightarrow collecting information to update a

Data organisation

Data organisation involves takir the you hallected and organising it in such a way as to be able to use tres ta. Q is.rig Nolve:
\Rightarrow organising key statistic 1 a ta P
\Rightarrow creating graphs and images to shov, ${ }^{3}$ data
\Rightarrow arranging information in a customer database so as to make it usable.

Table

We often organise data in tables. This makes it easier to perform calculations, look for patterns and trends, and do comparisons. We can also show data in graphs. This enables us to 'see' various patterns and trends reflected in the numbers.
In the contemporary world we often access a lot of data from digital sources and use digital tools (such as spreadsheets) to help analyse the data. Although this enables us to access more data and numerical information, it also makes it harder to sort opinions from facts, as well as truths from mistruths.
Have a look at the table shown here as an example. A table will usually contain certain types of information
Heading: This indicates the type of information organised in the table.
Time period or date: The data will often refer to a time period.
Column headings: These headings indicate the type of data that is being shown in the table (including appropriate units such as \$).
Row headings: These headings indicate the vari being shown, such as people, customers, products, months of the yea) (cc..
Data: This is the collected information as sho \quad tin table.
Totals: Row or column totals that perforn?

Row headings Mal 6 Data 600 $\$ 100$ Sal 4 800 $\$ 200$ Val 16 320 $\$ 20$ Totals Totals 50 2,000 $\$ 40$
from the information in this table we can say that:

So, from the information in this table we can say that:

- Customers spent a total of \$2,000 in March 2024.
- There were 50 purchases made in March.
- The average transaction amount was $\$ 40$.
- Sal spent the most of any customer in March, $\$ 800$.
- Sal also has the highest average spend per transaction, \$200.
- Val made the most transactions in March, with 16.
- Hal spent the least in March, \$280, but he had the second most transactions, 14.
- Both Hal and Val had the lowest average spend per transaction, \$20.

2.17 Bar Graphs

Graphs

One of the most useful elements of tables is the ability to turn the information into graphs. Graphs allow a person to look at numerical information, including information involving lots of data, in a visual form. This visual form can make it easier and faster to interpret data. A graph also allows for comparisons to be made more easily. One very useful graph is a bar graph (or bar chart).

Bar graphs

\Rightarrow A bar graph shows a comparison between e data of various categories.
\Rightarrow A more complex bar graph can also be < 1 to compare different variables on the same chart by using ∇ revenan one 'set' of bars.
\Rightarrow The components of a bar graph

- Horizontal (bottom) axis D D usually with spaces between is
- Vertical (side) axis (y, platy mr 0 : $n g$ the side, which is usually a number,
- Heading and
 k the graph so
no. or a \$ amount.

Bars: The height indicates mount being graphed. The bars can be drawn using the same color, or different colours, depending on what is represented on the graph.

21 Bar graphs

The bar graph in the image above gives you an idea of how a bar graph should look. In fact this graph uses the data from Customer purchase patterns - March 2024 on p. 51

However, this graph is not very useful because it doesn't include a heading, nor labels for the different bars on the bottom (the horizontal axis), nor \$ amounts up the left-hand side (the vertical axis).

1. In your workbooks construct a properly labelled bar graph to show how much each of the 4 customers spent in March, 2024.
You will need to have 4 'bars' along the bottom side, (1 for each of the 4 customers).
Your scale up the left-hand side will need to start at $\$ 0$ and will have to reach as high as $\$ 800$. Why so?

Bar graphs

Bar graphs are a good way to show numerical information because the user can very easily look at the size of the bars in order to interpret some information. We look at what each bar represents (the label) and the height of each bar (the scale) in comparison with the other bars. Of course we also first need to look at the heading.
A bar represents a particular category such as:
\Rightarrow a person (sales by employees),

\Rightarrow a time period (monthly electricity usage), or
\Rightarrow a survey preference (favourite colour).
The height of the bars usually represent 'hou For example,
\Rightarrow total sales in \$ (for each salesper
\Rightarrow total electricity used (for that biring puina in. 3 nns), or
$\Rightarrow \%$ of people surveyed whoss ays. air zolous ink (37\%).
Comparisons can then bey wh Hisrds n as "more", "larger" or "greater than", "less" (or "fewer"),

descriptors such as "twice as much","r"." much", "almost the same", "slightly more", "much more" (or "less") and so on. This will help the user to make key points and to interpret the visual graph in words.
2. Answer each the following based on the bar graph shown above.

What is being measured?	What is the time period?	Approximately how many people used each method?	Which method was used most?
Which method was used least?	Which method was used about only half as much as the highest method?	Which methods were used more than walking?	What might the 'other' include?

3. Construct a similar bar graph based on a survey of your own classmates.

2.19 Pie Charts

Pie chart

Pie charts are a good way to visually show numerical information that represents relative proportions or amounts of a whole.
So they are good for showing relative percentages.
The pie represents the whole. Each segment or slice of the pie represents a part of that pie.
Segments will usually be different sizes, unless the data is exact for each proportion.
The size of the segment will correspond to the proportion (the \% of the total). Segments will also be coloured which helps the viewer to easily identify each segment.

2J Pie charts

The pie chart shown in the image above gives you an idea of how a pie chart should look. This chart also uses that data from Customer purchase patterns - March 2024 on p. 51 .
However, once again this chart is not very useful because it also doesn't include a heading, nor labels that indicate which portion belongs to which customer, nor the \% represented by each portion.

1. In your workbooks construct a properly labelled pie chart to show the relative proportion of how much each of the 4 customers spent in March, 2024.
You will need to have labels that show which of the customers are represented by each of the coloured portions.
2. Answer each of the following based on the pie chart shown here.
3. In your workbooks show the information from the graph in a table.

Note: You also need to show a \% amount for each portion of the pie. You can include this at the side (as a legend) or put the \%'s on each portion.

What is being measured?	What is the time period?	What e of phone di mosistudents have?	What might the 'other' include?
What about the number of phones if 50 students were surveyed?	Abcut how :1a more students had Apple phones compared to Samsung phones?	f 100 students were surveyed what would be the number of phones in each category?	Do you think that this pie chart should have more segments? Explain.

4. Survey the students in your class about their phones. Construct a table to collate the results and calculate the relative percentages.
5. Draw a properly labelled pie chart to show the results. Note: You are probably going to need more than 3 segments.
6. Summarise the results using words and numbers. Comment on whether the results are what you would expect or if they are different. Suggest reasons for these results.

2.21 Line Graphs

Line graph

The most common way to show connected data or numerical information over time is to use a line graph. Line graphs are generally used to plot data that is connected as part of a time series (or over time).

A line graph spaces the time periods of the data (such as monthly sales) along the bottom (or horizontal) axis using an even scale.

The amounts indicated by the data (or the numerical information) are shown up the side of the graph, also using an even scale (the vertical axis).
Joining the dots gives us an easy way to see highg and lows, as well as the overall trend of the data.
Line graphs are commonly used to represent the weather over time, business sales and profit, savings amoun pa son achievements such as fitness data and weight changes, and other i
\Rightarrow A line graph shows ava andot
\Rightarrow The components

- The Horizontal ©ootton) dis (K): Plots the timespan (time series)
- The Vertical (or side) axis (l . Plots the variable amounts over time
- Heading and data labels: Tells the reader what is indicated by the graph
- Data line: Shows the data in visual or graph form.
\Rightarrow A line graph can also be used to show different variables on the same
chart so as to make quick and simple visual comparisons of the data.

2K Line graphs

Part A: Have a look at the line graph shown above. Once again it doesn't include headings or data labels. Fill in the blanks to explain what is missing.

Along the b \qquad there should be some type of a t \qquad period, such as weeks. Up the side, there should be some type of a s \qquad in numbers (or numerical information) to show what the graph is measuring. This graph has a starting point and then includes \qquad periods of time. Overall, the t \qquad of the graph is upwards.

Part B: Fuel lines

A line graph is a good way to visually represent changes in price over time. e.g. Shazhah was keeping an eye on fuel prices at her local servo. She picked a Thursday as the comparison day. This week the price was $\$ 1.96 /$ litre. Last week it was $\$ 1.92$. The week before that it was $\$ 2.08$. 3 weeks ago the price was $\$ 1.80$ and the week before that the price was $\$ 1.76$.

1. Draw a properly labelled line graph based on Shazhah's investigation of petrol prices over time. (Below, in your work folios, or on a device).
2. In one sentence describe the trend of the graph in your work folios.

Do you notice that although Shazhah has found that the price of petrol has varied a lot, the graph doesn't really 'show' much change visually? This means that plotting the full price might not give a true indication of price changes.
3. Cut out a piece of cardboard or paper to cover up your graph all the way up to $\$ 1.70$. How would you describe the trend of the line graph now? Does this give a better indication of the situation? Why/why not?

Part C: Up, up and away - or down?

Choose 3 items that you or your family commonly buy which can fluctuate in price. e.g. Fresh fruit and vegetables, meat products, petrol, etc..
a. Record the prices of these items over a 4-week period. Record in a table.
b. Draw line graphs to show these price changes over time.
c. Comment on your findings.
d. Do these price changes, or does this price stability, surprise you? Explain.

AT2
 CDS 4 U \& Me Personal Numeracy

Overview

In November 2023, and after years of lobbying by different stakeholders, the Victorian State government finally introduced the 10c Container Deposit Scheme on designated cans, bottles and other qualifying recyclable beverage packaging. Refunds are available through reverse vending machines, recycling depots, over-the-counter sites and pop-up refund points.

The aim is to capture bulk quantities of the estimated 3 billion drink containers used by Victorian every year and divert some that would end up as landfill, as rubbish, and increasingly as floating plastic in waterways.
In the first week of the scheme 10,000,000 containers were recycled, returning a million dollars to collectors. By the end of 2023, 100 million containers were returned giving $\$ 10$ million back to ordinary people. So what's next?
You are required to apply the 4-stage problemnumeracy skills and tools to complete parts AA. On your own

Use estimations, calculations and data tables.

1. How many containers do you and your family use weekly?
2. Where else could you crle How many could you '
How much could you ' rn ' fro
3. How much could you'
the scheme per week?
4. How much could you 'earn' from the scheme per year?
5. How much time do you think this would take?
6. Explain if it is worth your doing.
ng cycle and your growing

As a pair/team of 3-4 ily ations, calculations, ar is and data tables. n ryy containers do all of you your family use weekly? Ninere else could you collect from? How many could you get?
3. How much could your team 'earn' from the scheme per week?
4. How much could your team 'earn' from the scheme per year?
5. How much time do you think this would take your team?
6. Explain now, if it is worth doing.

C. The entire class
 Use estimations, calculations, comparisons, data tables and graphs.

1. How many containers do the entire class and their families use weekly?
2. Where else could your class collect from? How many could you get?
3. How much could your class 'earn' from the scheme per week?
4. How much could your class 'earn' from the scheme per year?
5. How much time do you think this would take?
6. Could it be a PDS project with your class managing the scheme for the entire school?
7. Explain if it is worth your doing.
8. How could you use the money collected to benefit others?

Assessment Task 2.24

Name(s):	Key dates:	Unit 3 Applied generally
Tasks - AT2: CDS $4 \mathrm{U} \&$ Me	Must Do?	
Due by	Done Level	

A. Collecting on your own. Estimate and calculate:

1 Use of you and your family.
2 Other potential collection options and amounts.
3\&4 Weekly and annual earnings.
5 Time invested in collecting and returning.
6 Evaluations of worthwhileness.

B. Collecting as a pair/team of 3-4. Estimate and calculate:

1 Use of your team and their families.
2 Other potential collection options and amounts.
$3 \& 4$ Weekly and annual earnings.
5 Time invested in collecting and returning.
6 Evaluations of worthwhileness.
C. Collecting as an entire class. Estimate

1 Use of your class and its fars
2 Other potential collec
$3 \& 4$ Weekly and annual earnings.
5 Time invested in collecting and returning.
6 Explain whether this could be a PDS project.
7 Evaluations of worthwhileness.
8 How to use money collected to benefit others.
Develop and apply numeracy tools and techniques.
Develop and explain graphs and tables.
Applied use of the problem-solving cycle.

\Rightarrow Prepare and submit your final report \& documentation.
Identify the maths
Act on \& use maths
Evaluate \& reflect

[^1]
2.25 // Problem-Solving Cycle // Maths Toolkit

Time and Place

3.01 Personal Numeracy - Location

 62 .66 .72.74
3.13 Getting Around 74

Activ	ties 3: Time and Place	p. Due date Done	Comment
3A	Me and location \& time	63	
3B	Digital location systematics	52	
3 C	It's time	67	
3 D	Telling the time	69	
3 E	24-hour time	70	
3F	My daily time	-	
3G	Converting time		
3H	Estimating and conver		
31	What about place		
$3{ }^{3}$	Preferred directions	77	
3K	Map pathways	79	
3L	Maps: Landmarks \& scale	81	
3 M	Whereabouts?	$\begin{aligned} & 82- \\ & 83 \end{aligned}$	
AT3a	Marvellous Melbourne	$\begin{aligned} & 84- \\ & 87 \end{aligned}$	
PST	Problem-Solving Cycle and Maths Toolkit	88	

Comments:

3.01 Personal Numeracy - Location

Personal numeracy

In Unit 3 you will be assessed on your understanding and application of both Location and Systematics in relation to Personal Numeracy. It is also important that you can apply this understanding to your vocational activities and responsibilities.

As always in your Numeracy studies, you are expected to apply the 4-stage ProblemSolving cycle, as well as further developing and applying your Mathematics Toolkit including new tools.

Location

Location involves having an understanding of space, direction and relative location. In our lives we need to find things (locate), organise things (arrange, plan and organise) and move from one place to another (travel). Applied location involves:
\Rightarrow directions
\Rightarrow travel modes
\Rightarrow travel routes
\Rightarrow travel times
\Rightarrow using maps, and even
\Rightarrow managing our own personal space.
Estimating and calculating time anc 10 , 7 , related to location and travel.
Location is also very important v.a a sitia .ns including:
\Rightarrow getting to work on time
\Rightarrow organising a safe and e. cient Prkspa
\Rightarrow locating stock, materials, equipmenion other work-related inputs and tools
\Rightarrow deciding how best to service customers and clients
\Rightarrow working efficiently and productively
\Rightarrow travelling from one worksite to another
"Where z ya?" "Behind you!" "Wherz tha at?" "Seriously...?" Although you will investigate time more explicitly in Unit 4 Module 1, you need to have a clear understanding of how to apply time estimation and calculation skills related to location as part of everyday problem-solving for personal and vocational situations.

Location and Time Skills

Reading different times and time devices.
 Filling in timesheets and work schedules.

Estimating, planning, and organising time.

Keeping and using and daily planner.

Investigating places, maps and distances.

Finding landmarks.

Image: tashatuvango/
Depositphotos.com

Me and location \& time

Rate your applied skills in each of the location and time actions above. Add 2 more.
Be prepared to discuss your ratings.

3.03 Personal Numeracy - Location

Systematics

Systematics involves how we can make best use of technology, including devices and apps, to help us plan and organise our personal lives, our educational lives, our social and recreational lives, our work lives and other activities in our life.

Systematics deals with data and information. Think of your school timetable, a work roster, and a public transport timetable; lots of important data and information in those.

Location data and information involves inputs and outputs. When using a SatNav you input information - your location and destination; and you get outputs - a travel route and estimated time.

So do you use these digital systematics tools related to location?

Location - Diral Nematics

Navigation apps
People use navigation a Google Maps to plan th and find directions to arious? locations, whether it's for driving, walking, or public transportation.

Event planning

When organising social events or gatherings, people may use apps to coordinate locations, timings, and other details. This can include scheduling events on platforms like Facebook or Snapchat or using event-specific apps to manage invitations and locations.

Geo-tagging

People often use systematics to add geotags to their social media posts, indicating the location where a photo or status update was posted. This can help them document their experiences and share their travels and whereabouts with friends.

Location sharing

Systematics can be employed for location sharing through apps like Find My Friends or Maze location-sharing features in messaging apps. This helps people coordinate meet-ups or let friends and family know their whereabouts.

1. Do you use the digital systematics tools on p. 64 related to location? List these in the table. Add up to 3 more that you use.
2. If so for what/when; and why?

| Digital tools | For what do I use this? | Why do I use this? |
| :--- | :--- | :--- | :--- |
| | | |
| | | |

Investigation

Before the age of 'apps', how did people do these same things? Find out by asking some people (much) older than you.

3.05 It's Time

Time

A key part of understanding and describing location involves time. So we need to have a recap of the key concepts related to estimating and calculating time.
Our contemporary 'Western' time system uses units of time such as seconds, minutes, hours, days, months, years, etc.. This system is based on the Gregorian calendar of 1582.
A day is the approximate time it takes the Earth to rotate on its axis: 24 hours.
An hour is broken into 60 minutes, each of which is broken into 60 seconds.
So there are 86,400 seconds in a day $(60 \times 60 \times 24)$. That's a lot of seconds to use wisely. Tick. How did you use that one? Tock. What about this one?
The standard full-time work week in Australia is 38 hours, although some workers are on a 35 -hour week.
Of course many people work more than a standard week performing both paid and unpaid overtime. Many people also work less than a standard week as part-timers or casual employees.
Most self-employed people work well over $38-h$ Irs each week. Some people have two or more jobs and really rack up the \forall nd some people, for various reasons do not work at all as an an mough they might perform a lot of unpaid domestic wos as acsulut a slunteering. Some service occupations charg by the ha rionsalon), half-hours (tradies), quarter hours (GPs) ai var. i. jites an ensive lawyers!). The approximate time it taks Ne Sun is one year. This of course $=365$ days .
A standard work year for most employes r Australia $=240$ work days less public holidays and personal leave.
But again some people perform more work days than this. This includes managers and professionals, people working overtime, people working more than 1 job, self-employed people, as well as workers in high demand or employed in occupations and industries with labour shortages. And then there are some people who work close to 365 days a year. Let's give a shout-out to those working the land!
Time is the only resource that we all have the same amount of. We each have 24 hours a day, 7 days a week, 52.18 weeks a year and about 82 years a lifetime (on average).
So how do you use your time?

Do you 'juggle' your time well? This guy seems to be stuck in a time warp! And his clockfaces aren't quite right either!

1. Match each of these terms to the correct statement related to time.
2. Discuss by talking about how these concepts relate to your own lives.
\square 24-hour timecalendarETAsecondsdaysdigital
\square analogueduration
\square minutes
$\square \mathrm{pm}$
\square time zoneswageweek

This sets out relative time based on where you are in the world.

3.07 It's Time

'Telling' the time

Let's also have a recap of 'telling the time', because in this age of digital devices, some people are getting a bit rusty at being able to use all three time methods.
Time can be commonly shown in analogue terms using hands and numbers on a 12hour clockface or a manual watch, or in digital terms using numbers.
Some people and businesses prefer 24-hour time, especially in the world of work. For many of you, your future work rosters and timesheets are likely to be in 24-hour time.
And you may have found out when watching science fiction and time travel movies, time is also the 4th dimension! Just ask Marty McFly and Doc Brown!

Analogue time

Analogue time generally refers to the traditional method of 'telling' time as shown on a clock or on a watch. Analogue time uses a 12-hour clockface with an hour hand, a minute hand and sometimes even a second hand.

Many people use analogue timepieces in their profg sions, including doctors and nurses who may have to count seccis. Some people such as pilots and divers prefer analogue timepiecos to their precision.

Digital time
Digital time is now the most common ay ar thr \&eople use digital devices such as their mobile phces a. yai Nor, digital

Digital devices normally alscing ra on

24-hour time

24-hour time treats the day as continus and counts the hours from 0 to 24 (or 23:59:59).
The day starts at 0:00 hours (which is midnight) and goes through to 24:00. (Note: 24:00 is also regarded as midnight).
12:00 hours is midday. 13:00 hours is 1 pm and so on. Each pm hour

```
2l:00
``` adds 1 to the number 12.
Sometimes 24 -hour time is communicated as " 14 hundred hours" (i.e. 2 pm in Army time!).
Many industries use a 24 -hour clock to communicate and record work time for activities associated with rosters, work shifts, transport, automated tasks and many other work-related activities.

\section*{AM and PM}
a.m. refers to the time between 12:00pm (midnight) and 12 (noon). am stands for ante meridiem (before midday). p.m. refers to the time between 12:00 noon and 12 midnight. pm stands for post meridiem (past midday).
You can write 'a.m'. and 'p.m.' as just am and pm without the full stops.
1. Interpret these analogue clockfaces to estimate the time. (You might want to show key numbers on the clockface to help you).
2. Show the correct time on the blank clockfaces.

Tip: Remember that the hour hand does move continuously between numbers (but slightly) as the minute hand goes around an hour.

\subsection*{3.09 It's Time}

\section*{3E 24-hour time}
1. A lot of workplace rosters and transport times use 24-hour time. Use the signifiers of am and pm to interpret these digital displays as 12-hour time.
\begin{tabular}{|c|c|c|c|}
\hline \(16: 00\) & \(17: 30\) & \(20: 45\) & \(23: 36\) \\
\hline \(06: 00\) & \(02: 15\) & \(10: 45\) & \(19: 30\) \\
\hline \(18: 00\) & \(00: 00\) & 100 & \\
\hline & & \(24: 00\) \\
\hline
\end{tabular}
2. Choose 4 of the 24 -hour examples hour clockface. Make sureto a iy Jun ar. OM.

3. What are your times for when you leave school and arrive home? Show these times on a 12 -hour clockface, as digital time, and as 24 -hour time.

1. So how does time impact on your life in respect to location?

Consider your personal life, your school life, your working life, your social life, your family life and your recreational life.
2. For each of these different aspects of your life, identify 3 examples when time and location impact on, or influence, what you do.
e.g. School: - On a school day I have to travel 45 minutes to get to school.
- My workplace is only 15 minutes away from the school.
- But it takes 10 minutes to get to the café' for lunch.
\begin{tabular}{|c|c|c|}
\hline My personal life & My school life & My working life \\
\hline i. & i. & i. \\
\hline ii. & ii. & ii. \\
\hline iii. & iii. & iii. \\
\hline My social life & \(\bigcirc\) - ami & My recreational life \\
\hline i. & & i. \\
\hline ii. & ii. & ii. \\
\hline iii. & iii. & iii. \\
\hline
\end{tabular}

\section*{Discussion}

What tools and apps do you use to help you organise, plan and use your time?
Are any of these different for personal or vocational situations?

\subsection*{3.11 Converting \& Estimating Time}

\section*{Converting time}

At times we have to convert hours into minutes, or minutes into hours, or even minutes into seconds; as well as other conversions using units of time. This is a very important skill when it comes to estimating, organising and planning for how long tasks might take, or for estimating, calculating and planning the duration of travel journeys.
The major units for recording time are hours, minutes and seconds. But the breakdown for counting time is different from our usual decimal counting method.
With hours, minutes (and seconds) we need to remember that there are 60 seconds in a minute and 60 minutes in an hour. So:
\(\Rightarrow 1\) full hour is 60 minutes
\(\Rightarrow 1\) half of an hour is 30 minutes
\(\Rightarrow 1\) quarter of an hour is 15 minutes
\(\Rightarrow 3\) quarters of an hour is 45 minutes
\(\Rightarrow 1\) full minute is 60 seconds
\(\Rightarrow 1\) half of a minute is 30 seconds (and so on).

\section*{Converting \& Estimating Time 3.12}

\section*{Estimating duration}

Planning and organising your life effectively involves the ability to make informed time estimates. This applied problem-solving skill requires:
\(\Rightarrow\) predicting how long tasks will take
\(\Rightarrow\) estimating travel durations, and
\(\Rightarrow\) gauging the time spent on specific activities.
Estimating time duration involves applied numerical tools and techniques to calculate or predict how long a task will last.
As you know, problem-solving for duration is important in personal activities like cooking, travelling and even going out and socialising. This is also vital for nearly all work-related tasks that must 'run according to the clock'.

\section*{Estimating and converting}
1. Make estimates of the duration for these tasks
2. Then convert your estimates into the most < riate units of time.
3. Write or record your final answer, as you will have students share their results with the class.
\begin{tabular}{|cc|}
\hline c. How much time you w spenc long it takes you to get both t and \\
home from school? \\
watching online videos? \\
e. How much time you will spend \\
exercising today?
\end{tabular}\(\quad\)\begin{tabular}{c}
f. How much time you will spend \\
exercising this month?
\end{tabular}

\subsection*{3.13 Getting Around}

\section*{Location}

Location simply refers to where something or someone is.
We need to understand location relative to where we are, and to where others are.
Having this spatial understanding enables us to navigate the world better.
Spatial understanding is very important for work-related situations.
Some jobs rely heavily on location and getting around, such as train, bus and tram drivers, delivery and courier drivers, paramedics, pilots, sportspeople and many other job roles.

It's a big country you know. So how do we know where to go?

Understanding location often involves using directional words that are relevant to our positi \()^{2}\)
These can include words such as "left" or "rig \(\nabla>4\) " or "down", "over there", "behind", "in front", "beside", "here", or even "up the ect ound the corner"!
We can say that these types of descri, fio sca dive Utive position.
We also use descriptors that givean iny parn prer, such as "pretty soon", "3-blocks", "half-a-kilometre", "in min or sin veven, "go just up the street and you'll find it"!
And of course, we can alsc lly on \(Q\) dig \(>\) delpers to do the hard work for us. Where am I going? Let's just tap the lo into my phone and bingo - I'm off. \&So what about you? What do you use to help you understand location and get around?

\section*{What About Place}

Describe how you have applied each of the 'What About Place' concepts in personal and vocational situations. Add 2 more.
What about place

\subsection*{3.15 Getting Around}

\section*{Directions}

So, how are you at giving and following directions to find your way (navigate) around? Giving and following directions is an important numeracy skill in personal and vocational situations and is applied use of the problem-solving cycle in action.
When someone asks you for directions you are taking responsibility for guiding that person efficiently and safely to where they want to go.
If you are working in a supermarket and a customer asks you where to find the Coco Pops, again you are taking responsibility for making their shopping experience easier.
Directions may be in these forms.
\(\Rightarrow\) Oral: Verbally, such as asking someone the way to the nearest train station.
\(\Rightarrow\) Written: By following a sequence of directions from a starting point to a destination.
\(\Rightarrow\) Visual: Using a print or digital map to find your way around a location, such as using a store layout map when in a shopping mega-mall.
\(\Rightarrow\) Digital: Using GPS in a car, or a maps feature, ar an app on your phone to find key landmarks while on holiday in an unfamiliar
\(\Rightarrow\) Physical: Showing, pointing or leading scme je so as to 'act out' appropriate directions.

\section*{Combinations}

When we give and receive instructions wa un ut a ombination of these methods. But as you have experion, spop.e h. \({ }^{2}\) arferent communication styles; and also different preferred wa,
Some people like to be sh \(1, \leq \Omega\), Me ind some like to follow a map, while others simply like stumbling upon sorne new! Others are in a big hurry, some are stressed and some people can be ve, pushy and demanding - even though they themselves don't know how to get to where they want to be.
The world is full of diversity. For example, how would you ask for directions in China?
People may be differently abled; for example, how would you guide a visually-impaired person to the nearest McDonald's?

And some people may be in a rush! So how would you respond to a frantic driver who calls out to you while stopped at a set of traffic lights and begs you to tell him the location of the nearest hospital because his wife is going into labour in the back seat!?
So what type of method for 'directions' do you prefer to use when you are trying to navigate in personal situations? What about in vocational situations - do you switch methods when you have the responsibility of looking out for others?

Image:
Depositphotos.com

\section*{Getting Around 3.16}
1. What type of method for giving 'directions' do you prefer to use when you are trying to get around? Comment on each of these methods (for or against) to describe your preferences, and give an applied example to show this.
\begin{tabular}{|c|c|c|c|}
\hline Method & \multicolumn{2}{c|}{ Explanation for me } & \begin{tabular}{c}
When I travelled to my appointment \\
e.g. \\
Digital
\end{tabular} \\
\hline Oral & \begin{tabular}{c}
like to use a map on my phone because I \\
can set my location and see the directions \\
on my screen.
\end{tabular} & \begin{tabular}{c}
(or work experience in the city I put the \\
addres in my phone and followed its \\
directions very easily.
\end{tabular} \\
\hline Written & & \\
\hline Visual & & \\
\hline Digital & & \\
\hline Physical & & \\
\hline
\end{tabular}
2. What type of method helping someone else at ard ad? for sent on each of these methods (for or against) to describe your preferen and give an applied example.
\begin{tabular}{|c|c|c|}
\hline Method & \multicolumn{2}{c|}{\begin{tabular}{c}
Explanation for me
\end{tabular}} \\
\hline \begin{tabular}{c}
e.g. \\
Physical
\end{tabular} & \begin{tabular}{c}
When someone asks me how to find a \\
place I point in the direction and also \\
screw my arm around if they need to turn \\
a corner.
\end{tabular} & \begin{tabular}{c}
An old man asked me how to get to the \\
Centrelink nearby. I pointed up the road a \\
long way and then screwed my arm left to \\
show he had to turn.
\end{tabular} \\
\hline Oral & & \\
\hline Written & & \\
\hline Visual & & \\
\hline Digital & & \\
\hline Physical & & \\
\hline
\end{tabular}

\subsection*{3.17 Getting Around}

\section*{There to here and back again}

We know how to navigate around familiar places because we have done it before.

For example, you know how to get from your home to school or to work, and back again, even if you use different travel methods and routes.
\&But think back to the first time you had to navigate these journeys. How did you work out your travel route? A map? An app? Did someone show you? Did someone take you?
So how would you 'show' someone how to get from there to here, and back again?

\section*{Using maps}

Whether you are using maps to get around or you are drawing a map to help others, you have to make the map functional so that it effective.
This means that the map must guide the peron. Jw to get from their origin to their destination.
The map should also be efficient. This on nap needs to enable the person to quickly and easily work out \(1 . v i g n v m\) ringin to their destination. Three key mapping features that \(n \leqslant a\) mr oule (i.e. both more effective

\section*{Pathways}

When using or making a map, you are trace a travel route (or a pathway). A pathway is the route that includes the ways to get from 'point A' to 'point B'.
A person might mark the route on the map that they are going to follow. Or they may trace it with their finger to commit this into memory.

GPS, street directories and map pathway routes might include roads, streets, highways, freeways and other methods of travel.
Many GPS and e-devices will come up with a pathway route when you enter your destination. These devices might also communicate the route aloud. In fact many people follow these verbal instructions when travelling.
Pathways are also important as escape routes for emergency evacuation procedures. Have you noticed any of these, usually as green arrows, around your school?
Pathways might also include public transport routes, bike paths, pedestrian traffic areas, waterways, terminals and exchanges (e.g. airports) and so on.

Getting Around 3.18
1. What is a map 'pathway'? Why is a map pathway important? When do you use map pathways?

\(\square\)

\subsection*{3.19 Getting Around}

\section*{Features and landmarks}

Most maps will include common or key features or landmarks. These landmarks might include places of interest, government buildings and services, emergency facilities, green areas, schools, signs and other distinguishing and useful features.
Landmarks might be located in the correct spot on the map, but may not be drawn to scale. These map features help people by getting them to look out for key landmarks that they might notice on their journey. For example:
\(\Rightarrow\) "If you reach the oval then you've gone too far."
\(\Rightarrow\) "Turn right at the roundabout."
\(\Rightarrow\) "When you come to the park keep going, because mine is three doors down."
So, if you can find features and landmarks when getting around - then problem-solved!

\section*{Scale}

Most maps are usually drawn to scale. Troma the distance shown on the map corresponds with a distance in rem So trizs the map user to make a visual estimate of travel distance and tin. Th. 9 spatial bearings.
Not all maps are drawn to scale no, \&ey . . \(\oplus\). bs. When you are using a map see if it is to scale, or close*o constructing a map, then try to make it close to scale so Your teacher will help guide, ou whis. the.
If the map is for a short distance then thecale will be quite generous, e.g. \(1 \mathrm{~cm}=1 \mathrm{~m}\) (i.e. a school or shop map). If the map is for a large distance the scale will be quite economical, e.g. \(1 \mathrm{~cm}=1 \mathrm{~km}\) (a street or town map).

\section*{Using maps}

With maps you need to make use of these three key features that help make maps both more effective and more efficient.
Pathways: When using or creating a map look for and show the most effective pathways route that suits that type of transportation mode being used by the person; e.g. walking, car, public transport, cycling, etc..
Features (and landmarks): Show key features and landmarks that the map user will look out for. These help a person gain a visual understanding of where they are. Key features on a map also help build location-memory.
Scale: A scale measures a ratio such as \(1 \mathrm{~cm}=1 \mathrm{~km}\). This means that 1 cm on the map corresponds with 1 km in real life. Scale might be written as 1:100 (e.g. 1 cm \(=1 \mathrm{~m}\)). Making a map close to scale better represents distance and/or time.

\section*{Getting Around 3.20}

Maps: Landmarks \& scale
1. What are map 'landmark features'? Why are map landmark features important?
\(\square\)
2. When do you use or look for map landmark features? Which types? Draw some.

3. What is a map scale? How does look for a map scale?

\section*{Applied investigation: Maps vs apps}

Even though many people prefer to use digital devices for navigation you will still experience that some people, especially older people, prefer to use printed maps such as the Melways street directory, especially for longer and unfamiliar journeys.

One of the main reasons for this is that with a street directory, you can get a much better 'big-picture' view of the journey because the page interface is much larger than a small screen interface.
You also develop spatial location memory as you yourself are creating the route rather, than just being told where to go, step-by-step by 'Al'.
Choose 3 journeys: Less than 30 mins. 30 mins to 1 hour. More than 1.5 hours. Use a street directory to plan your journey and to estimate travel time.

How did you go? Do you think that you have a better understanding of these journeys?
What advantages and disadvantages did you experience with this 'old-school' method?

\subsection*{3.21 Putting it Together}

\section*{3M Whereabouts?}

This map and its landmarks are not exactly to scale, but they are pretty close.
Find each of the landmarks listed opposite using the grid references. (There may be multiples, so choose.) Describe where each is using street, directional and landmark locations. Include compass directions if that helps. Add 6 more.

You could do this working in pairs, but each of you should fill in your own table. If you need more space, enlarge the table, or use your workbooks. \(\begin{gathered}\text { Image: WIns86/ } \\ \text { Depositphotos.com }\end{gathered}\)

\subsection*{3.23 Assessment Task}

\section*{AT3a Marvellous Melbourne Personal Numeracy: Location}

Shown opposite is a stylised rendered map of Melbourne CBD and surrounds. It's one of many cool pieces of work from the talented digital artist, 'Shlapak'.
You are required to use this map, your own applied knowledge and other numeracy tools and techniques to complete the following tasks.
1. Where are you viewing Melbourne from? Which direction are you looking? Identify and mark, N, S, E and W.
2. Estimate the size of the area that you think the map covers. How could you work this out? Check your estimates. How did you go?
3. Where are the boundaries of the map located? What suburbs do these involve? Describe these locations.
4. Which landmark features can you identify? Where are they In You can use relative loca system, directions a
5. Which parks and wate vays \(C, y\) yu identify? Where are these located:
6. Large buildings and structures show up on the map but small houses and buildings do not. Identify and describe the location of key buildings/structures.
7. Identify the main 'streets' that make up the Melbourne CBD and describe their (relative) location on the map.
8. How long would it take you to walk north-south and east-west in the CBD? What about cycling? What about a tram ride? What about driving - and which routes would you use for that?
9. Where are the train stations? Whre will the new train stations lentify and describe these gations.
have you been in the CBD sently, or where do you visit bula locate these. Why did - 'iere and how did you get lentify the main 'thoroughfares' that lead into the Melbourne CBD as shown on the map and describe their (relative) location on the map.
12. Add other relevant information that would help visitors, pedestrians, cyclists, commuters, delivery drivers, commuters, tourists and others, including accessibility advice.

\subsection*{3.25 Assessment Task}

Additional information:
3.27 // Problem-Solving Cycle // Maths Toolkit

\section*{Location and Planning}
\(\begin{array}{llll}\text { 4.01 Location and Planning.................... } 90 & \text { 4.22 Assessment Task } 111 \\ \text { 4.03 Compass and Angles...................... } 92 & \text { 4.25 Planning and Organising............ } 114\end{array}\)
4.09 Describing Location 98 4.31 Assessment Task 120
4.17 Distance and Time........................ 106 4.33 Problem-Solving \& Toolkit......... 122
\begin{tabular}{|c|c|c|c|}
\hline Activit & ties 4: Location and Planning & & Comment \\
\hline 4A & How I use... & 91 & \\
\hline 4B & Compass directions & \[
\begin{aligned}
& 92- \\
& 93
\end{aligned}
\] & \\
\hline 4 C & Angels & \[
\begin{aligned}
& 96- \\
& 97
\end{aligned}
\] & \\
\hline 4 D & Where can I find.... & 99 & \\
\hline 4E & Location & \[
\begin{aligned}
& 100- \\
& 101
\end{aligned}
\] & \\
\hline 4F & Language of location & \[
\begin{aligned}
& 102- \\
& 103
\end{aligned}
\] & \\
\hline 4G & Tour guiding & & \\
\hline 4 H & Getting around & & \\
\hline 41 & Apps v maps & & \\
\hline 4J & Travel speeds & & \\
\hline 4K & Distance and time & & \\
\hline AT4a & Off To Work I Go & \[
\begin{aligned}
& 111- \\
& 113
\end{aligned}
\] & \\
\hline 4L & Calendars \& diaries & 115 & \\
\hline 4 M & To-do list & 116 & \\
\hline 4 N & Timetables & 117 & \\
\hline 40 & Rosters & 119 & \\
\hline AT4b & It's Up To Me & \[
\begin{aligned}
& 120- \\
& 121
\end{aligned}
\] & \\
\hline PST & Problem-Solving Cycle and Maths Toolkit & 122 & \\
\hline
\end{tabular}

\footnotetext{
Comments:
}

\subsection*{4.01 Location and Planning}

Personal and Vocational Numeracy - Location
In this section, you will continue to develop your skills related to location, and apply these skills to both personal and vocational situations.
You will also continue to apply the tools of systematics to help you plan, organise and schedule various personal and vocational activities.
Naturally you will apply the 4 -stage Problem-Solving Cycle when completing Numeracy activities, and you will add more tools and techniques by further developing and applying your Mathematics Toolkit.
Here are some key numerical skills that you will develop and apply. Your teacher might also focus on others.
\(\Rightarrow\) Knowing and meeting deadlines.
\(\Rightarrow\) Estimating, planning and organising personal time commitments.
\(\Rightarrow\) Balancing personal commitments and work responsibilities.
\(\Rightarrow\) Using calendars, dairies and to-do lists.
\(\Rightarrow\) Understanding schedules, rosters and timetaras
\(\Rightarrow\) Investigating places, maps and distances.
\(\Rightarrow\) Reading, using and making maps.
\(\Rightarrow\) Planning travel routes.
\(\Rightarrow\) Finding landmarks, and interpreting \(=\mathrm{ml}\) manc cas.
\(\Rightarrow\) Giving and following directinis

\(\Rightarrow\) Estimating distance anc rave
\(\Rightarrow\) Comparing travel options, times ancos.

\section*{Location and Planning}

1. Describe an applied example of how each of these location and planning terms relates to you in your personal life. What information/apps/tools do you use?
2. Describe an applied example of how each of these location and planning terms relates to you in your vocational life. What information/apps/tools do you use?
\begin{tabular}{|c|c|c|c|c|c|}
\hline Term & Personal life & \begin{tabular}{c}
Information/ \\
apps/tools
\end{tabular} & Vocational life & \begin{tabular}{c}
Information/ \\
apps/tools
\end{tabular} \\
routes & & & & \\
\hline maps & & & & \\
\hline directions & & & & \\
\hline timetables & & & & \\
\hline deadlines
\end{tabular}

\subsection*{4.03 Compass and Angles}

\section*{The language of directions}

When giving and following oral directions we often use, and listen for, certain language to describe 'where' and 'how' related to location and directions. We also often combine oral directions with physical gestures such as pointing.

Compass directions use terms such as north, south, east and west, or north east, south west and so on. But most of us usually don't use this more formal way of speaking. And many times we don't even know which direction is which, unless we have a map, or have prior knowledge of an area. But when we hear about the direction of the wind on the weather report, compass directions can tell us a lot!
As you know, we can make use of directional words that are relevant to our position such as "left" or "right", "up" or "down", "over there", "behind", "in front", "beside", "here", or even "around the corner". We can say that these describe relative position.
We also use descriptors that give an indication of how far, such as "pretty soon", "2-blocks", "200m", "> 2 minutes" or simply even, "just go around the and you'll see it."
«So what type of language do you prefer to describe location and how to find you

\section*{4B Compass directions}
1. Label the compass poir rs vili \(\quad \leq=\mathrm{pH}\). ficte directions.

2. Using a compass, place this page flat on the desk in front of you. Use the compass to draw an arrow showing north on this page. In which direction is your home?
3. The school will be the opposite direction to your home. What direction is that?
4. In which direction is the city? From which direction is the wind blowing?
5. Mark the correct points on the compass below and/or identify the correct compass directions (bearings).
6. The needle on a compass always points north. But how do you use a compass to

7. Find out what types of occupations use compass directions and bearings as part of their day-to-day work roles. How well would you go at doing this?

\subsection*{4.05 Compass and Angles}

\section*{Angles}

The major directional points on
An angle measures the 'distance' between 2 rays. When drawn these rays might be represented by lines. In the 3-dimensional world the 'rays' might represent the edges of physical objects, or expressions of direction.
An angle is measured in degrees. One full turn of an angle equals \(360^{\circ}\). Therefore a \(1 / 4\) turn represents \(90^{\circ}\). This is called a quadrant. Therefore, four quadrants make up an entire 'turn'. Just like if you face north and turn \(90^{\circ}\) to face west, turn another \(90^{\circ}\) to face south, turn \(90^{\circ}\) again to be facing east, and then \(90^{\circ}\) once more; you're back facing north.
a compass each represent \(90^{\circ}\).

That's \(360^{\circ}\) in total. And you're back to the same direction you were in the beginning.
One of the most common ways of measuring degrees is to use a protractor. You probably are used to seeing 'iem in sets of drawing and writing implements. You'y probably used a protractor many times in the eas.

\section*{Personal application}

Using angles is a natural part of our lis. tros don't really think about them that much. From the a ale or pinsiont) to the angle of high heels (discomfort), we visia Matio aty to assess and accommodate angles on a
\(\Rightarrow\) We use angles to asse how Pr cioth \(\nabla\) rits on our bodies.
\(\Rightarrow\) We use angles when driving and pas.
\(\Rightarrow\) We open our mouths at different angles, depending on how big the burger we are trying to fit in is!
\(\Rightarrow\) When singing, a different-angled vocal cavity can change pitch and volume.
\(\Rightarrow\) When dancing, angles can be used to articulate line and to drive movement.
\(\Rightarrow\) We try to get the best angles when watching screens.
\(\Rightarrow\) We angle the cue stick and angle how we hit the cue ball when playing pool.
\(\Rightarrow\) Angles are very important when parking a car, such as parallel parking, \(45^{\circ}\) parking (which is called angled parking!) and when making tricky turns.
\(\Rightarrow\) Self-obsessed people try out angles when taking selfie after selfie in the mirror!

\section*{Types of angles}

Acute: An acute angle is less than \(90^{\circ}\).

Right: A right angle is exactly \(90^{\circ}\).

Looking front-on: Wall meeting a floor.

Obtuse: An obtuse angle is more than \(90^{\circ}\) but less than \(180^{\circ}\).

\section*{Vocational applications}

Measuring angles is very important in a y s situations. Experienced and skilled employees actually do this v deven ngan ming their visual-spatial skills, or through kinaesthetic applicatio a, ascie me fory.
\(\Rightarrow\) Carpenters and joiners 5 ej ble LLer ti ny using varied angles.
\(\Rightarrow\) Tilers have to cut tiles to yeon. ric nai \(>\) based on the calculation of angles.
\(\Rightarrow\) Multimedia designers rotate design erents based on angles.
\(\Rightarrow\) Clothing makers use angles to determine garment shape and hang.
\(\Rightarrow\) Furniture makers design and build chairs for different sitting angles.
\(\Rightarrow\) Nurses and carers have to support patients at different angles, often using a motorised bed, trolley or chair.
\(\Rightarrow\) Truck and lorry drivers use angles to make turns and to reverse park their vehicles and loads.
\(\Rightarrow\) Hairdressers style and cut geometric hair shapes and patterns.
\(\Rightarrow\) Furniture removalists calculate angles when moving large-sized or bulky items through narrow spaces.
\(\Rightarrow\) Construction workers use angles for many tasks, including the safe placement of a ladder.
\(\Rightarrow\) Sportspeople rely on the use of angles, such as footballers and soccer players kicking for goal, cricketers when bowling and batting, hockey players hitting the ball, soccer goalkeepers making a save; and many more diverse applications in basketball, archery and even darts!

\subsection*{4.07 Compass and Angles}

\section*{Angles in action}

Sometimes people use angles when describing direction and location. This is especially relevant in practical, manual and technical occupations, and in many movement, transport and travel situations.

Angles are also used for describing direction and location in performative areas such as dance, in sports, in many creative areas such as photography, design, staging and lighting, and in some health and recreation situations.
One of the best ways to apply directional angles is to rotate an object, or yourself, the number of turns signified by the angle.
So given that a quarter turn is \(90^{\circ}\), this will see you or the object, facing in a totally different direction. Four quarter turns and you are back to where you started.

Angles and degrees are also used as descriptive terms in 'artistic' sports to describe body rotations such as twists, flips and somersaults in snowboarding, ski-jumping, water skiing, skating, BMX, diving and gymnastics.
©For example, "Woo-hoo, Jump Jaxxson just landed a 720 pipe! How rad is that!"

\section*{4C Angels}

1. Match the type of angle with the correct explanation. In your work folios, draw a representation of each angle.
\(\square\) An angle that is less than \(90^{\circ}\).
\(\square\) An angle that is exactly \(90^{\circ}\).
\(\square\) An angle that is more than \(90^{\circ}\) but less than \(180^{\circ}\).
\(\square\) An angle that is exactly \(180^{\circ}\).
- An angle that is greater than \(180^{\circ}\).
- An angle that is \(360^{\circ}\).
\begin{tabular}{|c|c|c|}
\hline Acute & Full & Obtuse \\
\hline Reflex & Right & Straight \\
\hline & & \\
\hline
\end{tabular}
2. Draw or represent these common angles.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline a. \(15^{\circ}\) & b. \(30^{\circ}\) & c. \(45^{\circ}\) & d. \(60^{\circ}\) & e. \(90^{\circ}\) & f. \(120^{\circ}\) & g. \(135^{\circ}\) \\
\hline h. \(160^{\circ}\) & i. \(180^{\circ}\) & i. \(225^{\circ}\) & k. \(270^{\circ}\) & I. \(315^{\circ}\) & m. \(360^{\circ}\) & n. \(0^{\circ}\) \\
\hline
\end{tabular}
3. Trace this journey by following the direction using angles. Start at the dot.

Travel North for 3 cms . Turn \(90^{\circ}\) west and continue for 5 cms . Turn \(90^{\circ}\) to face south and travel 10 cms . Turn \(90^{\circ}\) to the East and travel 8 cms . Turn \(90^{\circ}\) to face North and travel 7 cms . Finally turn \(90^{\circ}\) to the West and travel 5 cms .

4. Describe how an understanding of applied angles is important in recreational situations, and in vocational situations.

\subsection*{4.09 Describing Location}

\section*{Location}

It is important to emphasise that the language of location is not universal. However, that being said, the language of location in occupation-specific situations is expected to be consistent because workers use a shared technical or professional vocabulary. You need to develop both a personal and a 'professional' location vocabulary to enable you to accurately describe the relative position of people, features and objects with one another. Correct terminology assists when:
\(\Rightarrow\) following and giving directions
\(\Rightarrow\) organising and setting out personal and residential space
\(\Rightarrow\) helping people deal with spatial issues
\(\Rightarrow\) helping people locate items
\(\Rightarrow\) in sport and recreation activities
\(\Rightarrow\) navigating the external world including driving, and
\(\Rightarrow\) many other situations from cooking through to dancing and pet care through to gardening.
In the vocational world correct terin inloa; vory ? +1
Cricket is a sport that relies heavily on the applied use of location.
\(\Rightarrow\) train and instruct co-wc \(>0\),
\(\Rightarrow\) help workers organise and find nutz, \(\geq\) terials and stock
\(\Rightarrow\) plan and organise a workspace or wo stations
\(\Rightarrow\) create pleasing merchandise displays for customers and clients
\(\Rightarrow\) organise safe and efficient storage
\(\Rightarrow\) communicate about physical movement requirements
Image: whitestar1955/ Depositphotos.com
\(\Rightarrow\) deal with care and medical situations
\(\Rightarrow\) create safe work environments
\(\Rightarrow\) organise transport, logistics and production requirements
\(\Rightarrow\) position themselves around work stations
\(\Rightarrow\) guide a customer to find different items in a store.

> Breaker, breaker, transport and logistics is governed by time and location systematics.

1. Assume you are working at your local supermarket. How would you communicate to a customer the directions to these items? Add 6 more.
\begin{tabular}{|c|c|c|}
\hline Fresh bread & Ice cream & Toilet paper \\
\hline Vinegar & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

3. Just from your own memory, how is the work environment laid out in your favourite take-away outlet? Why is it set out this way? Start a sketch and finish it in your work folio or using a digital device.

\subsection*{4.11 Describing Location}

1. Take a look at your classroom. For these terms, describe what you see located at this relative position. Add 4 more.
\begin{tabular}{|c|c|c|c|}
\hline Up & Down & In front & Behind \\
\hline Beside & Opposite & Above & Below \\
\hline Top left & Bottom right & Under & Together \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
2. Take some time to study this image. Describe the relative location of 16 different people. How would you describe those people? Report back to the class.

\subsection*{4.13 Describing Location}

\section*{4F Language of location}
1. Describe the relative position of the objects in this formal dinner service image.

Can you name them based on their purpose?
Image: belchonock/Depositphotos.com

2. Use the language of location to describe where these tools are placed.

Some tools are in an absolute position, (e.g. 'top right'). Whereas others will need to be described relative to another tool or tools (e.g. 'opposite').

\subsection*{4.15 Describing Location}

\section*{Directions in action}

As you have experienced, we normally use more than one method for giving directions. One of the most common combinations is through using visual directions such as a map, combined with oral instructions and perhaps even supported by some physical pointers. In pairs discuss this example and report back to the class.

Li Wei, a local artist, is enjoying a leisurely stroll through the vibrant laneway market in the city. A traveller, holding a crumpled city map, approaches Li Wei with a puzzled look. In broken English, the traveller gestures toward the map, trying to convey their quest to find the city's famous art gallery.
Li Wei takes the map from the traveller, recognising their language barrier. She flips the map around to match the current street layout and points in the direction the map is now facing. "Art gallery that way," she says with a friendly smile.
Li Wei takes the time to visually guide the traveller, using hand gestures to represent landmarks.
"Go straight - 5 minutes, turn left - 3 minutes, pass' the mural (Li Wei paints an imaginary stroke in the air), turn right - 5 minuts an there you'll find the art gallery."
She points confidently at the gallery's loçon nt pap. "Understand?"
The traveller nods appreciatively, trying their best to express gratitude. "Thank you, good art place," they ser before setting off in the direction.

Li Wei smiles, acknowledging the universal language of art and wondering how her city's creative scene is perceived by visitors from diverse cultural backgrounds.

Image :michaelpuche/ Depositphotos.com

\section*{4G}

Tour guiding
1. Which methods for giving directions did Li Wei use? Give examples.

2. How effective were the directions given by Li Wei? Why so?

3. Explain whether you would use the same methods for giving directions that Li Wei used, or whether you would use different methods.

4. What apps exist that can help people and rusis get around in unfamiliar or foreign places? Have you used any \({ }^{\circ}\)

5. When would a printed map be a better option for a traveller than a device?
\(\square\)

\section*{Extension}

You're at Flinders Street Station. Choose another place in the CBD that is an important landmark.
In your workbooks, give directions from where you are located to help a tourist get to this landmark. What methods would you use? Explain why.
Note: You could role-play this for the class using a partner and relevant tools such as a map and/or phone.

\subsection*{4.17 Distance and Time}

\section*{Distance}

As you already know, distance is a 'how far' sort of measure.
"How far is it to the Melbourne CBD?"
For some of you, not very far, especially if you live locally in one of the city's nearby inner suburbs!
What about people in Melbourne's expanding outer north? And those living east, west, south, outer east, or north, or north east or south east? What about those in Yarram, Warracknabeal, Horsham, Drouin or Lakes Entrance?

How about those in Geelong, Bendigo, Wodonga or Swan Hill? And let's not forget about those of you in another state.
So what do you reckon? How far - from where you are sitting right now - to the city? How will you know?

\section*{Time}

When we are travelling, knowing the distance of ouytotal journey from our origin to our destination is only one part of the equation no nore important number that we need to work out, is the time it might take to trave that distance.
 to the city for a job interview you don't ras how far you have to travel. What you are likely to be more concen vir sion takes you to complete the journey.
If you are travelling by public to norill
timetables (using systematics).
 They are likely to be able to stima tryce me based on their own knowledge and experience of travelling at this time of tiolay.
However, if you are getting there under your own power, such as by cycling, then you will need to know the distance as you will have to use this to estimate how long your journey will take.

\section*{Travelling: How long?}

Time of day e.g. peak hour vs off peak.

Day of week e.g. work day vs weekend.

\section*{Mode of transport}
e.g. public vs private transport.

Familiarity with journey.

\section*{Weather conditions.}
1. Estimate the distance to each of these destinations. How much time do you think it will take to travel to these destinations using these transport methods?
2. Research these distances and times using maps, GPS or other resources. Set up another table in your work folios. How well did you estimate?

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Journey } & \begin{tabular}{c}
Estimated \\
distance
\end{tabular} & \begin{tabular}{c}
Journey time: \\
by car
\end{tabular} & \begin{tabular}{c}
Journey time: by \\
public transport
\end{tabular} & \begin{tabular}{c}
Journey time: \\
by your choice
\end{tabular} \\
\hline \begin{tabular}{l}
a. Your school \\
to your home.
\end{tabular} & & & & \\
\hline \begin{tabular}{c}
b. Your home \\
to the nearest \\
train station.
\end{tabular} & & & & \\
\hline \begin{tabular}{c}
c. Your home to \\
the CBD.
\end{tabular} & & & & \\
\hline \begin{tabular}{l}
d. Your home to \\
the airport.
\end{tabular} & & & & \\
\hline \begin{tabular}{l}
e. Your home to \\
your workplace.
\end{tabular} & & & & \\
\hline
\end{tabular}
3. Estimate the distance to mode. How much tin using these transport
4. Research these distances and times ing maps, GPS or other resources. Set up another table in your workbooks. How well did you estimate?

\begin{tabular}{|c|c|c|c|c|c|}
\hline Journey & \begin{tabular}{c}
Estimated \\
distance
\end{tabular} & \begin{tabular}{c}
Travel Mode/ \\
Journey time
\end{tabular} & Journey & \begin{tabular}{c}
Estimated \\
distance
\end{tabular} & \begin{tabular}{c}
Travel Mode/ \\
Journey time
\end{tabular} \\
\hline The MCG & & & The SCG & & \\
\hline \begin{tabular}{c}
Gumbuya \\
World
\end{tabular} & & & Dreamworld & & \\
\hline The Big Koala & & & The Big Prawn & & \\
\hline Poowong & & & Dunedoo & & \\
\hline \begin{tabular}{c}
Mount \\
Disappointment
\end{tabular} & & & Uluru & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\subsection*{4.19 Distance and Time}

\section*{Issues to consider}

One of the main reasons for using maps is to estimate travel distance and time so that you can better organise yourself and others.
As you know, a scale shows the distance ratio that a map represents in real life.
Most properly prepared printed maps, such as street directories, will use an accurate scale.

Digital maps use Global Positioning System (GPS) satellite data to calculate distance.
However, not all maps are drawn to scale, especially site maps and retail maps.
And when using maps to plan your travel you have to take into account travel time issues such as peak traffic flows, congestion, local knowledge and other issues.
One advantage of digital mapping devices is that they can give you a travel time estimate.

This is especially good for longer trips and driving through regional areas. And you can usually choose alternate routes to see different variations.
However, digital maps can be quite inaccurato for shorter city trips which might have more hald- \(\nabla_{0}\), especially around peak times, such as \(t\) and school. And the alternative routes ft\() \mathrm{n}\); s y y more of the same issues, because the 'cesm \(t\) te' do not know about local issues ar na.c.

4I Apps v maps

Nowadays, most people use apps to tel. nem where to go. They don't bother looking up a map at all, they just listen to what the app tells them, or follow the pointer on their screens. But reading maps can be very useful, and is a great way of embedding knowledge about location and travel.

When would you prefer to use a map app; and when might you consider using a hard-copy map? Why?
\(\square\)

\section*{Travel speeds}

A travel speed represents the ratio between one quantity (distance) and a second quantity (time).
This relationship can be expressed as a rate, such as kilometres per hour (km/h or kmh), or metres per second (\(\mathrm{m} / \mathrm{s}\) or mps).

This sounds complex but it is really quite straightforward. We apply this numerical skill all the time when driving!
An international passenger jet travels at about 700-900 km per hour. That's pretty fast over a sustained distance.

Image: PinkBadger/Depositphotos.com
The fastest human can run at about \(44 \mathrm{~km} / \mathrm{h}\) in a short 'Bolt'. A sublime cheetah can reach \(100-120 \mathrm{~km} / \mathrm{h}\) in a short burst. A sailfish in full swim can reach a little over \(100 \mathrm{~km} / \mathrm{h}\). And then there is the majestic peregrine falcon which can exceed \(380 \mathrm{~km} / \mathrm{h}\) when diving to catch prey.
So how fast can you move?

\subsection*{4.21 Distance and Time}

\section*{4K Distance and time}
1. Calculate the following travel times.
\begin{tabular}{|c|c|c|}
\hline Distance: 60 km at 60 kmh & Distance: 30 km at 30 kmh & Distance: 10 km at 100 kmh \\
\hline Distance: 3 km at 6 kmh & Distance: 6 km at 18 kmh & Distance: 2 km at 2 kmh \\
& & \\
\hline
\end{tabular}
2. Estimate how long it would take you to travel these distances, using these different travel modes. What would be the average speed of each?
\begin{tabular}{|c|c|c|c|c|}
\hline & Walk/roll & Jog & Skate & Cycle \\
\hline 1 km & & & & \\
\hline 3 km & & & & \\
\hline 5 km & & & & \\
\hline 10km & & & & \\
\hline 20 km & & & & \\
\hline 50km & & & & \\
\hline 100km & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Public transport \\
Choice 1
\end{tabular} & \begin{tabular}{c}
Public transport: \\
Choice 2
\end{tabular} & Car & Other \\
\hline 1 km & & & & \\
\hline 3 km & & & & \\
\hline 5 km & & & & \\
\hline 10 km & & & & \\
\hline 20 km & & & & \\
\hline 50 km & & & & \\
\hline 100 km & & & & \\
\hline
\end{tabular}

\section*{Overview}

As part of your vocational studies, you are likely to undertake work experience and/or work placements. Some of you might even be working in a school-based Australian Apprenticeship. Let's just call these work placements for this task.
Part A: Complete these tasks for your current work placement you are undertaking, or for a potential work placement that matches your vocational goals.
1. Create a map that shows the journey from your home to your work placement.
What types of information and landmarks should you show on your map?
2. What travel modes does this journey involve?
3. How much time should this journey take? How do you know this? Use timetables, apps, etc.?
4. Hoy effective or convenient is this iourney?
vailable.
5. Create a new map that shows the journey from your home to your work placement.
What types of informatic landmarks should yo new map?
Part B: Assume your normal transport mod

\section*{\(\square\)}
-
try vel modes does this new yolve?
- Inch time should this new ey take? How do you know Use timetables, apps, etc.. How effective or convenient is this ? new travel journey?

\section*{Part C: Old-school vs new-school}
9. Use digital technology to re-plan your 1st journey. Compare the results to the 1st map you created.
10. What were the similarities and differences between the analogue and the digital journeys?
11. Which format, your map or the digital map, suggested a better journey? Why?
12. Use digital technology to re-plan your new journey. Compare the results to the 2nd map you created.
13. What were the similarities and differences between the analogue and the digital journeys for the 2nd journey?
14. Which format, your map or the digital map, suggested a better 2nd journey? Why?

\section*{Part D: Recommendations}
15.So, which was better? Your own hand and brain-created analogue maps - or the digital maps. Why so?

\section*{16. What skills did you develop applying each method?}

\subsection*{4.23 Assessment Task}

// Problem-Solving Cycle // Maths Toolkit 4.24
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ Mathematical Toolkit } \\
\hline Analogue tools - What \& how? & Digital Devices - What \& how? & Software \& Apps - What \& how? \\
& & & \\
\hline
\end{tabular}

\subsection*{4.25 Planning and Organising}

\section*{Planning and organising}

Planning is about knowing what to do and when to do it. Organising is about actually doing these tasks. All the plans in the world will come to nothing unless people organise themselves appropriately. This is where the applied use of systematics comes into play whereby you:
\(\Rightarrow\) read and interpret existing data, such as from a timetable
\(\Rightarrow\) input data into tables, spreadsheets, diaries and apps
\(\Rightarrow\) read and interpret output data to make planning and organising decisions, such as with a timesheet or your roster.
Organising involves setting short-term or day-to-day goals using tools including calendars, daily planners and to-do lists. Organising means understanding task deadlines, knowing how long tasks will take (duration) and scheduling which tasks to do first (prioritising).
Organising is about using resources to achieve goals and objectives. This means weighing up alternatives and making sacrifices.
Personal organising involves using your time to Ket all of your different personal, family, social, recreational, educational and \(w \nabla=0 \sim \sim\) mitments and responsibilities. Planning and organising also involves iniousing timetables, schedules, and rosters

By planning and organising you cachers actance between personal, workrelated and other commitments hishe vour.
\(\Rightarrow\) set and achieve short-tyir rand Ner-term goals
\(\Rightarrow\) use your time more effic ently ad cet \(\geqslant\) ne done
\(\Rightarrow\) improve your punctuality and reliauly
\(\Rightarrow\) better manage transport and travel requirements
\(\Rightarrow\) meet deadlines and complete tasks more productively
\(\Rightarrow\) achieve a better work/life balance, and
\(\Rightarrow\) improve your own personal wellbeing.

\section*{Planning and organising tools}

There is a range of planning tools that you can use to plan and organise your time. These come in both analogue (hard copy) and digital forms.

Some common examples of planning and organising tools include:
1. calendars
2. to-do lists
3. rosters and
4. timetables.

\section*{1. Calendars \& diaries}

A calendar is the most common and basic method of recording and measuring dates and times. Calendars are normally organised as a universally accepted 'year of dates' broken into months.

Some people use hard copy calendars on a wall, their fridge or in a workplace.
Others prefer desktop diaries.
Many people now use systematics tools such as e-dairies and apps to manage their personal and vocational commitments and responsibilities. They use their devices to plan and track dates, and to record important personal and work commitments and responsibilities, by setting reminder notifications and alarms.
Many work email programs and apps allow people to use calendars to record dates and times of meetings, appointments and deadlines. These calendars are synched together across the organisation to enable management to plan and organise a big-picture view of staffing and other resourcing commitments
An advantage of this systematics approach is that it sends people advanced notifications of their commitments.
It is important to realise that although planning devices are good, you don't to use an app to plan and organise \(r: y\) time; you can use paper or you 1No However, e-diary and app good way to keep you on trak.

Calendars \& diaries
1. When do you use a calendar? Why? Is this hard copy and/or digital?

2. When do you use a diary? Why? Is this hard copy and/or digital?

\subsection*{4.27 Planning and Organising}

\section*{2. To-do list}

A to-do list is still one of the most useful tools you can use at the first stage of any planning and organising process. A to-do list enables you to visualise a series of required actions as a step-by-step process.

A to-do list involves the following steps.
1. Identify the key tasks (or steps) you need to do to achieve the overall goal.
2. Number these key tasks in order.
3. Estimate how long it is likely to take to do each task.

You can use a diary or notebook, Post-It Notes, or the 'note' function on an e-device.

Construct a to-do list for the following
Investigate potential TAFE cours suit me for next year.
1. Identify the key smaller tasks or s. \(r\), ase in order, then estimate how long it is likely to take yo to dan ta a. .ep.

3. Use Post-It Notes to 2 program, such as a PDSactivit) or retponsibility you have to meet.

\section*{3. Timetables}

A timetable is a schedule that sets out various times and durations for a particular activity. The most common timetables that you use include:
\(\Rightarrow\) your school subject timetable
\(\Rightarrow\) your VET timetable
\(\Rightarrow\) public transport timetables
\(\Rightarrow\) work timetables (rosters)
\(\Rightarrow\) services appointment timetables such as for a doctor or dentist, hairdresser or barber, and many others

Public transport timetables are nonnegotiable. They won't wait for you! Image: furtaev/Depositphotos.com
\(\Rightarrow\) government services timetables such as Centrelink;
\(\Rightarrow\) and any other activity that uses set times and time durations.
One person's timetable is designed to fit in with the same activity, network or system. This mann that timetables must be designed to meet very rigid time schedules.
For example, your school timetabler han rive needs of students, teachers, classrooms, facilities (such as prac roc vo voriables to construct a

And then on your VET or work a d deal with your TAFE timetable, your employer's work roste commitments (such as look. yy afte voung \(\nabla^{\circ}\)-ilings or doing domestic chores) and perhaps even your own personal casua. ink roster. So it can get quite complex!

What types of timetables do you use and access? Do you access these in analogue or digital forms? Describe some examples.

\subsection*{4.29 Planning and Organising}

\section*{4. Schedules \& Rosters}

Two important time management tools for personal, educational and vocational situations are schedules and rosters.

A schedule is the general term used to describe planning, organising and doing all the tasks, and meeting all the responsibilities and time commitments, of an individual, a team or some other entity. e.g. "You free for a coffee today?" "Let me check my schedule."

\section*{Rosters}

A roster is a planning and organising tool that sets out the labour needs of an organisation.

Rosters are used to make sure the appropriate number of staff is available to effectively do the work roles and responsibilities needed.
Rosters set out and communicate employees' scheduled work hours. This includes workers with specific skills to do particular job roles, as well as supervisory and management staff.
\(\Rightarrow\) Rosters need to be planned well in advance.
\(\Rightarrow\) Rosters are often drawn up using 24 -hour
\(\Rightarrow\) Rosters need to be communicated th \(\circ\) In involved.
\(\Rightarrow\) Rosters should ensure that an app, akice akills, training and authority is covered by the workers.

Planning and Organising 4.30
Rosters
Jimi N'Krikets works at Tennessee's Tasty Grits. The boss has just texted Jimi with the roster for next week. But it's a long string of information!

Monday: 10am to 7pm; Tuesday: 7am to 5pm; Wednesday \& Thursday: Days off; Friday: 11am to 8 pm ; Saturday: 10am to 2 pm then 6 pm to 10 pm ; Sunday: 10am to 6 pm .
Jimi is going to enter the roster in his e-calender. He'll also print this out and put it on his fridge as a reminder.
1. Set out Jimi's roster for the upcoming week. How many hours will Jimi work for the week?
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Name:} & \multicolumn{7}{|c|}{Dates:} \\
\hline & Monday & Tuesday & Wednesday & Thursday & Friday & Saturday & Sunday \\
\hline 7:00 & & & & & & & \\
\hline 8:00 & & & & & & & \\
\hline 9:00 & & & & 1 & & & \\
\hline 10:00 & & & & + & & & \\
\hline 11:00 & & & \(\cdots\) & - & & & \\
\hline 12:00 & & - & - & - & & & \\
\hline 13:00 & & & & & & & \\
\hline 14:00 & & & & & & & \\
\hline 15:00 & & & & & & & \\
\hline 16:00 & & & & & & & \\
\hline 17:00 & & & & & & & \\
\hline 18:00 & & & & & & & \\
\hline 19:00 & & & & & & & \\
\hline 20:00 & & & & & & & \\
\hline 21:00 & & & & & & & \\
\hline 22:00 & & & & & & & \\
\hline
\end{tabular}
2. Use the roster on p. 118 for Crafties Cash \& Carry to tally the weekly hours for each worker. How many hours do staff work in total? When is the shop less busy? How do you know? Which shifts would you prefer? Why so?

\subsection*{4.31 Assessment Task}

\section*{AT4b It's Up To Me \\ Personal Numeracy: Location \& Systematics}

\section*{Overview}

This year you have to apply planning and organising skills to achieve a number of goals associated with finishing Year 12 to embrace your expanding adult responsibilities such as applying for a course, finding a job, saving for a car, or even perhaps moving out of home.
For this assessment task, you are required to use a range of planning and organising skills, tools and techniques to guide your achievement of a significant personal goal. The goal is most likely to be a mid-term or long-term goal and might not even be achieved until next year! That's fine. This task is about applied planning and organising to guide you through on a step-by-step basis. (And as you know, this always leads to doing and involves ongoing reviewing.)
Some possible goals include these, but you might have a specific goal that is more relevant to your own personal, educational or val needs. So you must negotiate your goal with your teacher.
- Getting your license/saving for and purchasing a vehicle.Staging an event or celebration.
\(\square\) Planning and organising a holi saving for this adventure.
\(\square\) Investigating further and then applying fo

Process: At all stages you need to consid and apply both analogue and digital tools. You also need to review on an ongoing basis and get feedback and advice.

\section*{My goal is:}
1. Create a to-do list of the key tasks required to achieve your goal and place these in the correct order.
2. Prepare a timeline to help plan and organise goal achievement.
3. Choose appropriate time periods and a time scale to achieve your goal.
4. Identify key tasks required to be done by each time period (or milestone).
5. Estimate the time needed to complete these key (milestone) tasks.
6. Develop a financial plan or budget related to your goal achievement.
7. List external people and organisations you might need to deal with and contact. Note important contact information.
8. Tick-off milestone tasks as you achieve them.
9. Create specific to-do lists for smaller tasks as required.
10. Check to see that you have organised everything you need to do.
11. Get appropriate feedback and advice and act on this.
12. Reflect on which analogue or digital tools and apps were more useful.

\section*{Task planning}

Negotiate the task and goal details with my teacher.
\(\Rightarrow\) Decide on my goal and the timeframe.

 Goal:

Determine digital and analogue tools and apps to use.

\section*{Plan and organise for my goal achievement}
1. Create overall to-do list.
2. Prepare a timeline.
3. Create smaller time periods.
4. Identify key milestone tasks.
5. Plan time needed for key milestone task
6. Create a financial plan or budget.
7. List external suppliers and contac
8. Tick-off milestone tasks.
9. Create specific to-do list
10. Check that everything is organised.

11. Get feedback and advice and act on this.
12. Reflect on use of analogue tools, and on digital tools.

\section*{Task completion and reporting}

Use and apply appropriate digital tools and apps.
? Use and apply appropriate analogue tools.
\(\Rightarrow\) Use appropriate numerical language.
Describe applied use of the problem-solving cycle.

Identify the maths
Act on \& use maths
Evaluate \& reflect

Communicate \& report

Develop and apply mathematical tools and techniques.
\(\Rightarrow\) Prepare and discuss my final plans with my teacher.
Present a report to the class (if required).

\subsection*{4.33 // Problem-Solving Cycle // Maths Toolkit}

\footnotetext{
Comments:
}

\subsection*{5.01 Money}

\section*{Money}

Every day, day in and day out, you will experience people talking about money. But when you hear the term 'money', what does it really mean to you?
Money is used as the key tool to make purchase transactions, to pay wages, to build wealth from investments, and for a variety of other purposes. Money drives the commercial transactions that we need to do so that we can live in contemporary society.
In essence, money is a medium of exchange that uses a recognisable currency unit (i.e. notes and coins). Money might exist in cash form, or as cheques (mainly in business but becoming far less common), and increasingly as digital credit values that utilise eCommerce payment methods.
According to the Reserve Bank of Australia, the share of payments (\(<\$ 10 \mathrm{~K}\)) made using cash has declined from around 70\% of payments in 2007 to just 13\% in 2022. (Source: Reserve Bank's 2022 Consumer Payments Survey.)
A huge growth in digital transactions occurred as 2 esult of the COVID-19 pandemic. This event saw a lot of people switch to online sopr.g. At the same time, there was also a move away from the use of cash in ret seems that digital is going to keep on gro gid wing, with cash being a more scarce commodity - preferred by old prave try argle and people in the regions. So what about you? Are you mainly a c. (1) , e dig, shopper, or an even mix of both - and why?
And raise your hand if you ffell no aney. Anyone? Why is that?
Estimating \& edating Money to...

1. Match each of these numbers to the correct numerical statement.
2. Discuss as a class by talking about what these numbers show about the world.
\(\square\) billion
\(\square\) budgetcurrency
\(\square\) debt
\(\square\) EFTPOS
\(\square\) expenses
The number of cents in 10 dollars is:
\(\qquad\)
Many people are paid according to an hourly:

The general term used for wages, salary, profit and interest is:

Australia's biggest
'regular' currency unit is:

The minimum hourly adult pay rate for 2023/24 was:
\(\qquad\)
The average hourly wage in Australia (Aug 23) was about:
\(\square\) income\$38.20
\(\square\) loss
\(\square\) profit
- \$39.50
\(\square\) wage
\(\square 5 \mathrm{c}\)
- 23.23

Notes and coins are referred to as:

- \$40.50
\(\square 87 \%\)
\(\square \$ 100\)
- 1,000

> Australia's smallest 'regular' currency unit is:

A business that spends more than it earns is making \(a\) :

The general term for retail electronic

The average hourly wage for women in Aust (Aug 23) was about:
transactions is:

> A planning tool to better manage finances is a:
\(\qquad\)

The average hourly wage for men in Aust (Aug 23) was about:
\[
5
\]

The proportion of non-cash payments in Aust (Dec 22) was:
\(\qquad\)

\subsection*{5.03 Money}

\section*{Currency}

In Australia we use a decimal currency. This means that \(\$ 1\) is made of up 100 cents. People then tend to count money in 10s, 100s, 1,000s, 10,000s and so on.
We use a combination of coins and notes as money. These coins and notes allow us to carry out everyday transactions. Most people also use e-transactions which debit (subtract) and credit (add) money from and to their bank accounts.
Small items we purchase are usually expressed in dollars and cents such as \(\$ 2.50\) for a Cherry Ripe or \(\$ 7.55\) for a Big Mac.
Large items are usually expressed in dollars such as \$70,000 (ish) for a new Tesla Model 3 Long Range AWD or \$1,200 for an iPhone 14.

Wages are paid as dollars and cents, such as \(\$ 14.50\) per hour for a 16 year-old working in a milk bar.
People in professional jobs are usually paid a salary expressed only in dollars, such as \(\$ 75,000\) per year.

\section*{Cash vs digital}

Although the use of e-transactions is now we'vere \(85 \%\), cash is still a preferred form of currency in some industries and busineres a ally for smaller transactions, for older people, and for younger people.
So you need to be able to work out the atrans for different amounts of money.
This is important because diar apps and e-payments ar hard work and taking over to mon calculating tasks. But because people are getting de-skilled by their digital tools, we have to do even more training to manage our cash effectively.

\section*{5B Money}
\(\leqslant\) How much currency do you estimate is in this picture? Now calculate this. How close were you?
1. For what type of transaction do you and your family commonly use cash; and when do you and they use digital payment methods? Why is that?

2. Indicate the correct combination of notes and coins needed to represent each of these amounts. Try to use the least number of currency units.

3. Try out the 'change maker' at:
https://www.mathsisfun.com/money/money-master.html

\subsection*{5.05 Money Calculations}

\section*{In your head}

One way to do simple money calculations is in your head. Developing this skill is important for many personal, social and work-related situations. Your teacher will do this example for the class as a better way of showing you how it is done.

\section*{Adding money}

For addition, add the dollar amounts first. Then keep that number in your head.
e.g. \(\$ 7.50+\$ 2.35=\$ 9\) (i.e. \(\$ 7+\$ 2\))

Then add the cents amounts.
\(50 c+35 c=85 c\)
Now if the cents amount is less than 100 just add the cents to your dollar amount.
\(\$ 9+85 c=\$ 9.85\)
But if the added cents equal more than 100, then you need to add an extra dollar to your dollar calculation, plus the remaining cents:
e.g. \(\$ 14.50+\$ 2.95=\$ 16+145 c=\$ 17.45\)

Now your teacher will work through these examr with the class.
i. \(\$ 9.30+\$ 2.20=\)
ii. \(\$ 15.0\) \$3.99 =

e.g. \(\$ 8.40-\$ 4.80=\$ 4\) (i.e. \(\$ 8-\$ 4\)) and -40c (i.e. \(40 c-80 c\))
\[
\begin{aligned}
& =\$ 4-40 c \\
& =\$ 3.60
\end{aligned}
\]

Now your teacher will work through these examples with the class.
i. \(\$ 9.30-\$ 3.25=\)
ii. \(\$ 45.60-\$ 23.90=\)
*Now, what if I tell you that you can do this quite easily in your head as long as you have a basic grasp how to add and subtract numbers? Do you believe me? Have a go!

In your head add: \(\quad \$ 7.50+\$ 2.20=\) ? How about: \(\$ 6.60+\$ 8.50=\) ?
Now try a subtraction: \$9.70-\$2.20 = ? And try: \$9.25-\$4.75 = ?
See, it's easier to do this in your head rather than following the correct, but complex, instructions above. It's a natural numeracy skill you can develop through your life experiences. That's why these types of numeracy skills are about applied learning. Note: If the calculation gets too complex then just set it out on paper and make sure you right-align! It's all about applied problem-solving.

Money Calculations 5.06
1. Complete the calculations based on money, 'in your head'. Then check your answers using a calculator. How did you go?
\begin{tabular}{|c|c|c|c|c|c|}
\hline a. & 65 cents + \$2 = & b. & \$20 + \$15 = & c. & \$99 + \$39.99 = \\
\hline & \(80 c+70 c+\$ 3.45=\) & & \$18 plus 900c = & f. & \$19.95-\$7.50 = \\
\hline g. & \$17 + \$0.75-\$8 = & h. & 750-\$125 + \$375 & i. & \$27.55-\$9.50-\$11 = \\
\hline j. & \$1,700 + \$950-\$235 = & & & & \[
\begin{aligned}
& \$ 44.99-\$ 12+ \\
& \$ 19.95-\$ 4.50=
\end{aligned}
\] \\
\hline
\end{tabular}
2. Complete these real-life calculacic_(i) your head'. You'll need to know, or research, or estimate prices. Then clinck your answers using a calculator.
\begin{tabular}{|c|c|}
\hline a. A Whopper, large chips and a large Coke. & \begin{tabular}{c}
b. Train (or bus) fare from your suburb or \\
town to Frankston, and home again.
\end{tabular} \\
\hline c. 50 litres of petrol, \(91 \%\) blend. & d. A streaming subscription of \(\$ 10.99\) per \\
week for 12 months.
\end{tabular}

\subsection*{5.07 Making Change}

\section*{Making change}

When you are buying things using cash the transaction will often involve change.
The change amount is the difference between the purchase price and the money tendered.
If you are the customer it is important to know that you are being given the correct amount of change. This prevents you from being shortchanged.
If you are the worker then you must be able to calculate change accurately. Even if you use an electronic point-of-sale register that tells you how much change to give, you will have to manually 'make' the correct change using notes and coins.

\section*{Making change}

One step is used when:
\(\Rightarrow\) it is a single purchase, or
\(\Rightarrow\) the total is calculated using a cash register, POS terminal or some other means.
The correct process is:
'money tendered' less 'purchase price' equals 'change'.
For example: Purchase \(\$ 82\). Given \(\$ 100\) \$100-\$82 = \$18
Two (or more) steps are used when:
\(\Rightarrow\) there are multiple purchases, and/or
\(\Rightarrow\) you have to work out the totals manually.
The correr process is:
 addition snd/or multiplication.
ey tendered' less 'total = 'change'.
\$60 and \$25. Given \$100
archases \(=\$ 60+\$ 25=\$ 85\) - \(885=\$ 15\) purchases are transacted usir eCommerce, the skill of m change actually becomes in sre important, rather than less important.
Why do you think this might be the case?

\section*{Change process}

Making change might involve 2 or 3 of the 4 basic calculation functions. Remember that the 'money tendered' is the amount that a customer hands over for payment.
\(\Rightarrow\) Addition: Calculating total purchases.
\(\Rightarrow\) Multiplication: Calculating total purchases for multiple items.
\(\Rightarrow\) Subtraction: Calculating the change by taking away the purchase amount from the amount given (tendered) by the customer.
\(\Rightarrow\) In some cases, division might also be needed such as when calculating bill splitting.

Making Change 5.08
Making change I 5D

Indicate the correct combination of notes and coins needed to make change for these transactions. Try to use the least number of currency units.

\subsection*{5.09 Making Change}

\section*{Counting change}

One tried and true method of making the correct change is by using a physical counting method.
The best physical counting method involves counting up from the purchase amount using the currency units to move to round numbers - making sure you say each step and amount aloud.

This usually involves placing the change either in the customer's hand, or down on the counter for contactless service.
«Which method do you think you would prefer using? Have a go using training currency and try for yourself!

So for example, if the customer makes a
purchase for \(\$ 27.50\) and tenders a \(\$ 50\)
note the process is as follows.
" \(\$ 27.50\) plus 50c equals \(\$ 28\).
Plus \$2 equals \$30
Plus \$20 equals \$50."
A second method is to make the change \(\$ 27.50\) so your change is from the biggest units through to th
smallest units starting from the rurchase haict \(\$ 2\) plus 50 cents. price.
So for the same example; \(\$ 27.50\) equals \(\$ 50\)."

\section*{Counting change}

You physically count and say aloud the currency units to make the change.
\(\Rightarrow\) State the amount tendered.
"You gave me a \$20."
\(\Rightarrow\) Then 'state' the purchase price
"Your purchase was \(\$ 14.50\)."
\(\Rightarrow\) Count up to whole numbers by counting the change out from lowest unit to highest unit. " \(\$ 14.50\) + 50c makes \$15."
\(\Rightarrow\) Count the next highest unit. " \(\$ 15\) + \$5 makes \$20."
\(\Rightarrow\) Finish to get to the amount tendered. "Your change from \$20 is \$5.50." "Thank you and come again!"
When balancing your register at the end of the day, counting the coins can take the longest time!
" \(\$ 27.50\) plus \(\$ 20\) equals \(\$ 47.50\). \(\$ 47.50\) plus \(\$ 2\) is \(\$ 49.50\).
And \(\$ 49.50\) plus 50 cents equals \(\$ 50\)."
A this ethod is to just physically count
ange of \(\$ 22.50\) plus the purchase

\(\qquad\)

Making Change 5.10
Making change II 5E
Work out the change for each of these purchases and amounts tendered. Then count out the currency notes and/or coins to make the change.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Purchase & Amount & Change & Currency & Purchase & Amount & Change & Currency \\
\hline \[
\begin{gathered}
\text { e.g. } \\
\$ 7.50
\end{gathered}
\] & \$10 & \$2.50 & \[
\begin{gathered}
\$ 2+20 c+20 c \\
+10 c
\end{gathered}
\] & \[
\begin{gathered}
\text { e.g. } \\
\$ 16.30
\end{gathered}
\] & \$20 & \$3.70 & \[
\begin{array}{r}
\$ 2+\$ 1 \\
+50 c+20 c
\end{array}
\] \\
\hline \$5.00 & \$10 & & & \$8.00 & \$20 & & \\
\hline \$7.00 & \$10 & & & \$13.50 & \$20 & & \\
\hline \$6.50 & \$10 & & & \$12.00 & \$20 & & \\
\hline \$2.35 & \$10 & & & \$6.75 & \$20 & & \\
\hline \$9.80 & \$10 & & & \$18.40 & \$20 & & \\
\hline \$7.25 & \$10 & & & \[
\$ 10
\] & \$20 & & \\
\hline \$1.15 & \$10 & & & S & \$20 & & \\
\hline \$7.60 & \$10 & & & 8 & \[
\$ 20
\] & & \\
\hline \$0.85 & \$10 & & & Y. 3 & \[
10
\] & & \\
\hline \$4.99 & \$10 & & & & \$20 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Purchase} & \multicolumn{2}{|l|}{Amount} & -ncy \\
\hline \multicolumn{2}{|l|}{e.g. \$26.50} & \$50 & \$23.50 & \[
\$ 20+\$ 2 \top
\] \\
\hline a. & \$14.00 & \$50 & & \\
\hline b. & \$4.50 & \$50 & & \\
\hline c. & \$39.95 & \$50 & & \\
\hline d. & \$42.50 & \$50 & & \\
\hline e. & \$39.75 & \$50 & & \\
\hline f. & \$15.50 & \$50 & & \\
\hline g. & \$26.00 & \$50 & & \\
\hline h. & \$0.95 & \$50 & & \\
\hline i. & \$32.75 & \$50 & & \\
\hline j. & \$18.25 & \$50 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|l|l|}
\hline & Purchase & Amount Change & \multicolumn{1}{c|}{ Currency } \\
\hline e.g. \(\$ 38.75\) & \(\$ 100\) & \(\$ 61.25\) & \begin{tabular}{c}
\(\$ 50+\$ 10++\) \\
\(\$ 1+20 c+5 c\)
\end{tabular} \\
\hline a. & \(\$ 75.00\) & \(\$ 100\) & & \\
\hline b. & \(\$ 38.75\) & \(\$ 100\) & & \\
\hline c. & \(\$ 65.50\) & \(\$ 100\) & & \\
\hline d. & \(\$ 94.00\) & \(\$ 100\) & & \\
\hline e. & \(\$ 81.25\) & \(\$ 100\) & & \\
\hline f. & \(\$ 15.75\) & \(\$ 100\) & & \\
\hline g. & \(\$ 8.30\) & \(\$ 100\) & & \\
\hline h. & \(\$ 32.60\) & \(\$ 100\) & & \\
\hline i. & \(\$ 58.15\) & \(\$ 100\) & & \\
\hline j. & \(\$ 43.75\) & \(\$ 100\) & & \\
\hline
\end{tabular}

\subsection*{5.11 Money - Rounding}

\section*{Round numbers}

When dealing with money it is important to keep track of how much things cost (the purchase price).
It is also important to be able to know how much change you should give or receive when completing money transactions.

It is also important to know how much you are spending in total so as to have control over your own personal finances and budget. A numerical skill that can assist you to do these things is estimating. One effective approach to numerical money estimating is to use rounding.
Rounding helps you to be able to estimate roughly how much you are spending when making purchases.
Rounding also enables you to estimate approximately how much change you should be given, or should give, when doing money transactions.

always better to round to en und are more easily calculated in your head. e.g. 5, 10, 20.00, \(\mathrm{CN}, \square\)
\(\Rightarrow\) When rounding for m ey psolases \(>\) en dollar amounts and 50 cent amounts. e.g. \(\$ 3.90\) becumes \(\$ 4, \$ 25\) ecomes \(\$ 2.50\). \(\$ 1.05\) becomes \(\$ 1\).
In most cases you should:
\(\Rightarrow\) round up for 'money spent' (e.g. costs, time, quotes, materials, expenses, etc.). This means that you are playing it safe and over-estimating potential costs.
\(\Rightarrow\) round down for 'money in' (e.g. income, revenue, time saved, etc.). This also means that you are playing it safe and under-estimating potential benefits.
For currency transactions, use rounding to estimate the major currency units you should use, or be given as change.
e.g. Purchase a meat pie of \(\$ 4.80\). Pay with a \(\$ 10\) note.
\(\Rightarrow\) By using rounding the pie costs about \(\$ 5\).
\(\Rightarrow\) By using rounding you should get at least \(\$ 5\) change.
\(\Rightarrow\) You will expect to receive a \(\$ 5\) note; or perhaps \(2 \times \$ 2\) s and a \(\$ 1\) in your change (or some other combination of currency units); and a coin.
e.g. Purchase the pie for \(\$ 4.80\) and a Pepsi Max for \(\$ 2.75\). Pay with a \(\$ 10\) note.
\(\Rightarrow\) By using rounding the pie costs about \(\$ 5\) and the Pepsi costs about \(\$ 3\). Together the rounded total \(=\$ 8\).
\(\Rightarrow\) By using rounding you should get at least \(\$ 2\) change. You have rounded both of your purchases up so you will expect some more small coins as well as the \(\$ 2\).
1. Use rounding to complete the table for the following transactions.
(You could use training currency for this task.)
\begin{tabular}{|c|l|c|c|c|c|c|}
\hline \begin{tabular}{c}
Purchase \\
amount
\end{tabular} & \begin{tabular}{c}
Rounded \\
amount
\end{tabular} & \begin{tabular}{c}
Money \\
tendered
\end{tabular} & \begin{tabular}{c}
Estimated \\
change
\end{tabular} & \begin{tabular}{c}
Estimated \\
currency
\end{tabular} & \begin{tabular}{c}
Exact \\
change
\end{tabular} & \begin{tabular}{c}
Exact \\
currency
\end{tabular} \\
\hline \begin{tabular}{c}
e.g. \\
\(\$ 6.75\)
\end{tabular} & \(\$ 7\) & \(\$ 10\) & \(\$ 3\) & \(\$ 2+\$ 1\) & \(\$ 3.25\) & \begin{tabular}{c}
\(\$ 2+\$ 1\) \\
\(+20 c+5 c\)
\end{tabular} \\
\hline\(\$ 3.85\) & \(\$\) & \(\$ 5\) & \(\$\) & & \(\$\) & \\
\hline\(\$ 1.15\) & \(\$\) & \(\$ 5\) & \(\$\) & & \(\$\) & \\
\hline\(\$ 9.35\) & \(\$\) & \(\$ 10\) & \(\$\) & & \(\$\) & \\
\hline\(\$ 7.70\) & \(\$\) & \(\$ 10\) & \(\$\) & & \(\$\) & \\
\hline\(\$ 2.95\) & \(\$\) & \(\$ 10\) & \(\$\) & & \(\$\) & \\
\hline\(\$ 14.95\) & \(\$\) & \(\$ 20\) & \(\$\) & & \(\$\) & \\
\hline\(\$ 15.50\) & \(\$\) & \(\$ 20\) & \(\$\) & & & \(\$\) \\
\hline\(\$ 12.75\) & \(\$\) & \(\$ 20\) & \(\$\) & & & \(\$\) \\
\hline\(\$ 6.95\) & \(\$\) & \(\$ 20\) & \(\$\) & & & \(\$\) \\
\hline\(\$ 43.75\) & \(\$\) & \(\$ 50\) & & & & \(\$\) \\
\hline
\end{tabular}
2. Use rounding to comph Nowing multi-step transactions.
(Once again you coula se tra. \(n g\) cur \(\nabla>\) for this task.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Purchase amounts & Calculation & Rounded amount & & shanged & Estimated currency & Exact change & Exacł
currency \\
\hline \[
\begin{gathered}
\text { e.g. } \\
\$ 2.50 \\
+\$ 2.25
\end{gathered}
\] & = \$4.75 & \$5 & \$10 & \$5 & 2 x \$2+\$1 & \$5.25 & \[
\begin{aligned}
& 2 x \$ 2+\$ 1 \\
& +20 c+5 c
\end{aligned}
\] \\
\hline a.
\[
\begin{gathered}
\$ 1.90 \\
+\$ 2.99
\end{gathered}
\] & & \$ & \$5 & \$ & & \$ & \\
\hline b.
\[
\begin{gathered}
\$ 3.15 \\
+\$ 2.85
\end{gathered}
\] & & \$ & \$10 & \$ & & \$ & \\
\hline c.
\[
\begin{gathered}
\$ 4.99 \\
+\$ 4.95
\end{gathered}
\] & & \$ & \$10 & \$ & & \$ & \\
\hline \begin{tabular}{ll}
& \(75 c\) \\
d. & \(+\$ 1.25\) \\
\\
& \(\$ 16.50\)
\end{tabular} & & \$ & \$20 & \$ & & \$ & \\
\hline e. \(\begin{gathered}\$ 3.90 \\ \times 4\end{gathered}\) & & \$ & \$50 & \$ & & \$ & \\
\hline f. \(\begin{array}{r}\$ 44.25 \\ +\$ 380\end{array}\) & & \$ & \$50 & \$ & & \$ & \\
\hline
\end{tabular}

\subsection*{5.13 Comparing Prices}

\section*{Comparing prices}

An important numeracy skill that people need as part of their everyday lives is to compare prices. When comparing prices it is important that you take into account other issues such as product quality, product features and whether you actually need that quantity of product in the first place.
Developing the ability to compare prices will help you to:
\(\Rightarrow\) be able to compare the relative price of different-sized products
\(\Rightarrow\) make your dollar go further when making purchases to help save money
\(\Rightarrow\) manage your finances as part of a personal budget
\(\Rightarrow\) factor in issues such as personal preferences, product quality and product features.

Image: 06photo/

\section*{False economy}

Remember the concept of false economy? False economy means that although you think you might be saving money in the short-term, you are likely to end up spending more money in the long-term. Here are some examples, but you should be able to think of more.
\(\Rightarrow\) Buying more than you need and ending up wasting most of the item. e.g. You buy a discounted box of prawns and most of them go bad before you can eat them all.
\(\Rightarrow\) Buying cheaper items on special but then consuming more than you would've. e.g. Instead of 1 packet of chips for \(\$ 4.85\) you buy 2 for \(\$ 7\) on special. Not only do you spend more, you end up scoffing down twice as much!
\(\Rightarrow\) Buying low-quality goods that break down and need to be replaced, e.g. A tradie buys cheap power tools that end up costing more in money and lost time.

\section*{1. Unit pricing}

Compare prices on a per-unit basis to determine the actual cost of the product. This is particularly important when dealing with different sizes or quantities of the same item.

\section*{2. Quality considerations}

Take into account the quality of the product. A lower-priced item might seem like a good deal initially. But if it lacks durability or doesn't meet your needs, it may end up costing more in the long run.

\section*{3. Product features}

Evaluate the features and specifications of the products you are comparing. Sometimes, a slightly more expensive item may offer additional features or better performance, making it a better value in the long term.

\section*{4. Necessity}

Consider whether you actually need the quantity of the product you are thir ing
of purchasing. Buying in bulk ma; ee, 1C ret management cost-effective, but it's not alwas
especially if the excess mig. especially if the excess mig' part of your budget
5. Personal preferences Factor in your personal preferences and needs. Sometimes a brand or specific product may be worth the extra cost due to factors such as taste, reliability, or customer support.
6. Long-term savings

Consider the long-term savings associated with certain products. For example, energyefficient appliances may have a higher upfront cost but can result in significant savings on utility bills over time.

\section*{7. Warranties and guarantees}

Check if the products come with warranties or guarantees. A higher-priced item with a longer warranty may offer better value and peace of mind.

\section*{8. Sales and discounts}

Keep an eye out for sales, discounts, and promotions. Timing your purchases to coincide with special offers can significantly reduce ne overall cost.

- unstomer reviews and ratings to ustomer reviews and ratings to
experiences of others with the can provide valuable insights and performance of the management. Allocating resources wisely based on your needs and preferences can help you make better financial decisions.

Image: Chamja/ Depositphotos.com

\section*{Making comparisons}

In your work folios, explain how you would apply these strategies to compare 'prices', and the types of goods or services you might use these for.
\begin{tabular}{|l|c|c|c|}
\hline Price & Quality & Size & Quantity \\
\hline Weight & Features & Preference & Warranties \\
\hline Waste & Need \(v\) Want & Sales/Discounts & Delivery \\
\hline
\end{tabular}

\subsection*{5.15 Comparing Prices}

\section*{Units costs}

Under Australian law, large grocery and fresh produce retailers need to show unit pricing for relevant items. This is called the Unit Pricing Code.
What this means is that the shelf price tags and online options must include a unit price per relevant measure, such as \(\$ 1\) per 100 g or 50 cents per 100 millilitres.
Unit pricing enables a shopper to do quick and easy comparisons on which size item might be the least expensive option.

\section*{For example: Unit pricing comparison}

The most famous soft drink in the world is of course, Coca-Cola. But Coke (like most items) is available in a range of sizes. Based on supermarket prices from January 2024: Coke (can): \(375 \mathrm{ml}=\$ 2.30\) Unit pricing is \(\$ 6.13\) per litre Coke (Classic bottle): \(385 \mathrm{ml}=\$ 3.75\) Unit pricing is \(\$ 9.74\) per litre Coke: \(600 \mathrm{ml}=\$ 4.05\) Unit pricing is \(\$ 6.75\) per litre
Coke: 1.25 litre \(=\$ 3.55\) Unit pricing is \(\$ 2.84\) per litre Coke: 2 litre = \(\$ 3.60\) Unit pricing is \(\$ 1.80\) per litre Coke (mini can 6-pack) \(250 \mathrm{ml} \times 6=\$ 9.17\) Unit prici
\(\$ 6.11\) per litre

Coke and Pepsi Max are usually on special in at least one of the big 3 supermarkets each week. Coke (can 10-pack) \(375 \mathrm{ml} \times 10=\$ 19\) Unit pricin No, ner litre Coke (can 24-pack) \(375 \mathrm{ml} \times 24=\$ 36.70\) 川
 So which would you recommend p pple ber hirk sy though - there might be other factors to consider rath the unicern Discuss this as a class. Do a
 these prices compare to \(K\) is in noccurred?

\section*{5H Unit pricing}
1. Work in pairs and go online or visit a supermarket to do unit pricing comparisons for 3 different items. Choose a food product, a drink product and another product. Record your results in the table.
2. What advice would you give about choosing between different-sized options?
\(\square\)

Rizzo is having some friends over and she is going to make her famous salmon, cheese and mayo rolls and provide some other items. After researching online and in catalogues, she has put together a table of this week's prices for the key products she wants to buy.
1. Calculate the column totals of the 'basket of goods' at each of the supermarkets.
2. List an 'other' source for each of these products along with a price.
3. From which supermarket or supermarket(s) would you recommend Rizzo source her products? Explain using evidence.
4. What other issues should Rizzo take into account when choosing between these different sellers?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Product & Size & Coolworths & Boles & IPA & Baldi & Other \\
\hline Bread rolls & 6 pack & \$3.50 & \$3.50 & \$3.85 & \$2.79 & \\
\hline Smoked salmon & 250 gm & \$7.75 & \[
\$ 7.25
\] & \$57.99 & \$5.25 & \\
\hline Cos lettuce & na & \$2.99 & - & 1-. 50 & \$2.50 & \\
\hline Danish Blue cheese & 150 gm & \$7.5 & 16 & 5 & \$4.99 & \\
\hline Mayonnaise & 250 ml & \[
57
\] & , & \$3.99 & \$3.85 & \\
\hline Block dark chocolate & 100 gm & 95 & \$4 & \$3.25 & \$3.50 & \\
\hline White grapes & 250 gm & \$5.00 & \$4.50 & \$5.99 & \$4.25 & \\
\hline Cashew nuts & 200 gm & \$4.00 & \$4.50 & \$7.50 & \$3.99 & \\
\hline Creaming soda drink & 2 litres & \$2.40 & \$2.10 & \$2.50 & \$1.75 & \\
\hline & Totals & \$ & \$ & \$ & \$ & \\
\hline
\end{tabular}

\section*{Applied: Comparing prices in action}
1. Choose shopping items that your household regularly purchases.
2. Research their current prices from different sellers. Check for any items on special.
3. Complete a table like the one above. Calculate the total price for the 'basket of goods' and potential savings.
4. Make recommendations to help your family's shopping budget, e.g. should they shop around more?

\subsection*{5.17 Comparing Prices}

\section*{5। Setting up house}

Congratulations. You are moving out of home and into
3. a share apartment with a friend. And now it's time to do your first 'shop'. You have all your furnishings, electricals, basic utensils, etc.. But you don't have any food, drinks, cleaning items and shared toiletries.
1. What items do you need to buy on your first shop? Don't forget to include size, quantity, and if relevant, brand.
2. Estimate how much you think each item would cost.
3. How much is your total shop? From where will you get the money to pay for this?
4. Now go online and research these prices (and/or pay local stores a visit).
5. What are the actual prices of these items? (Fill in the table.)
6. Is your total estimate under or over; and by how much? What is the total cost to be split amongst you?
7. Assume you only have \(80 \%\) of the money required to buy these. What changes will you make? For how long do you need to make these switches and sacrifices?

\subsection*{5.19 Comparing Prices}

\section*{5K Finding patterns}
1. What patterns are occurring in each of these sets of numbers? What might be the next number in the series?
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline\(\$ 2\) & \(\$ 4\) & \(\$ 6\) & \(\$ 8\) & \(\$ 10\) & \(\$ 12\) & \(\$\) & Pattern? \\
\hline\(\$ 7\) & \(\$ 6\) & \(\$ 5\) & \(\$ 4\) & \(\$ 3\) & \(\$ 2\) & \(\$\) & \\
\hline 2 & 4 & 8 & 16 & 32 & 64 & & \\
\hline 132 & 64 & 32 & 16 & 8 & 4 & & \\
\hline\(\$ 1\) & \(\$ 3\) & \(\$ 6\) & \(\$ 10\) & \(\$ 15\) & \(\$ 21\) & \(\$\) & \\
\hline\(\$ 30\) & \(\$ 29\) & \(\$ 27\) & \(\$ 24\) & \(\$ 20\) & \(\$ 15\) & \(\$\) & \\
\hline
\end{tabular}
2. Consider each of these products based on \(t\) prices might be, based on applying a simple
ize. Predict what the next attern.

3. As you know, when you buy many packaged items in bulk, the pattern of prices changes and you are more likely to save. Can you find clear patterns here? What is the general trend as you upsize?
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sugar & \[
\begin{gathered}
500 \mathrm{~g} \\
\$ 2
\end{gathered}
\] & \[
\begin{gathered}
1 \mathrm{~kg} \\
\$ 3.50
\end{gathered}
\] & \[
\begin{aligned}
& 1.5 \mathrm{~kg} \\
& \$ 4.50
\end{aligned}
\] & \[
\begin{gathered}
2 \mathrm{~kg} \\
\$ 5.50
\end{gathered}
\] & Pattern? \\
\hline Eggs & \[
\begin{gathered}
6 \\
\$ 4
\end{gathered}
\] & \[
\begin{gathered}
12 \\
\$ 7.50
\end{gathered}
\] & \[
\begin{gathered}
18 \\
\$ 10.50
\end{gathered}
\] & \[
\begin{gathered}
24 \\
\$ 13
\end{gathered}
\] & \\
\hline Coffee & \[
\begin{gathered}
1 \text { cup } \\
\$ 5
\end{gathered}
\] & \[
\begin{gathered}
2 \text { cups } \\
\$ 10
\end{gathered}
\] & \[
\begin{gathered}
4 \text { cups } \\
\$ 18
\end{gathered}
\] & \[
\begin{gathered}
5 \text { cups } \\
\$ 222
\end{gathered}
\] & \\
\hline Milk & \[
\begin{gathered}
1 \text { litre } \\
\$ 2
\end{gathered}
\] & \[
\begin{aligned}
& 2 \text { litre } \\
& \$ 3.50
\end{aligned}
\] & \[
\begin{aligned}
& 3 \text { litre } \\
& \$ 6.00
\end{aligned}
\] & 4 litre \$7 & \\
\hline Soft drink & \[
\begin{aligned}
& 500 \mathrm{ml} \\
& \$ 2.50
\end{aligned}
\] & \[
\begin{gathered}
1.25 \text { litre } \\
\$ 3.50
\end{gathered}
\] & \[
\begin{aligned}
& 2 \text { litre } \\
& \$ 3.75
\end{aligned}
\] & \[
\begin{aligned}
& 4 \text { litre } \\
& \$ 5.00
\end{aligned}
\] & \\
\hline
\end{tabular}

Sometimes we can use patterns to make it easier to estimate and calculate discounts. This is especially useful when shopping and seeing all different prices, offers and discounts - and needing to quickly judge which offers might be suitable.
As you know, calculating \(10 \%\) of anything is really quite simple. Once you can calculate \(10 \%\) of a number or a price, then you can easily double this for a \(20 \%\) discount, or halve this for a \(5 \%\) discount; and so on.
4. Calculate a \(10 \%\) discount on these amounts. Then halve or double this for \(5 \%\) or \(20 \%\), and so on.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Price & 10\% & New price & 5\% & New price & 20\% & New price & 30\% & New price & 40\% & New price & 50\% & New price \\
\hline \$100 & \$10 & \$90 & \$5 & \$95 & \$20 & \$80 & \$30 & \$70 & \$40 & \$60 & \$50 & \$50 \\
\hline \$250 & & & & & & & & & & & & \\
\hline \$50 & & & & & & & & & & & & \\
\hline \$80 & & & & & & & & & & & & \\
\hline \$30 & & & & & & & & & & & & \\
\hline \$1,000 & & & & & & & & & & & & \\
\hline \$5,000 & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Applied}

You can also use number patternst ivily estimate how much you might be spending. You can use amounts of \(\$ 1, \$ 2, \$ 5, \$ 10, \$ 20, \$ 50, \$ 100\) and so on depending on the price of your purchases. You round up the prices of products to the nearest whole dollar (ignore those misleading .99c and .95c amounts)
For example, to estimate if you have enough money to buy dinner for 4 people, using \(\$ 20\) 'lots', you can look at the menu and say that:
Pizza \(=\$ 9\), dessert \(=\$ 4.50\), drinks \(=\$ 4\).
So you might say: 4 pizzas = \$9, \$9, \$9 and \$9 which = \$36 so that's almost two \$20 lots.
People want 4 desserts \(=\$ 4.50, \$ 4.50, \$ 4.50, \$ 4.50\) which \(=\$ 18\). This is also another \$20 lot.
And people want 4 drinks = \(\$ 4, \$ 4, \$ 4, \$ 4=\$ 16\). This is on its way to another \$20 lot.
So you are going to need approximately \(\$ 80\), but you should expect a decent amount of change. How much?
Form a group of 4 and use this method to compare a dinner for you all at different eateries. Compare at least 3. Did this method make it easier and faster for you to estimate the total cost?

\subsection*{5.21 Money and Percentages}

\section*{Percentages}

A percentage simply refers to a proportion. It is also another way of representing a fraction. But fractions can be messy when dealing with money so instead we use percentages. Percentages are important for calculating amounts for many personal and vocational situations including:
\(\Rightarrow\) sales discounts
\(\Rightarrow\) volume discounts
\(\Rightarrow\) bulk purchases
\(\Rightarrow\) GST
\(\Rightarrow\) price mark-ups
\(\Rightarrow\) fees and costs
\(\Rightarrow\) overtime and penalty rates.

1. Calculate these fraction amounts as money. First, convert the fraction into a percentage. Then calculate the \% money amount.
\begin{tabular}{|c|c|c|}
\hline a. \(1 / 2\) of \(\$ 80=\) & b. \(1 / 4\) of \(\$ 150=\) & c. \(2 / 3\) of \(\$ 300=\) \\
\hline d. \(4 / 5\) of \(\$ 2,000=\) & e. \(3 / 8\) of \(\$ 1,000=\) & f. \(3 / 4\) of \(\$ 25=\) \\
\hline g. \(9 / 10\) of \(\$ 5,000=\) & h. \(1 / 5\) of \(\$ 99.95=\) & i. \(15 / 20\) of \(\$ 10,000=\) \\
\hline
\end{tabular}
2. Calculate these percentage amo
\begin{tabular}{|c|c|c|}
\hline a. \(40 \%\) of \(\$ 100=\) & c. \(65 \%\) of \(\$ 1,500=\) \\
\hline d. \(15 \%\) of \(\$ 3,000=\) & e. \(33 \%\), \(\$ 10,000=\) & f. \(10 \%\) of \(\$ 12.95=\) \\
\hline \begin{tabular}{ll}
g. \(20 \%\) of \(\$ 50+\) \\
\(25 \%\) of \(\$ 200=\)
\end{tabular} & \begin{tabular}{l}
h. \(15 \%\) of \(\$ 500+\) \\
\(30 \%\) of \(\$ 150=\)
\end{tabular} & \begin{tabular}{c}
\(15 \%\) of \(\$ 100-5 \%\) of \(\$ 50=\) \\
i. \(10 \%\) of \(\$ 9.95+\) \\
\hline
\end{tabular} \\
& & \\
\hline
\end{tabular}
3. In your work folios, write these as numerical expressions. Calculate the answers.

\section*{a. Abe has to calculate the GST for a customer's order.}

The order involves two items at five dollars, 10 items at 10 dollars and 25 items @ \$20.

All these prices are GST exc.
b. Baal has to calculate the GST already included in a supplier's invoice.
The order involves five items at \(\$ 11\) dollars, ten items at \(\$ 22\) and 20 items at \(\$ 49.50\).

All these prices are GST inc.

\subsection*{5.23 Money and Percentages}

\section*{Discounts}

Discounts are amounts deducted from the normal or regular price, or cost, of an item. It is important to understand discounts from both the consumer (or customer's) point-of-view as well as from the point-of-view of businesses
"I saved like heaps you know, everything was buy 2 and get the 3rd free!" businesses to encourage consumers either; to buy more from them, to switch their business to them, or to remain loyal to them.
These discounts can include:
\(\Rightarrow\) targeted specials
\(\Rightarrow\) items on sale
\(\Rightarrow\) seasonal discounts
\(\Rightarrow\) clearance items
\(\Rightarrow\) 2-for-1 offers
\(\Rightarrow\) loyalty discounts, and even
\(\Rightarrow\) discounts for using cash.
We could also call these price discoun Nu cinss involved might not be retailers in the tra . ov a atry ise (such as electricity suppliers, cafés and hairdressers).

For example, a clothing stor an and of season stock at \(50 \%\) to clear items in the lead-1 goods store sells 2 baske valls is the pi 1 of 1 .
Cost discounts are used by businesses , encourage other businesses to purchase from them. These discounts occur on the wholesale side (or supply side) of business transactions. Cost discounts (or trade or wholesale discounts) can include volume discounts, wholesale trade discounts, bulk purchase discounts, early payment discounts and other business-to-business (B2B) discounts.

For example, a publisher will give a \(40 \%\) trade discount to retail bookstores off the RRP (recommended retail price). This 40\% then becomes the retailer's margin.
Large booksellers such as Big W, KMart and others are likely to receive a bigger discount, as they sell higher volumes at lower prices by taking advantage of the benefits achieved by economies of scale.
This is also why you'll see higher prices for goods in milk bars as compared to supermarkets.

\section*{Discounts}

Discounts are normally applied as a \% reduction to a retail or wholesale price. Most (but not all) discounts are calculated using percentages.
e.g. i: End of season clearance on dresses - save \(50 \%\) !
e.g. ii: Buy 2 and save \(40 \%\) off both.
i. \(50 \%\) off

Normal price \(=\$ 200\)
Discount \(=\$ 200 \times 50 \%=\$ 100\)
New price \(\quad=\$ 200-\$ 100=\$ 100\)
ii. \(40 \%\) off for 2 or more

Normal price \(=\$ 30\) and \(\$ 30\)
Discount \(=(\$ 30+\$ 30) \times 40 \%\)
Discount \$ \(=\$ 60 \times 40 \%=\$ 24\)
New total \(=\$ 60-\$ 24=\$ 36\)
e.g. iii: Order two meals get a third for free! (Offer applies to lowest priced item).

> iii. Order two meals get a third free.

Normal price \(\quad=\$ 16, \$ 14\) and \(\$ 10=\$ 40\)
Total price paid \(=(\$ 30+\$ 0)\)
Discount \(\$=\$ 40-\$ 30=\$ 10\) (normal price ess price after discount)
Discount \% = \$10/\$40×100\%
\[
=25 \%
\]
(So, what is the average price of each rolared discount is applied?)

Calculate the discount amount andtrens. price(s) on each of these transactions. How much was the total discount \%?
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
a. 'End of season sale: Save 20\%.' Buy: \\
- Boots \$150 (normal price) \\
- Jacket \$200 (normal price) \\
- Shirt \$80 (normal price) \\
- Hat \$50 (normal price) \\
- Socks \$6 (normal price)
\end{tabular} & \begin{tabular}{l}
b. Order 3 meals get the 4th free. (Offer applies to lowest price item.) \\
- Meal 1: \$23 \\
- Meal 2: \$18 \\
- Meal 3: \$25 \\
- Meal 4: \$24
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.25 Assessment Task}

\section*{AT5 Working the Money Financial Numeracy: Number \& Change}

\section*{Overview}

For this task, you are required to complete \(\mathbf{3}\) applied Financial Numeracy activities.
Some of these activities may come from Section 5. Your teacher might change the nature and applied focus of some of these activities, and might add others that are more relevant for your own applied personal and vocational situations.

Part A: Working with currency/Making change
Calculate transaction totals and change. Use currency units to make change.
\(\square\)

Part B: Investigating and comparing prices Investigate prices of relevant items. Undega
\(\square\) a price comparison of items fron Fer or :ajers
\(\square\) a unit price comparison of iten si
\(\square\) a comparison of price chans \(<\) and ne 0 tems.

Part C: Calculating and evaluating discounts
Investigate discounts on selected items. Calculate discounted prices and savings. Evaluate if the discounts represent a 'good value' purchase or not.

Information, key dates, resources and tools to use.

At all stages of this task you will need to apply the 4-Stage Problem-Solving Cycle:
1. Identify the maths 2. Act on and use the maths 3. Evaluate and reflect 4. Communicate and report.

You also have to develop and apply tools and techniques from your Maths Toolkit.
Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

Name(s):
U3: Module 2 Number/Change
Tasks - AT5: Working the Money
Musł Do?

Due by Done
Level
Negotiate the task details with my teacher.

Part A: Working with currency/Making change
1. Participate in transaction situations.
2. Calculate transaction totals.
3. Calculate change required.
4. Use currency units to make change.

Part B: Investigating prices
1. Price comparison from different retailers.
2. Unit price comparison of different sized items.
3. Comparison of price changes over time.
4. Make conclusion and recommendatic

Part C: Calculating and evaluating a coun
1. Investigate discounts on sele
2. Calculate discounted \(p\)
3. Calculate savings from discounts.
4. Evaluate the 'value' of the discounts.

\section*{Task completion and reporting}

Use and apply appropriate digital tools and apps.
Use and apply appropriate analogue tools.
\(\Rightarrow\) Use appropriate numerical language.
\({ }_{3}^{\text {4PS2 }}\) Describe applied use of the problem-solving cycle.

5.27 // Problem-Solving Cycle // Maths Toolkit

\section*{Dollars and Sense}6.01 Dollars and Sense152 6.19 Budgeting170
6.03 Income and Pay 154 6.25 Credit and Loans 176
6.07 Pay Rates 158
6.29 Assessment Tasks 180
6.11 Earning an Income 162
6.33 Problem-Solving \& Toolkit 184
6.15 Expenses 166 6.37 Unit Review and Reflection. 186
\begin{tabular}{|c|c|c|c|}
\hline Activi & ities 6: Dollars and Sense & p. Due date Done & Comment \\
\hline 6A & Dealing with money & \(153 \square\) & \\
\hline 6B & Types of income & 155 & \\
\hline 6C & Pay up & \[
\begin{aligned}
& 156- \\
& 157
\end{aligned}
\] & \\
\hline 6D & Apprenticeship and traineeship pay rates & \[
\begin{gathered}
160- \\
161
\end{gathered}
\] & \\
\hline 6E & Timesheets & 162 & \\
\hline 6F & Pay slips & 164 & \\
\hline 6G & Next year? & 5 & \\
\hline 6H & My expenses & - & \\
\hline 61 & Surplus or deficit? & \(1 \sim\) - & \\
\hline 61 & Feed the kitty & & \\
\hline 6K & Personal budget - Basic & 173 & \\
\hline 6L & My budget - Advanced & \[
\begin{aligned}
& 174- \\
& 175
\end{aligned}
\] & \\
\hline 6M & Mortgages and loans & 177 & \\
\hline 6N & 'Easy' money, hard debt & 179 & \\
\hline AT6a & Applied Financial Numeracy & \[
\begin{aligned}
& 180 \\
& 181
\end{aligned}
\] & \\
\hline AT6b & Researching Wage Rates & \[
\begin{gathered}
182- \\
183
\end{gathered}
\] & \\
\hline PST & Problem-Solving Cycle and Maths Toolkit & \[
\begin{gathered}
184- \\
185
\end{gathered}
\] & \\
\hline
\end{tabular}

Comments:

\subsection*{6.01 Dollars and Sense}

Dollars and sense
In Section 5 you built and applied some key numerical skills to better understand money.
In this final section of Unit 3, you are going to develop and apply more financial numeracy skills.
You will start to explore the different types of income that people are paid for working.
You will also develop financial numeracy skills to help you estimate and manage the common expenses of life.

You will investigate the importance of personal budgeting for financial numeracy, and create a basic 4-week budget for your own personal situation.
You will identify the key inclusions on a pay slip and further investigate the pay rates for entry-level roles such as apprenticeships and traineeships.
Then you will conclude by analysing the positive anu the many negatives, associated with credit a \(\gg\) a products, including 'Payday' or instant los

\section*{Money at work}

profit-making businesses ,rops, farms, trades and manufacturers; all the way rough \(?\) large \(>\) sanisations such as Coles and BHP.
You might have to use money when dealing with customers and clients,
ordering stock and supplies, preparing quotes to cost jobs, and of course, when being part of a successful business!

Image: macrovector/ Depositphotos.com

People who work for not-for-profit enterprises such as schools, hospitals and welfare organisations, and government agencies such as local councils or government departments, must meet strict budgetary constraints. And of course there is also the issue of the wages you earn that are paid for your time, labour, skills and expertise. You need to know how to calculate your wages. You also need to be able to check that you are being paid correctly. So what roles does 'money' play in your vocational roles?

\section*{Recap: Order of operations}

When you work through some of the activities in Numeracy: VPC you might have to combine calculations using addition, subtraction, multiplication and division. Knowing how to do this is a common skill needed for personal and work-related money management. For example, you might earn \(\$ 20\) an hour for 30 hours, plus \(\$ 25\) an hour for another 10 hours of overtime. Working out your total pay for the week combines both addition and multiplication. So, how might you set out the calculation to work this out?
\[
\text { e.g. }=\$ 20 \times 30+\$ 25 \times 10=\text { Total pay for the week }=
\]

Which do you think is the correct answer: \(\$ 850\) or \(\$ 6,250\) ?
Your teacher will discuss how to do this with the class and check to see who got it correct, and who made the common mistake that many people do.
There is a set of rules that govern the order in which to do these types of calculations. This involves you following the correct order of operations for these types of calculations.
1. Describe the main situations when you dea th money.

2. Describe examples wher an the money for you, or your behalf.

3. How would you rate your skills in dealing with money in personal situations and in vocational situations? Explain using applied examples.

\subsection*{6.03 Income and Pay}

\section*{Income}

Income is money that you earn from various sources. The most common form of income is from wages and salaries. Some people earn profits as a result of them owning and operating businesses. Other people receive transfer income from the government through various welfare payments and pensions.
Many people also earn investment income from their holdings of wealth such as:
\(\Rightarrow\) interest from savings
\(\Rightarrow\) dividends from owning shares
\(\Rightarrow\) capital gains from selling assets (shares, property, etc.)
\(\Rightarrow\) rent from investment properties.
This income provides a standard of living whereby we can purchase the goods and services that we need and want to maintain our chosen lifestyle.

Wages
Salaries
\(\Rightarrow\) Wages are income amounts an for an employee's labour
\(\Rightarrow\) Wages are determine hourly basis.
\(\Rightarrow\) Wages normally apply in most trades, and for millions of semi and lower-skilled employees.
janaries are income amounts that are usually paid to professional staff and high-level employees such as some managers; often paid fortnightly or for 4-weeks.
\(\Rightarrow\) Salaries are calculated (but not paid) on a yearly (annual) basis.

Commission/Retainer
\(\Rightarrow\) A commission is an incentive payment usually based on a proportion of sales, fees or revenue. These are often used for people in sales roles.
\(\Rightarrow\) A retainer is a base level of payment made in conjunction with a commission.

\section*{Payment in kind}
\(\Rightarrow\) Payment in kind refers to nonmonetary payments given in return for labour.
\(\Rightarrow\) For example, a caretaker who is employed at an isolated island resort might receive payment in kind of accommodation and food, in addition to their wages.

\section*{Piece rate}
\(\Rightarrow\) A piece rate refers to a type of payment made when a person (often a subcontractor) is paid depending on the amount of items (or units) they produce.
\(\Rightarrow\) For example, someone sewing garments might receive \(\$ 2\) per garment; or someone delivering pamphlets might receive \(\$ 20\) per 1,000.
1. Match the types of pay from p. 154 with the correct description. Complete the numerical calculation (of the example related to this) in your work folios.
\begin{tabular}{|c|c|c|}
\hline Description & Type of pay & Example \& calculation \\
\hline When a worker gets non-monetary payments given in return for their labour. & & Szujette is working as a live-in nanny. On top of her 'pay' of \(\$ 500\) she receives free board and food worth \$500. Calculate \%'s and weekly 'pay'? \\
\hline Pay set down for a professional role and calculated as an annual amount. & & Alborto is paid \(\$ 78,000\) as a manager. So, how much per week? \\
\hline An amount given as an incentive for making sales or generating revenue. & & \begin{tabular}{l}
Sambine works in a high fashion store and has registered \(\$ 380,000\) in sales this year. She got 20\% that as an extra payment. \\
Eo, xtra pay 'per week'?
\end{tabular} \\
\hline A pay amount based on a designated job classification - 'earned' on an hourly basis. & & \begin{tabular}{l}
az earns \(\$ 27.50\). \\
ull-time 38-hour week, and how ish annually?
\end{tabular} \\
\hline A payment amount given per item of production often using sub-contracted labour. & & nunis © paid \(\$ 4\) for each delivery for He can usually do 3-4 deliveries per hour. ate; and how much for a 5 -hour shift? \\
\hline A lower base rate paid to a worker (usually in sales jobs) 'topped up' by commissions. & & Tworks as a boat salesperson. He gets a base payment of \(\$ 400\) per week plus his commission. He normally earns \(\$ 100 \mathrm{~K}\) per year in total. Calculate \%'s and weekly amounts. \\
\hline
\end{tabular}
2. How much are people in your class being paid for working? List names, jobs and hourly wages. Use your work folios if you need more space. Discuss as a class.
\(\qquad\)

\subsection*{6.05 Income and Pay}

\section*{6C Pay up}
1. Find out the current full-time median weekly earnings for the 10 occupations listed in the first table. (You could also calculate weekly earnings and approximate hourly amounts based on a 38-hour week).
2. Choose 10 occupations and find the most recent amounts for full-time median earnings. (Note: As at early '24 the current amounts were still based on 2021.)
Use: https://labourmarketinsights.gov.au search on an Occupation and then find Weekly Earnings. You can scroll down for more information; and find out 'when'.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Occupation Full-time weekly earnings & Median earnings 2015 & Median earnings '2021 & Median earnings 20
\(\qquad\) & \begin{tabular}{l}
Occupation \\
Full-time weekly earnings
\end{tabular} & Median earnings 20 \\
\hline Accountant & \$1,400 & \$1,756 & & & \\
\hline Plumber & \$1,142 & \$1,419 & & & \\
\hline Chef & \$1,050 & \$1,250 & & & \\
\hline Police officer & \$1,600 & \$2,188 & & & \\
\hline Primary school teacher & \$1,350 & \$1,98 & & & \\
\hline Civil engineer & \$1,916 & \$2,2 & - & & \\
\hline Sales assistant - General & \$850 & 1,055 & & & \\
\hline GP & 1,85 & \(\sim{ }^{2}\) & & & \\
\hline Cleaner - commercial & So & - & & & \\
\hline Hairdresser & \[
\$ 800
\] & & & & \\
\hline Average all occupations & \$1,230 & \$1,593 & & Average all occupations & \\
\hline \multicolumn{4}{|l|}{Source: ABS, Survey of Employee Earnings and Hours, May 2021. ABS EEBTUM survey August 2015 cat. no. 6310.0.} & Source: & \\
\hline
\end{tabular}
3. Calculate how much each of these people earns for their week's work. What jobs might these people be working in?
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
a. Rancy works 24 hours and is paid \\
\(\$ 14.50 /\) hour.
\end{tabular} & \begin{tabular}{l}
b. Jix works 20 hours and is paid \(\$ 20\) for 12 \\
hours; with 8 hours overtime with an extra \\
\(25 \%\) loading.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l}
\begin{tabular}{l}
c. Valarie works three 4-hour casual shifts. \\
The standard rate is \$18 per hour and the \\
casual loading is \(25 \%\).
\end{tabular} d. Corrine works a standard full-time week \\
with an hourly wage rate of \(\$ 23.23\). \\
\hline \\
e. Ngoc is 15 and works a standard full-time \\
week in a job with an hourly rate of \$25. He \\
is paid \(50 \%\) of the adult rate.
\end{tabular}

\subsection*{6.07 Pay Rates}

Pay
Being paid is one of the most important reasons for working, and every worker deserves to be paid fairly for their labour. Most workers are paid either according to a wage (per hour) or a salary (per year).
Employees in most entry-level jobs such as Australian Apprenticeships will be paid a wage based on the number of hours worked. The wage rate is set down in an award, or a registered agreement or as part of the National Wage Case.
Some awards and registered agreements provide penalty rates when working shiftwork, odd hours, on weekends, during public holidays or for overtime.
Workers under 21 are normally paid a percentage of an adult rate based on their age. For example, most retail employees aged 18 usually receive \(70 \%\) of the adult rate. Apprentices and trainees will be paid a proportional rate according to their job, stage of completion, and/or age.
These rates, and the relevant proportions of an adult rate, will be set down in the relevant award, or the relevant registered agreeme under which the apprentice or trainee is employed.
Casual workers are normally paid extra (usu \(-\mathrm{i} \%\)). However, in return they forego non-monetary conditions such as annual ve ?n rsonal and carers' leave.

\section*{Awards}

As you might remember from WR
 agreement.
Most awards are national ards nd ar across an industry or industry subsector Australia-wide. Awards set dowir inimum rates of pay and other conditions for employees depending on their job classification. Apprentices and juniors will be paid a proportion of the adult rate.
Awards will also specify information about penalty rates, overtime, allowances and other pay-related issues. (Note: WA will have some employees covered under WA state awards).
For example, many retail workers are covered under the General Retail Industry Award (2020), which of course has its rates updated annually. Many hospitality workers will be covered under the Hospitality Industry (General) Award 2020) which also has been updated.
And many child-care workers are covered under the Children's Services Award (2010) - and yes, it too is updated annually, because 2010 was a very long time ago!

\section*{Registered agreements}

Many workers, including Australian Apprentices, are employed under a registered agreement. Registered agreements (sometimes still referred to as Enterprise Bargaining Agreements or EBAs) are usually negotiated between employers and unions (on behalf of workers) for similar enterprises in the same industry; or even for one specific enterprise (usually a larger enterprise).
What this means is that workers in the one business, or in a particular geographic location or operation of a business, or in a group of similar businesses from the 'same' industry, are all covered by the one specific registered agreement.
Registered agreements must have minimum conditions that are at least as favourable as awards. As a result, many registered agreements do tend to have more favourable wages and conditions than awards.
For example, in retail there is the Woolworths Supermarkets Enterprise Agreement 2020, the Priceline Retail Employees Enterprise Agreement 2021, and many more.

\section*{Traineeships}

Nearly all trainees are paid according to a pre-determined rate known as TK National Training Wage. The Fai Wo Commission has set down Miscellaneous Award 2020
This information is then us for a \(Q\) wurd \(\gg\) ighout other industries (except for nine specific modern awards). So nearly all ©i, the rates and conditions contained in Scledule E in the Miscellaneous Award 2020.
It is important to note that trainees will get their other entitlements such as penalty rate \% loadings, overtime \% loadings as well as specific job-related or industryrelated allowances from the industry or occupation award that covers them.
There will still be some trainees who will have their wages and other conditions set down in a specific registered agreement.
And once again, the National Training Wage rates, just like all other minimum rates, are updated annually.
Different National Training Wage rates apply for Wage Level A, Wage Level B and Wage Level C trainees. This Wage Level classification varies according to industry type (and therefore job type) and also the qualification's certificate level.
There are varied National Training Wage pay rates based on the number of years out of school (up until when a trainee becomes an adult).
There are also part-time rates, rates related to disability classification and rates for Australian School-based Apprentices.
So that's a lot of information! But the maths is straightforward - just multiplication and division - and the rates themselves are based on percentages.

\subsection*{6.09 Pay Rates}

Workplace arrangements, pay and conditions
You have investigated various elements related to workplace arrangements, including wages and salaries. But you need to re-engage with these elements on an ongoing basis as part of your investigation into, and development of, your future career pathway.
So in small groups, discuss what you remember, know and understand about these terms.

\section*{Workplace Arrangements, Pay \& Conditions}

\section*{Part B: Traineeship pay rates}

Given below are National Training Wage rates for a non-adult trainee as applicable for 2023/24, based on school level and years out of school.
1. Calculate how much a trainee would earn per hour and annually.

To calculate wage per hour you will need to divide the weekly wage by 30.4 (and not 38) as a traineeship has a shorter 'working' week - 4 days instead of 5).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
National Training Wage Pay Rates: 2023/24 \\
According to the Miscellaneous Award 2020, Schedule E (Wage Level A)
\end{tabular}} \\
\hline School Leaver Wage Level A & ..and has completed Year 10 & ..and has completed Year 11 & ..and has completed Year 12 \\
\hline \multirow{3}{*}{Just left school} & Week: \$384.30 & Week: \$423.10 & Week: \$503.30 \\
\hline & Hour: \$12.64 & Hour: & Hour: \\
\hline & Year: \$19,983.60 & Year: & Year: \\
\hline \multirow{3}{*}{Plus 1 year out of school} & Week: \$423.10 & Week: 50 30 & Week: \$585.70 \\
\hline & Hour: & Hou \({ }^{+1}\) & Hour: \\
\hline & Year: & - & Year: \\
\hline \multirow{3}{*}{Plus 2 years out of school} & Week: \$503.30 & e. & Week: \$681.60 \\
\hline & Hour: & & Hour: \$22.42 \\
\hline & & & Year: \$35,433.20 \\
\hline
\end{tabular}
2. Find out the current rates for this \(y=0\) Complete the same type of table.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
National Training Wage Pay Rates: 20__ / \(\qquad\) \\
According to the Miscellaneous Award 20 \(\qquad\) , Schedule E
\end{tabular}} \\
\hline School Leaver Wage Level A & ...and has completed Year 10 & \[
\begin{aligned}
& \text {...and has } \\
& \text { completed Year } 11
\end{aligned}
\] & ...and has completed Year 12 \\
\hline & Week: & Week: & Week: \\
\hline Just left school & Hour: & Hour: & Hour: \\
\hline & Year: & Year: & Year: \\
\hline & Week: & Week: & Week: \\
\hline Plus 1 year out of school & Hour: & Hour: & Hour: \\
\hline & Year: & Year: & Year: \\
\hline & Week: & Week: & Week: \\
\hline Plus 2 years out of school & Hour: & Hour: & Hour: \\
\hline & Year: & Year: & Year: \\
\hline
\end{tabular}

\subsection*{6.11 Earning an Income}

\section*{Timesheets}

Timesheets are used to record employee working hours, work days, break times, rates of pay, as well as other information relevant to the particular work setting and employee. Timesheets often use a \(\mathbf{2 4}\)-hour clock. Timesheets are used to calculate weekly (or fortnightly) gross pay amounts.
In some workplaces it might be your responsibility to fill in your own timesheets; and it is definitely your responsibility to check that your timesheets are correct.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Crazy Cracka's Discount p/l: Weekly Timesheeł} \\
\hline Name: & \multicolumn{3}{|l|}{Robbi Grenoble} & \multicolumn{4}{|l|}{Work period: August 19-25, 2024} \\
\hline \multicolumn{3}{|l|}{Employee number: 9875698} & \multicolumn{4}{|l|}{Classification: Retail Worker Level 1} & Age: 18 \\
\hline & Date & Start & Finish & Break & Hours Worked & Rate & Total \\
\hline Monday & 19/8 & 10:00 & 19:00 & \[
\begin{aligned}
& \text { 12:30- } \\
& \text { 13:30 }
\end{aligned}
\] & 8 & \$18 & \$144 \\
\hline Tuesday & 20/8 & - & - & - & - & - & - \\
\hline Wednesday & 21/8 & 10:00 & 19:00 & \[
\begin{aligned}
& 13: 30 \\
& 14 \%
\end{aligned}
\] & 8.5 & \$18 & \$153 \\
\hline Thursday & 22/8 & 10:30 & 20:00 & 1. & 8.5 & \$18 & \$153 \\
\hline Friday & 23/8 & 12:00 & 19:3 & A & 6.5 & \$18 & \$117 \\
\hline Saturday & 24/8 & 12:30 & 0 & , & & \$27 & \$162 \\
\hline Sunday & 25/8 & 10:00 & 7:3 & 113 & \[
7.5
\] & \$36 & \$270 \\
\hline Totals & & & & & 45 & & \$999 \\
\hline
\end{tabular}

\section*{6E Timesheets}
1. Use the sample timesheet above to ir.erpret and communicate 10 clear and concise points of numerical information.
2. Complete a timesheet based on the following information. Make up personal and work-related information as required and add this below.
Adult retail employee working a standard, 38 -hour week, Monday to Friday.
\(\Rightarrow\) Sign-on is 08:45 am.
\(\Rightarrow\) Unpaid lunch break is from 13:00 to 13:45.
\(\Rightarrow\) The employee is paid \(\$ 23.23\) per hour (as per the National Minimum Wage for 2023/24 but you can update this figure with the current amount for this year).
\(\Rightarrow\) The worker does 2 hours overtime (at time and a half) on Thursday, after a break of 20 minutes. You need to adjust the timesheet's format slightly to show this.
3. Complete a timesheet based on your most likely work situation for next year.
4. Obtain an actual timesheet from a workplace and analyse how it is the same as, and/or different from, the sample shown above.

A pay slip is a hard copy or digital document that must be issued by law for each pay period. Pay slips should include the following.

\section*{Basic information:}
\(\Rightarrow\) employer's name and ABN
\(\Rightarrow\) employee's name.

\section*{Pay information:}
\(\Rightarrow\) the pay period and date of payment
\(\Rightarrow\) amounts for gross and net pay.

\section*{Pay rate information:}
\(\Rightarrow\) If the employee is paid an hourly rate (i.e. a wage):
» the ordinary hourly rate
» the number of hours worked at that rate during the pay period
» the total dollar amount of pay at that rate for the pay period.
\(\Rightarrow\) Or if the employee is paid a sory
- the annual gross salary

\subsection*{6.13 Earning an Income}

\section*{6F Pay slips}
1. Use the sample pay slip on p. 163 to interpret and communicate 10 clear and concise points of numerical information.
2. Complete a pay slip based on the following information. Make up personal, workrelated and other financial information as required.

Employer: Hairex Tensions
ABN: 2345698701
Pay period: Sunday-Saturday last week
Pay date: This Thursday
Hourly rate: \$17.50
Hours worked: 20 in total
Overtime rate: +25\%
Overtime hours: 6
Tax deducted: 12.5\%

Super deducted: na
Other information:
They have been working 3 weeks
Week 1: Same ordinary hours, no overtime.

Week 2: Identical as week 3 just gone.
Tax deducted: 12.5\% each week
Note: No superannuation contributions requir as under the 30 -hour cut-off for ee aged under 18.

Overtime hourly rate:
\$

Gross entitlement

Net entitlement

Paid into bank account:

Year to date
\$
\$
Tax deducted: \$
\$

BSB:
Year to date \$

Year to date \$
3. Complete a pay slip based on your most likely work situation for next year. (No need to show your true bank account number, just list your bank.)
4. Obtain an actual pay slip from a workplace and analyse how it is the same as, and/ or different from, the sample on p.163.

\section*{Changing you}

Very soon you are in for some changes. Big changes. And these changes will impact on your personal financial circumstances. Some of you will transition into the workforce which might see you move from no work into paid work, from casual work into full-time work, or even from higher-paid casual work into lower-paid entry-level career employment (such as a 1st-year Australian Apprentice).

Next year?

\section*{Applied investigation}
a. Find out the pay rates for a job you are interested in for when you finish Year 12.
b. Use these rates to prepare a pay slip based on you working 20 hours part-time (on a regular basis). Assume this is your 5th week of work.
c. Use these rates to prepare a pay slip based on you working 38 hours full-time (on a regular basis). Assume this is your 10th week of work.
Note: You are going to need to make some assumptions. One of these is the tax rate for income tax deductions. Take off \(10 \%\) for the part-time work example, and \(20 \%\) for the full-time work example.

So what other numerical assumptions might/will you need to make? Your teacher will guide you in this.

\subsection*{6.15 Expenses}

\section*{Expenses}

As you realise, living your life costs money. And the lifestyle you might want to live can be really expensive. At times, living even just a basic life can be full of day-to-day, week-to-week, month-to-month and even year-to-year expenses just to meet your 'basic' needs.
For personal situations, expenses might include mortgage repayments or rent, groceries, utilities, motor vehicle costs, bills, personal items, health and medical bills, education costs, entertainment and other outlays.
Expenses can refer to the costs incurred in business such as wages, materials, utilities, stock, inputs, equipment, rent and many other expenses.
Sometimes expenses might simply be called costs or outgoings.

\section*{Expenses and you}

Your most common and costly expenses at this stage of your life will be quite different from when you were back in primary school. Next year, as a young adult transitioning from. secondary school, you will also find your patte of expenditure will be different from now. If you are living independently, you wis als have to take on responsibility for ac whole ses range of adult expenses.
\(\Rightarrow\) clothing - work
\(\Rightarrow\) shoes and footwear
\(\Rightarrow\) union fees
\(\Rightarrow\) computing and ICT
\(\Rightarrow\) devices
\(\Rightarrow\) electrical
\(\Rightarrow\) child-care
\(\Rightarrow\) school and education fees, books, etc.
\(\Rightarrow\) books, magazines, subscriptions
\(\Rightarrow\) holidays
\(\Rightarrow\) gifts and presents
\(\Rightarrow\) donations
\(\Rightarrow\) special treats
\(\Rightarrow\) credit card repayments
\(\Rightarrow\) personal loan repayments
\(\Rightarrow\) others \& others
\(\Rightarrow\) and lots of others!

Expenses 6.16
My expenses

\section*{Part A}
1. Allocate the expenses on p. 166 under these category headings if they are an expense you experience. Of course, add other expenses that reflect your own lifestyle and spending patterns. Add 2 category headings more suitable for you.
2. Next to each one rate them as \(\mathbf{H}\) (high spend) M (medium spend) L (low spend).
Clothing \& footwear

\subsection*{6.17 Expenses}

\section*{Part B}
1. Estimate and then calculate how much your expenses are per week/or per 4 weeks in these categories.
2. Calculate a total. Calculate their amounts as a percentage of your total.
Clothing \& footwear
3. Who actually pays for your expenses now? Is it you who covers the costs? Or is it your parents, your siblings, or someone else? Why is that?

\section*{Expenses 6.18}

\section*{Part C}
1. Project ahead to next year post-Year 12. Estimate how much your expenses might be per week/or per 4 weeks, across your top 12 major categories. Calculate an estimated total.
2. Calculate the amounts as a percentage of this total.

3. Comment on why these figures are similar or different from now.
4. What might you have to change in your life to cover these expenses?
5. Will you take the responsibility for some, most, or all of your expenses next year? Or will you need to get help?
Extension: This activity would really suit using a spreadsheet. Have a go!

\subsection*{6.19 Budgeting}

\section*{Personal budgets}

Being able to create and manage a personal budget is an essential skill for your life, especially as you transition beyond school and into your adult lives!
It is vital that you manage your expenditure and minimise the use of credit; especially seemingly easy sources of credit such as buy-now pay-later, credit cards, 'payday' or instant loans, and interest-free purchase contracts.
You also need to explore income sources such as wages and salaries, interest income and government benefits and assistance.
Additionally, you need to balance your expenditure with your income to manage your day-to-day financial obligations, to provide for longer-term spending requirements, to save for assets such as a car, and to save for your future.

\section*{Budgeting}

A budget is a financial management planning tool that lists all of your forecasted revenue and expenses over a period of time. A budget allows you to see if you expect to have more money coming in (surplus) or morr ney going out (deficit). A budget can help you plan your spending more. sponsibly and allow you to take control of your finances.
Financial control is about striking a balan, your needs (i.e. necessities) and your wants (i.e. non-essential and lux. veri .
When you are budgeting it is impo ant thas as possible by listing all of the expenditure items that you in vir na nar. You should also budget for 'other' expenses; some of the ink , sin an wiy to crop up unexpectedly. You need to prepare differe budg ts dep sing on your personal circumstances and your goals. This means that your budger li be different when you are still at school, compared to when you might be studying in post-secondary education, and also when working.
An important part of budgeting is to compare your forecasted amounts with the actual amounts to see how much variation has occurred. This will help you plan more accurately in the future.

\section*{Revenue}
\(\Rightarrow\) For personal income, revenue might include wages, salaries, interest earned, dividends, gifts, government benefits and other monies coming in.
\(\Rightarrow\) Revenue can refer to business income from sales, fees, commissions, service provision and any other business income sources such as royalties or interest.
\(\Rightarrow\) Sometimes revenue might simply be called income or incomings.

\section*{Expenses}
\(\Rightarrow\) For personal situations, expenses might include mortgage repayments or rent, groceries, utilities, motor vehicle costs, bills, personal items, entertainment and other outlays.
\(\Rightarrow\) Expenses can refer to the costs incurred by an enterprise such as wages, materials, utilities, stock, inputs, equipment and many other expenses.
\(\Rightarrow\) Sometimes expenses might simply be called costs or outgoings.

Surplus or Ds
\(\Rightarrow\) A surplus exists when anticipated revenrsa. higher than anticipated expenses. A surplus can lead to savinas
\(\Rightarrow\) A deficit exists when anticipated A deficit can lead to debt.

Calculate the anticipated budget resi
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{ll}
a. Revenue \(=\$ 650\) \\
Expenses \(=\$ 700\)
\end{tabular} & \begin{tabular}{l}
b. Revenue \(=\$ 7,500\) \\
Expenses \(=\$ 600 \times 12\)
\end{tabular} & \begin{tabular}{l}
b. Revenue \(=\$ 1,200\) \\
Expenses \(=\$ 60 \times 20\)
\end{tabular} \\
& & \begin{tabular}{l}
d. Curly expects to earn \(\$ 150 /\) week for 20 \\
weeks and \(\$ 300 /\) week for 30 weeks. His \\
expenses are likely to average \(\$ 225 /\) week \\
over the year.
\end{tabular} \\
\hline \begin{tabular}{l}
c. Revenue \(=\$ 1,500+\$ 3,450+\$ 750\) \\
Expenses \(=\$ 2,000+\$ 650+\$ 2,134\)
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{6.21 Budgeting}

\section*{6J Feed the kitty}

Consider this budget for D'Jan who lives in a sharehouse. D'Jan works as a regular casual, but D'Jan can't predict their exact work hours for each week.
The expenses in the budget represent the amount that D'Jan has to contribute to the household kitty for the month.

Therefore this budget does not include D'Jan's own personal expenses as part of their normal day-to-day lives.
1. Calculate whether D'Jan is likely to have a surplus or deficit for the month.
2. What would be some other household expenses D'Jan might have to meet?
3. Calculate whether D'Jan had an actual surplus or deficit for the month.
4. Why might this variation have occurred?
5. What is D'Jan going to have to do about their household budgeting and their own financial management?

1. Use this planner to forecast a 4-week budget for yourself based on your current lifestyle situation.
2. Keep track of your income and expenses. Then at the end of the 4 weeks you can compare your budget estimates to your actual income and actual expenses to see how accurate you were.

Research Go online and find some budgeting tools and apps. Try these to see how useful they are for young people at your stage of life. Report to the class. Visit ASIC's Money Smart website - a trusted tool: www. moneysmart.gov.au (Be careful with other free tools that are actually trying to sell you a product such as a budgeting service - which is not likely to be free at all!)

\subsection*{6.23 Budgeting}

\section*{6L My budget - Advanced}
a. Identify expense categories that are part of your spending patterns. Show these below.
b. Estimate how much you spend on each of these categories either on a weekly, or a monthly, or an annual basis (this will depend on how often you actually pay for the item). Complete the table for each of these time periods.
(Note: There is an average of 4.4 weeks for each of the 12 months of a year.)
c. Why do you think it is a sensible thing for expenses to be multiplied by 5 weeks, rather than by 4 weeks, so as to equate to a month?
d. Include an 'other' category. How much should you allocate to this? Why so?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Personal Budget & per & week & & month & & year \\
\hline Expenses & & \$ & & \$ & & \$ \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline & & & & & \(\times 12\) & \\
\hline & & & & & \(\times 12\) & \\
\hline & & & & & \(\times 12\) & \\
\hline & & & & & \(\times 12\) & \\
\hline & & & & & \(\times 12\) & \\
\hline & & & & & \(\times 12\) & \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline & & & \(\times 5\) & & \(\times 12\) & \\
\hline other expenses & & & \(\times 5\) & & \(\times 12\) & \\
\hline Total & & & \(\times 5\) & & \(\times 12\) & \\
\hline
\end{tabular}
e. Use the planner to forecast a monthly budget for yourself based on your current financial situation. You might have to convert some expenses from weeks into months. You will also need to include any repayment obligations that will fall due such as buy-now pay-later debts.
f. Will you be in surplus or deficit?

\subsection*{6.25 Credit and Loans}

\section*{Credit and loans}

In life we can't always afford what we want to buy right away. So we use credit to buy things. You may see ads saying that "Credit is easy money". Yeah right! Read on!
Credit that is provided to you immediately becomes your debt. You have to pay back debt, plus interest, plus fees, plus charges, plus more interest...and so on.
And many credit and loan providers don't really want you to pay back your debt too quickly. "Take your time, just give us a little bit each fortnight or week - it's fine. We're nice people!" But why do they do that? Are they really being so nice to you?
There are six main types of personal credit finance available in Australia.
1. Mortgages for housing loans
2. Personal loans
3. Buy-now pay-later
4. Credit cards
5. Interest-free purchases
6. Payday and instant loans

\section*{1. Mortgages}
\(\Rightarrow\) People can take out a credit contract called a or housing loan to buy a house (and land).
\(\Rightarrow\) The term mortgage refers to the right of the lender to take possession of the property in the case of default. (Some people say that the 'bank' still 'owns' their home until the entire loan is paid off.)
\(\Rightarrow\) Home loan mortgages are normally taken out over 25-30 years. Mortgages are a pretty good use of credit because the value of the house and land will usually go up in the long term.
\(\Rightarrow\) So borrowers are actually gaining utility (by living in the house) while building an investment (the value of the house and land increasing).

\section*{2. Personal loans}

People often use shorter-term credit contracts such as personal loans.
\(\Rightarrow\) Personal loans are often used to pay for cars, household items, holidays, weddings and big-ticket items. The loan is repaid with regular repayments, including interest, over a period of perhaps 3-5 years.
\(\Rightarrow\) However, it can be a mistake to use personal loans to buy luxuries that are consumed immediately such as holidays; and for electricals, that date quickly. e.g. A holiday can = 2 weeks of enjoyment but paid for over 5 years!
\(\Rightarrow\) It is better to save up for a holiday! (We won't mention about borrowing to buy engagement rings!)

After having a class discussion and doing online research, answer the following.
1. Why is a mortgage generally a 'good' type of credit?

2. How much is the average mortgage in Australia, and in your state? By how much has this grown in the last 10 years?

3. Use a mortgage calculator to calculate mon reNayments on an average mortgage, and how much interest (at toa en would be paid over 25 years.

4. For which type of purc a mend a personal loan? Why?

5. For which type of purchases would you not recommend a personal loan? Why?

6. Use a personal loan calculator to calculate fortnightly repayments on a 5-year, \(\$ 10,000\) loan for a car. How much in interest (at today's rate) would be paid over the 5 years?

\section*{3. By-now pay-later}
\(\Rightarrow\) This is one of the fastest growing sources of 'credit' for consumers in Australia.
\(\Rightarrow\) This 'pay in 4' type of credit is becoming the most easily accessible credit for young people
\(\Rightarrow\) Key providers include Afterpay, Zip Pay and others.
\(\Rightarrow\) Technically this is not a form of credit; it is an agreement to pay off an item over a number of instalments. i.e. 'buy-now paylater'.
\(\Rightarrow\) You get to use the service, or take the item home straight away. But if you miss your repayments you pay fees!
This source of 'credit' is causing severe financial trouble for people aged 18-35 and for people on low incomes.
5. Interest-free purcha
\(\Rightarrow\) Interest-free purchase offered by retailers to of household goods, electricals and other big ticket items. Some offer up to 5-years' 'interest-free'.
\(\Rightarrow\) The purchaser usually enters into a finance agreement with a thirdparty lender and/or receives a 'store credit card'.
\(\Rightarrow\) If the purchaser pays back the 'loan' within the interestfree period then no interest is charged. But there are likely to be substantial fees.
\(\Rightarrow\) However, if the 'loan' is not paid off within the specified time then the purchaser is usually up for very high interest charges.
Beware: The recommended minimum monthly repayment amount is not likely to pay off the purchase price within the specified time.

\section*{4. Credit cards}
\(\Rightarrow\) People use the flexibility offered by credit cards to buy groceries, personal items, devices, entertainment and gifts. Credit cards can also be used to pay for emergencies such as car repairs and medical bills.
\(\Rightarrow\) But this form of credit can come at a high price. Credit cards are handy as long as you pay off your debt before the interest-free period expires. Otherwise, you could be up for a BIG interest bill!
\(\Rightarrow\) Look ahead. If you can't afford to pay for an item within one month then you really must reconsider *ing a credit card to buy. Interest ues quickly.
eware. If you are using credit ds to pay bills then you are eady sliding into financial Seek help immediately.
S. 'Payday' or instant loans This short-term form of credit is basically a cash advance. 'Payday' types of loans are usually from \(\$ 300\) up to \(\$ 2,000\).
\(\Rightarrow\) There are government regulations that cap the fees and charges related to these types of loans, but they are still very high.
\(\Rightarrow\) Ads for these online and on TV make it seem fun and easy. Need money, just Wallett-Nimble it! But they don't ever talk about paying the loan back!
\(\Rightarrow\) Some providers now offer 'instant loans' up to \(\$ 25,000\) - instantly! That's a lot of pain ready to happen right there!
Beware: If you are considering this type of credit then the best advice is: DON'T. You are already experiencing financial difficulties. Financial help is available free.

Cash advances are not!

Work through the case studies below using the online calculators available at ASIC's: www.moneysmart.gov.au
1. Jumbuk turns 18 and gets a credit card with a \$2,000 limit (and 20\% interest rate). He goes out that day and buys a new phone and accessories for \(\$ 1,500\). He has a job and plans to pay this off over time.
On his first statement he receives a notice of his balance, \(\$ 1,500\) and a request to make a minimum payment of \(\$ 37.50\) which he pays within the time period specified.
Jumbuk is quite financially disciplined and he doesn't use his card again. On his next
statement he receives a notice:
Opening balance: \(\quad \$ 1,462.60\)
Add purchases: \(\quad \$\)
Add interest charges: \$ 29.20
Closing balance: \(\quad \$ 1,491.80\)
Minimum payment due: \$ 37.29
a. What will happen if Jumbuk continues to only pay the minimum monthly payment due? Use the credit card calculator.
b. What happens if he increases his minimum monthly payment to \(\$ 50\) ?
c. What about \(\$ 75\) ?
d. What about \(\$ 100\) ?
e. What would you recommend?
 nts that Jolie will repay over the of the loan.
2. Jolie 18, drives 45 minutes to and from her job as a pharmacy assistant. Her car blows a head gasket and she is quoted \(\$ 1,000\) to repair the engine.
Jolie approaches a 'Payday lender' and borrows \$1,000 over 12 months.
The establishment fee for the loan is \$200
(this is set at \(20 \%\) of the loan amount).
She will pay monthly 'interest' fees (they are set at \(4 \%\) of the total loan amount).
a. What is the total of Jolie's loan amount?
b.
 ayments be?
d. Calculate the \% in 'interest' and fees on the loan. (Total interest and fees/total loan amount) x 100\%.
e. Find out what happens if Jolie defaults on her loan.
f. Do some research and find alternative sources of finance for Jolie.

\subsection*{6.29 Assessment Task}

\section*{AT6a Applied Financial Numeracy} Financial Numeracy: Number \& Change

\section*{Overview}

For this task, you are required to complete \(\mathbf{3}\) applied Financial Numeracy activities.
Your teacher might change the nature and applied focus of some of these activities, and might add others that are more relevant for your own applied personal and vocational situations.

Part A: My budget
Prepare a basic weekly and/or monthly budget for your own personal situation.

Part B: Pay slip Identify and summarise the key information , Ans slip.

Part C:
Investigate different types of credit and ?ans.
\(\square\) Explain how credit and loans can be used in a positive way.
\(\square\) Explain how credit and loans might be used in a negative way.
\(\square\) Use an ASIC tool to calculate the true cost of a 'payday' or instant loan.
\(\square\) Develop cautions for young people about using 'easy' credit and loans.
Information, key dates, resources and tools to use.

At all stages of this task you will need to apply the 4-Stage Problem-Solving Cycle:
1 Identify the maths 2. Act on and use the maths \(\mathbf{3}\). Evaluate and reflect 4. Communicate and report.

You also have to develop and apply tools and techniques from your Maths Toolkit.
Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

\subsection*{6.31 Assessment Task}

\section*{AT6b Researching Wage Rates Financial Numeracy: Number \& Change}

For this assessment task you are required to complete a number of tasks related to pay and income. You will present your findings in a summary report.

\section*{Part A: Apprenticeship wage}
1. Find out the current adult minimum pay rate.
2. Estimate the apprenticeship wage for 1st, 2nd, 3rd and 4th year.

Choose an Australian Apprenticeship that you might be interested in.
3. Find out the exact pay rates for that Apprenticeship.
4. Calculate the weekly and annual wage.
5. Find out about penalty rates, allowances and other pay data.

Resources and websites to use:

\section*{Part B: Tr © ze.hin ye}
1. Estimate the current National

Choose a traineeship that you
2. Find out the exact pay
3. Calculate the weekl
4. Find out about penar rates, Allowar Pand other pay data

Resources and websites to use:

Part C: Casual employment wages
Choose 2 different employers that young people commonly work for such as supermarkets, retailers, take-away food, hospitality, etc..
1. Estimate the current hourly wage rates for each (based on your age).
2. Find out the exact pay rates for each employer.
3. Calculate a weekly and annual wage (based on a 'normal' casual week).
4. Find out about penalty rates, allowances and other pay data.

Resources and websites to use:

Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.
\begin{tabular}{|lll|}
\hline Name(s): & Key dates: \\
Tasks - AT6b: Researching Wage Rates & \begin{tabular}{l}
Financial Numeracy \\
U3: Module 2 \\
Number/Change
\end{tabular} \\
Part A: Apprenticeship wage \\
1. Current adult minimum pay rate. \\
2. Estimate the apprenticeship wage. \\
3. Exact pay rates for that apprenticeship. \\
4. Calculate the weekly and annual wage. \\
5. Penalty rates, allowances and other pay data.
\end{tabular}

\section*{Part B: Traineeship wage}
1. Estimate the current National Training wage.
2. Exact pay rates for that traineeship.
3. Calculate the weekly and annual wage.
4. Penalty rates, allowances and other

Part C: Casual employment wages
1. Estimate current hourly wage
2. Find out the exact pay

Task completion

6.33 // Problem-Solving Cycle // Maths Toolkit

// Problem-Solving Cycle // Maths Toolkit 6.34
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Task: \\
AT6b -
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Names/Dates:}} & \[
\begin{gathered}
1 \\
4 \mathrm{PS} 2 \\
3
\end{gathered}
\] \\
\hline & & & & & & \\
\hline \multicolumn{6}{|c|}{1. Identify the maths} & \\
\hline Identify problem(s) & Done: \(\bigcirc\) Level:
\(\square\) & Recognise maths & Done: \(\bigcirc\) Level:
\(\qquad\) & Select information & Done: \(\bigcirc\) Level:
\(\square\) & \\
\hline Interpret information & Done: \(\bigcirc\) Level:
\(\square\) & Choose processes & Done: O Level:
\(\square\) & & Done: O Level:
\(\square\) & \\
\hline \multicolumn{7}{|c|}{2. Act on and use maths} \\
\hline Perform estimations & Done: \(\bigcirc\) Level:
\(\square\) & Decide techniques & Done: Level: & Choose maths tools & Done: Level: & \\
\hline Select technologies & Done: \(\bigcirc\) Level:
\(\square\) & Perform calculations & Done: \(\bigcirc\) Level:
\(\square\) & & Done: \(\bigcirc\) Level:
\(\square\) & \\
\hline Check Estimations & Done: \(\bigcirc\) Level: & Compare resu & Done: & Check processes & Done: Level: & \\
\hline Review actions & Done: \(\bigcirc\) Level:
\(\square\) & & A: & Assess conclusions & Done: \(\bigcirc\) Level:
\(\square\) & \\
\hline Written processes & Do1 \(\bigcirc\) Level:
\(\square\) & & \begin{tabular}{l}
Done: \\
Level:
\end{tabular} & Oral processes & Done: Level: & \\
\hline Oral results & Done: \(\bigcirc\) Level:
\(\square\) & Digital processes & Done: \(\bigcirc\) Level:
\(\square\) & Digital results & Done: O Level:
\(\square\) & \\
\hline
\end{tabular}

\subsection*{6.35 Review and Reflection}

My performance in developing my Numeracy skills this entire unit was:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
0 \\
not shown
\end{tabular} & \begin{tabular}{c}
1 \\
low
\end{tabular} & \begin{tabular}{c}
2 \\
reasonable
\end{tabular} & \begin{tabular}{c}
3 \\
good
\end{tabular} & \begin{tabular}{c}
4 \\
very good
\end{tabular} & \begin{tabular}{c}
5 \\
excellent
\end{tabular} \\
\hline
\end{tabular}

What were my strongest areas of performance? What should I work on improving?
\begin{tabular}{|l|l|}
\hline My strongest topics/skills were: & But I need to improve my skills in: \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Signed: \(\qquad\) Date: \(\qquad\)```

[^0]: Comments:

[^1]: Present a report to the class (if required).

