Unit 1

1. Numeracy Skills 12. Time and Place27
2. Location and Planning 49
3. Money 75
4. Dollars and Sense 107
Unit 2
5. Shapes and Objects 135
6. Quantity \& Measuring 159
7. Data and Information 187
8. Making Sense of the World 215
9. How Does it Work? 241

Important: All material, advice and assessment tasks are provided as a guide only and do not constitute official advice. As always you must check with the VCAA and any other relevant authorities about the suitability of a task. Copyright notice/License information:
\Rightarrow All material in this printed workbook may only be reproduced by the school or institution named on each page in accordance with its purchase of a master license.
\Rightarrow All use of material must include the copyright and license notices at the bottom of each page. You are not permitted to electronically re-engineer or extract material from a page. Please see the Read Me First file for full licensing information in relation to a master license.
\Rightarrow Unauthorised copying and reproduction of this material constitutes a breach of the Copyright Act.
\Rightarrow For best results the material has been formatted to be reproduced from the master file.

VCE: VM Units 1\&2: From 2023

\Rightarrow Literacy VM 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Numeracy VM 1\&2: Coursebook \& Skills Development Portfolio
\Rightarrow Personal Development VM 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VM 1\&2: Coursebook \& Applied Vocational Booklet
VPC Units 1\&2: From 2023
\Rightarrow Literacy VPC 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Numeracy VPC 1\&2: Coursebook \& Skills Development Portfolio
\Rightarrow Personal Development VPC 1\&2: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VPC 1\&2: Coursebook \& Applied Vocational Booklet www.delivereducation.com.au

VCE: VM Units 3\&4: From 2024
\Rightarrow Literacy VM 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Numeracy VM 3\&4: Coursebook \& Skills Development Portfolio
\Rightarrow Personal Development VM 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VM 3\&4: Coursebook \& Applied Vocational Booklet

VPC Units 3\&4: From 2024

\Rightarrow Literacy VPC 3\&4: Coursebook \& Applied Vocational Booklet
\Rightarrow Work Related Skills VPC 3\&4: Coursebook \& Applied Vocational Booklet
michael@delivereducation.com.au
Copyright © 2022 Michael Carolan Developed and written by Michael Carolan Cover by Michael Carolan First published December 2022. Contact: www.delivereducation.com.au michael@delivereducation.com.au (03) 99391229 Carolan, Michael
Numeracy VPC: 1 \&2 (ISBN 978-1-925172-79-9 for printed coursebook)
Images: © 2022 Depositphotos.com, © 2022 Thinkstock, © 2022 Photos.com (where noted within text); others: © 2022 Jupiterimages Corporation; and Copyright DELIVER Educational Consulting and its licensors.
This book is copyright and may only be copied in accordance with the Copyright Act. For information contact the Copyright Agency Limited. Students may copy pages from their own workbooks for their own educational purposes.

VCE: Vocational Major

$\left.\begin{array}{|lllll|}\hline \text { *Note: 3\&4 due Nov \& Dec '23 } & \begin{array}{c}\text { Printed } \\ \text { Coursebook }\end{array} & \begin{array}{c}\text { Applied } \\ \text { Vocational } \\ \text { Booklet }\end{array} & \begin{array}{c}\text { Master license } \\ \text { PDFs }\end{array} & \begin{array}{c}\text { Mastersion } \\ \text { PDFs }\end{array} \\ \text { *Literachse }\end{array}\right\}$
$3 \& 4$ Interim masters

- Available now
- Available now

Available in Oct

- Available now
$3 \& 4$ Interim masters Available from Nov Available from Nov

Vocational Pathways Certificate				
*Note: 3\&4 due Dec '23 \& Jan '24	Printed Coursebook	Applied Booklet	Master license PDFs	e-version Master license PDFs
*Literacy VPC: 3\&4	@ \$49.50	_ @ \$27.50	_ @ \$385	or __ @ \$495
*Work Related Skills VPC: 3\&4	_ @ \$49.50	__ @ \$27.50	_ @ \$385	or __ @ \$495
Literacy VPC: 1\&2	_ @ \$49.50	_ @ \$27.50	_ @ \$385	or __ @ \$495
Numeracy VPC: 1\&2	_ @ \$49.50	__ @ \$27.50	__ @ \$385	or __ @ \$495
Personal Development VPC: 1\&2	__ @ \$49.50	__ @ \$27.50	_ @ \$385	or __ @ \$495
Work Related Skills VPC: 1\&2	_ @ \$ 49.50	__ @ \$27.50	_ @ \$385	or __ @ \$495

Order Details

Name:	
Position:	
e-mail:	
School:	
Address:	
State:	Postcode:
Order No:	
email for invoice (if different):	

Numeracy Skills

Comments:

1.01 Introduction

Numeracy 101

Welcome to your studies of Vocational Numeracy so let's get started.
It's a world of numbers out there.
\Rightarrow Numbers are used for your time and your travel.
\Rightarrow Numbers are used for your work and for your income.
\Rightarrow Numbers are used for your shopping and for your personal budget.
\Rightarrow Numbers are used for your health and for your personal wellbeing.
\Rightarrow Numbers are used for meal preparation and cooking.

Numerical skills are required for all occupations. Workers in skilled trades need well-developed practical and technical numeracy.

Image: monkeybusinessimages/ istock/Thinkstock and social activities.
\Rightarrow Numbers are used for measuring, desinn,
\Rightarrow Numbers are used to collect, gather ar, an arata and numerical information.
\Rightarrow Numbers govern how people work,
So you have to build your numerica $<$ iy 10 np- 0 ; yur personal, social, educational and working lives. Let's do it
One of the key skills relat words, terms and descriptive phrasis.
\leftarrow As a class, discuss examples from your K_{p}.

Numerical Language

1. Match each of these numbers to the correct numerical statement.
2. Discuss as a class by talking about what these numbers show about the world.

- 2.7 people (in 2021)
$\square 14$ hours 20 minutes
$\square 30 \%$
$\square 37^{\circ} \mathrm{C}$ (approx.)
$\square 73 \%$

The population of Australia in 2022 is:

Life expectancy for a person born in 2000 in Australia is:

The average sale price of a house in Melbourne as at June 2022 is:

The flight time from Melbourne to LA is:81.7 years
$\square \$ 921,500$
$\square 87 \%$
$\square 100^{\circ} \mathrm{C}$
\$1,769.80
\square \$624,000

The population of India in 2022 is:

The average weekly wage in Australia as at June 2022 is:

The average sale price of a house in Australia as at June 2022 is:

The proportion of male workers in the construction industry is?
The proportion of female workers in the education and training industry is:

1.03 Introduction

1B Numbers as pictures

Sometimes numbers can be represented by pictures, graphs, pictograms and other visual images.

1. Each of these images refers to one of the numbers from activity, 1A. Match the images with the correct number.
2. Create an image of your own to match one of the other numbers.

Consider these situations that involve numeracy.

1. For each one, explain how numeracy relates to that situation.
2. Describe a specific numerical example of that situation that relates to you.

Numbers in my life	Explanation	Example
e.g. My health and wellbeing	It is vital that I get enough sleep every night otherwise I get very grumpy.	I need to get 8-9 hours sleep per night which is about 60 hours per week.
e.g. My social life	I love to sing, dance and perform which requires me following timing cues.	I have to count the beats as 8 , $16,24 \& 32$ so I know when to start dancing my routines.
a. My time		
b. My shopping		
c. My money/ c. budget		
d. My health and wellbeing		
e. My meals		
f. My sport and recreation		
g. My social life		
h. My measuring		
i. My design i. (creative tasks)		
j. My practical/ j. technical tasks		
k. My work tasks		
I. My timetable		
m. My travel		

1．05 Numeracy Skills

Personal numeracy

Numbers play an important role in our personal and home lives．Families often have to do a lot of counting（addition）so as to：
\Rightarrow plan how they live
\Rightarrow manage their family
\Rightarrow allocate the space in their homes
\Rightarrow run a household budget
\Rightarrow organise travel and transport
\Rightarrow socialise with family members and friends
\Rightarrow participate in sport，recreation and leisure，
\Rightarrow as well as many other day－to－day tasks and activities that are part of their lives．

What do you do，that involves numeracy？

1D Numbers at home

For each of these numbers（and approxir to your family（personal）life．For exam
$\Rightarrow 2=$ We have 2 pets，Rufus the dog
$\Rightarrow 8=$ The number of＇screens＇in 上 上少 2,0 ，Laptops， 3 phones \＆ 1 iPad．

| 1 | | （approx．） | |
| :---: | :---: | :---: | :---: | :---: |
| 2 | | 100
 （approx．） | |
| 3 | | 1,000
 （approx．） | |
| 4 | | 10,000
 （approx．） | |
| 5 | | 100,000
 （approx．） | |
| 6 | | $7: 30 \mathrm{am}$ | |
| 7 | | $7: 30$ pm | |
| 8 | | 45 minutes | |
| 9 | | $21^{\circ} \mathrm{C}$ | |
| 10 | | 10 metres | |
| 20 | | $>3 \mathrm{~km}$ | |

Work-related numeracy

Numbers play an important role in the everyday working lives of employees, business owners and customers. Workplace participants need to:
\Rightarrow estimate and plan costs and meet budgets
\Rightarrow manage staff rosters, opening hours and timetables
\Rightarrow plan and organise stock, production and service schedules
\Rightarrow collect sales revenue and fees from customers and clients
\Rightarrow pay expenses and for inputs
\Rightarrow pay wages and salaries
\Rightarrow pay GST, income and company tax.
They also have to do many other day-to-day numerical work tasks and activities that are an essential part of working and the commercial world.

 to your vocational experiences and/ort \rightarrow
$\Rightarrow 4=$ The number of hours of a casua. iis. wo,

$\Rightarrow 10,000$ (approx.) $=$ The zno n- n. $2 d$ ristall a new phone system.

1.07 Numeracy Skills

Working it out

There are many skills associated with numeracy and these go well beyond simply adding, subtracting, multiplying and dividing.

Just like any skill, people have varied levels of numerical capability. And just like any skill, numerical skills can be improved and developed.
Some of you will be at a developing stage of your numeracy. That's fine. The aim of this course is for you to build, improve and develop your skills.
Others of you might have more advanced numeracy skills. Through this course you will consolidate what you already know, and then develop and apply numerical concepts to broader situations.
The aim is to assist all of you to improve your abilit to work with numbers. This will help make you r se confident in your day-to-day lives. Hopefully, also make you more employable in the ls er er

"I improved my numeracy skills in the classroom by learning how to apply them to the workplace. And when I did work placement this made me a better worker!" This course is focused on you develor
of numeracy skills that will enable vou in things out for yourself.
The main skills or topic areas (i) Nen are explored throughout varied modules over the
And at all times you will nee to appy tane Problem-Solving Cycle when you are developing and applying the requiredumeracy skills in these modules.

Applied Numeracy Situations

Discuss these images of people from their personal, social and working lives.

1. For each image, briefly describe what the people are doing. Add 1 more image of your own.
2. For each image, discuss which of the 4 types of applied numeracy situations the people might be using.

Extension: For each image identify a 2nd numeracy situation. Briefly explain how these numeracy skills are used together.

1.09 Numeracy Skills

Problem-solving cycle

You will need to apply the 4-stage Problem-Solving Cycle at all stages throughout the year, for all activities and tasks you do. In the beginning stages, your teacher will guide you through the application of the problem-solving cycle. Then as you develop your numeracy skills, you will be expected to start to apply this cycle independently.

4-Stage Problem-Solving Cycle

1. Identify the maths

Find, identify and interpret the numerical information. Look for:

\square numbers	\square quantities	\square shapes	\square times	\square problems
\square words	\square symbols	\square sizes	\square patterns	\square data
\square images	\square measures	\square directions	\square sequences	\square proportions
\square amounts	\square dimensions	\square angles	\square questions	\square relationships.

4. Communicate $\&$ report

Communicate the results and findings using a range of different methods and media. Consider:selecting
explaining
\square describing
\square summarising
\square graphingevaluating
\square words
\square numbers
\square format
\square method
\square media
\square technologies.

2. Act on and use maths the estimates or calculations ctions; and apply suitable
te 2 Ologies. Such as:

- -rmating
measuring
\square calculating
\square comparing
\square analysing
\square solving
\square making
\square sketching \& drawing
\square designing
\square rendering
\square constructing
\square building.

3. Evaluate and reflect

Check and review to make sure that the right information is being used and that appropriate maths has been performed. Ask yourself:
\square Did I perform the appropriate steps?Did I apply the correct tools?
\square Does my answer seem correct?
\square What did I do well?
\square Is the result close to my estimate?
\square What do I need to improve?
How can I double-check?

Mathematics Toolkit: Analogue // Digital // Technological

Throughout the year you will develop skills in the use of many mathematics 'tools' and resources, as well as other tools and resources that relate more to your own vocational, health and recreational, financial, civic and personal circumstances.

\square Measuring devices	\square Calculators	\square Timing devices
\square Software	\square Apps	\square Spreadsheets
\square Tables	\square Graphing	\square Mapping
\square Counters	\square Designing	\square Making
\square Inputs	\square Scanners	\square Outputs
\square Planners	\square Organisers	\square Rosters
\square Drawing	\square Recordin	\square Processing
\square Data	\square Statisi	\square Information
\square Collecting	\square Analysing	

At the start of this year, what ion acm .ny maths toolkit?

I can...	I can...
I can...	I am able to...
I am able to...	I am able to...
I am able to...	I can use...
I can use...	I can use...
I can use...	I can apply....
I can apply...	I...
I...	

1.11 Calculating

Calculating

Calculating crosses over with, and is vital to, every other numeracy skill. So you need to develop a suite of basic numerical calculating skills that you can use in personal and vocational situations.

Numerical calculation is important for:
\Rightarrow personal activities such as doing the shopping, and planning and organising travel and transport,
\Rightarrow financial activities such as buying goods and services, and managing your budget,
\Rightarrow health and recreation activities including cooking using recipes, and following a fitness program,
\Rightarrow community and social (civic) activities including understanding data, and dealing with government information,
\Rightarrow work-related activities such as processing orders when working in a retail store.
Some of the basic functions that you are already likely to know include addition, subtraction, multiplication and division.
You might also be able to calculate percentages and fractions, as well as being able to measure temperature, distance and time.

1H Basic calculations

1. Set these out as appropriate calcu(sins to apply the maths.
2. Check your answers as part of evaluation and reflection.

| a. 16 minus 8 | b. 16 divided by 4 | c. 16 plus 16 add 16 | d. 16 multiplied by 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| e. Spend $\$ 205$ times
 a week. | f.
 cupcakes each day
 for a week. | g.Travel for work is
 30 minutes each
 way. | h.Do 50 push-ups
 on each day in
 January. |

Basic calculations

Basic calculations are those 'sums' that you should generally be able to do in your head.

But for more complex problems, you might do those calculations on paper. Both these skills require you to act on and use mathematics.

In some cases you might need to use a calculator for your sums.
However, it is not good to just rely on using a calculator to do basic calculations. You really need to develop skills to do some calculations in your head, as well as on paper. Then you can check these by using a calculator.
Sometimes you have to think on your feet, so being able to do calculations in your head is important. For example, doing the shopping with only $\$ 50$ for the entire spend!
Sometimes you have to do calculations on paper. For example, if you are working in a shop and the cash register breaks down and you have to add up orders manually. And of course, you always need to be able to che the answer the calculator gives you is correct. For example, putting an extra zen a trie end of a big number can turn 1,000 into 10,000 very quickly. And that can $\mid \nabla$, ii astrous consequences! It is important to remember that a calcula, calculations based on the numbers you enter.
People can make errors when entring
 important part of being abl and reflect.

So that's why you also have to be able to predict and estimate using your own in-built calculator - which is your brain!

1. Macey has just done these 'sums' using a calculator. Do the answers seem correct?
2. Now, check the answers using a calculator. You might need to do some research.

a.	$\begin{aligned} 6+6 & +6+6+6 \\ & =36 \end{aligned}$	b.	$\begin{gathered} 5 \text { cans of Pepsi Max } \\ =\$ 2.50 \end{gathered}$	
c.	$\begin{gathered} 75-55-25 \\ =-5 \end{gathered}$	d.	$\begin{gathered} 3 \text { Big macs } \\ =\$ 19.85 \end{gathered}$	
e.	$\begin{gathered} 19 \times 20 \\ =480 \end{gathered}$	f.	50 litres of petrol $=\$ 75$	
g.	$\begin{gathered} 10+50 / 5 \\ =12 \end{gathered}$		Paid $\$ 400$ a fortnight = $\$ 20,800$ per year	

1.13 Calculating - Addition

Addition

Addition is the adding of amounts or numbers to get a total or a sum. Essentially addition involves counting.
You might have performed addition problems by one or more of these methods.
To apply the problem-solving cycle, you should know how to use each method effectively. So let's do a recap of these.

Physical counting

This involves counting the number of items based on pictures or images; or even counting physical items, objects and people. For example:
\Rightarrow a teacher will do a head count when you are getting on a bus for an excursion
\Rightarrow you might count the number of fish fin $\square^{r s}$,
plate as part of a meal for four
\Rightarrow you might even count the number

Number lines

You can make use of a number line to add up a total amount. A number line allows you to visually mark out different amounts to 'see' a total.
When you are using rulers to measure distance, and thermometers to measure temperature, you are actually using a number line.
For example, a tailor or dressmaker may use a soft measuring tape to work out the total amount of fabric they may need. A measuring tape is an applied number line!

Addition: Using a number line

$$
\text { Calculate }=9+2+7
$$

e.g. $9+$

Mathematical sums

 when the numbers become 'ryronce und.
To do this, you set out the Jbie. 1 aning that the numbers are right aligned (see below).
Right alignment ensures that you have numbers of the same place value (ones, tens, hundreds and so on) underneath each other.
Then you use an addition method to work out the sum. Your teacher will show you a preferred addition method, and some of you will have already mastered the common methods for doing this. But for now we'll use this method shown below.

Tip: Always perform any calculations in brackets first!

Addition: Using calculations

e.g. Calculate the total of: $17+42$
e.g. Calculate the total
of: $9+46+154$
9
46
$\begin{array}{r}+154 \\ \hline 209 \\ \hline\end{array}$
e.g. Calculate the total
of: $23+8+316+115$
Tip: Do the 1st calculation to get an answer; then do the 2nd calculation to get your final answer!

1.15 Calculating - Addition

1J Calculating-Addition

Complete the following addition calculations. Make sure that you show appropriate workings out.

a. $9+6=$	b. $4+28=$	c.	$16+87=$	d.	$72+25=$
e. $4+19+29=$	f. $17+13+20=$	g.	$7+13+20=$		$56+0+144=$
i. $8+7+4+3=$	j. $8+12+9+16=$		$1+25+35=$		$\begin{gathered} 0+55+20+200 \\ = \end{gathered}$
m. seven plus forty-six =			a $17=$		the sum of five, fifteen and fifty $=$
q. $\$ 25+\$ 24.95=$	$\begin{array}{ll} \text { r. } & \$ 7+\$ 7.50 \\ & +45 \text { cents }= \end{array}$		3 hours plus 6 hours =	t. 2	hours $+45 \mathrm{mins}=$
u. $27 \mathrm{~cm}+83 \mathrm{~cm}=$	v. $2.5 \mathrm{~km}+500 \mathrm{~m}=$	w.	$\mathrm{gm}+750 \mathrm{gm}=$	x.	\$0 + \$1m =

Applied

Think of personal or work-related situations where you have to use addition.
When do you need to perform addition? Why?
What methods do you use? What tools and techniques do you use?
How would you rate your addition skills? Why so?

Applied addition

People need to use addition in many personal and vocational situations.
Some common situations are listed here. Can you think of some more?

Personal

\Rightarrow Calculating how much food to cook and serve for family meals.
\Rightarrow Adding up the grocery shopping.
\Rightarrow Working out the time it might take to travel between destinations.
\Rightarrow Measuring and calculating the timber needed to make a garden border.
\Rightarrow Counting the number of steps as part of a personal fitness routine.
\Rightarrow Planning a personal diary to balance school, personal and work commitments.

Work-related

\Rightarrow Calculating the total of a customer's bill in a café.
"I have calculated that to feed 20 people at our BBQ we will need, 40 sausages, 3 loaves of bre λ, a bottle of sauce and 2 kg of onions. thing else I might have missed?"
\Rightarrow Adding up total sales for the day.
\Rightarrow Calculating the business costs for a week.
\Rightarrow Adding up wages as a part of a timesheet.
\Rightarrow Planning the time schedule 1 courier delivery run.
\Rightarrow Working out how much fie is ∇ eced to do a specific work task, such as house painting job.

Applied addition
Choose an occupation that you are interested in. Describe situations when a worker needs to use addition for their job roles. What 'tools' do they use for this?

1.17 Calculating - Subtraction

Subtraction

Subtraction is taking away amounts or numbers to get a total or a sum.
Once again, it involves counting.
In common calculations, subtraction should result in an answer that is smaller than the original. e.g. 25 take away 10 equals 15. Subtraction problems can also be solved using a number line or by setting out mathematical sums.

Your teacher will go through the examples below, as well as others, with you.
The answer determined by subtraction gives us the difference between the original amount and the new amount. e.g. The difference between 25 and 10 is 15 .
Subtraction using physical counting can also result in finding out the difference between an original amount and a ne• amount. This is often important in iwork business situations.
trading we had 100 hot <35, d. Dat he end we counted that we have $16 \geqslant f t$ The difference is $86(100-16=84)$.
Therefore we must have sold 84 hotdogs (or eaten some, or dropped some on the ground!)

Tip: Always perform any calculations in brackets first!

Image: SynchR/ Depositphotos.com

Physical counting

Just as with addition, this involves counting the number of items based on pictures or images; or even counting physical items, objects and people. But this time the focus is on taking away.

Subtraction: Using calculations

e.g. Calculate the total of: 49-17
e.g. Calculate the total
of: 144-68
e.g. Calculate the total of: 95-43-11

| 49 |
| ---: | ---: | ---: |
| -17 |
| 32 | | $0 \frac{1}{31}$ |
| ---: |
| 144 |
| $-\quad 68$ |
| 76 |

Tip: Do the 1st calculation to get an answer; then do the 2nd calculation to get your final answer!

1.19 Calculating - Subtraction

1L Calculating - Subtraction

Complete the following subtraction calculations. Make sure that you show appropriate workings out.

a. $9-3=$	b. $24-8=$	c.	86-17 =	d.	105-25 =
e. $50-20-10=$	f. $87-12-20=$	g.	- - 45-36=	h.	156-0-144 =
i. 8-2-5-1 =	j. $28-12-9-6=$		$-25-35=$	I. 1	$40-50-40-60=$
m. forty minus six $=$	n. ninety take		us	p .	25 less $10=$
q. $\$ 25-\$ 19=$	r. $\$ 10-\$ 7.50=$		and $1 / 2$ hours nus $1 / 2$ hour $=$		3 and $1 / 2$ hours -30 minutes $=$
u. $85 \mathrm{~cm}-60 \mathrm{~cm}=$	v. 2.5 km less $500 \mathrm{~m}=$	w.	00g-150g =		\$1m minus \$0 =

Applied

Think of personal or work-related situations where you have to use subtraction.
When do you need to perform subtraction? Why?
What methods do you use? What tools and techniques do you use?
How would you rate your subtraction skills? Why so?

Applied subtraction

People also need to use subtraction in many personal and vocational situations.
Discuss those below and once again, can you think of some more?

Personal

\Rightarrow Keeping track of spending in a bank account for a personal budget.
\Rightarrow Taking away the essential bills before working out how much is left over to spend in a household budget.
\Rightarrow Subtracting the travel time when working out how much time you have left when going out for the evening.
\Rightarrow Subtracting how much timber to saw off when making a garden border.
\Rightarrow Subtracting the time taken for school, personal and work commitments as part of a daily schedule.

Work-related

\Rightarrow Making change for a customer paying for a purchase.
\Rightarrow Taking away lunch breaks from actual wo time as part of a timesheet or staff ros θ
\Rightarrow Calculating how much stock is left $A=$ of a day's trading.
\Rightarrow Working out a business's prot nan ungless? expenses) for the week.
\Rightarrow Working out how much a work day after answering emains ict 11 morning.

Choose an occupation that you are interested in. Describe situations when a worker needs to use subtraction for their job roles. What 'tools' do they use for this?

Occupation:			

1.21 Putting It Together

Addition and subtraction

Sometimes you might have to perform calculations that involve both addition and subtraction. This will require more than a one-step calculation process and is a more advanced numeracy skill.

The idea is to deal with two numbers at a time, get an answer and then deal with the next number; and so on.

For example: Addition and subtraction
\Rightarrow You have $\$ 500$ in the bank.
\Rightarrow You are paid $\$ 100$ in wages.
\Rightarrow You spend $\$ 200$ on a new pair of Docs.
\Rightarrow You also spend $\$ 50$ on a present for your mother's Birthday.
How much is left in your bank account?
So let's look at this as a calculation. You can just work left to right.

Applied numeracies
People might need to do addition and saction types of calculations when they are:
\Rightarrow keeping track of time
\Rightarrow planning a travel itinerary
\Rightarrow managing their bank account
\Rightarrow planning a household budget
\Rightarrow planning a menu or a function
\Rightarrow estimating and measuring materials
\Rightarrow working out total people in attendance
\Rightarrow making sure they have enough stock for their business.

People also naturally apply addition and subtraction to many other personal and work-related activities.
Your teacher will discuss these examples with you, but think of some others.

Image: BrianAJackson/ Depsoitphotos.com

1. Do the following calculations in your head or on paper. Your teacher will set a time limit.
2. Now do the same calculations using a calculator. Time this.
3. Estimate how many calculations you have done correctly. Your teacher will give the answers after the class has done both tasks.

a.	$37+92$	$=$	$37+92$	$=$
b.	56-29	$=$	56-29	$=$
c.	$42+25+60$	$=$	$42+25+60$	$=$
d.	75-25-25	$=$	75-25-25	$=$
e.	10+15-12	$=$	$10+15-12$	$=$
f.	27-12+50		$\cdots 2+50$	$=$
g .	88-9-29	$=$	8-9	$=$
h.	$75+25+50-40$	-	$25+50-40$	$=$
i.	$152+87$	\bigcirc	$152+87$	$=$
j.	136-37	=	136-37	$=$
k.	\$25 + \$20 + \$15	$=$	\$25 + \$20 + \$15	$=$
I.	\$150 + \$27.50	$=$	\$150 + \$27.50	$=$
m	\$100-\$47	$=$	\$100-\$47	$=$
n .	\$200-\$50 + \$100	$=$	\$200-\$50 + \$100	$=$
o.	60 minutes + 3 hrs	$=$	60 minutes +3 hrs	$=$
Estimated correct		/15		/15
Total correct:		/15		/15

4. As a class discuss how you went. What were the patterns around your own areas of strength and weakness? What about for the class as a whole?

1.23 Assessment Task

AT1 Count Up \& Count Down Personal Numeracy

Overview

For this task you are required to identify items from your personal, home or social lives and document these.

You are required to count up exactly to 50 by identifying these items in your life. The best way to understand this is with an example.
e.g. 4 fingers +2 pets +3 siblings +5 apples +9 screens, etc..

Once you get to 50 you are required to count down, using different items until you arrive at zero.

Rules

\Rightarrow You cannot use the same number more than once when counting-up.
\Rightarrow You cannot use the same number more than δ se when counting-down.
\Rightarrow You must select different types of items. ($6<n_{1}$ one body part, only one fruit, only one electrical product and so on, as the counting-up of items and the counting-down of items).
\Rightarrow You must document the items u 18 ns viae ${ }^{2}+c$.
Problem-solving cycle
To successfully complete this y each of the 4 stages of the problem-solving cycle wh
Steps $1 \& 2$ mainly involve ages: 1 en che maths ; B: Act on and use maths with some C : Evaluation .
Step 3 mainly involves stages: C: Evaluate and reflect and D: Communicate and report ; with some B: Act on and use maths .

Report

You must prepare a report that:shows the calculationsdocuments the items using images, video or some other methodexplains why some of these items are an important part of your lifedescribes how you applied each of the 4 stages of the problem-solving cycle. Your teacher might also instruct you to present your report to the class using multimedia, a poster or some other method.
Note: Your teacher might add other information including due dates. Record this and other task information.

Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

[^0]\qquad
1.25 // Problem-Solving Cycle // Maths Toolkit

Time and Place

2.01 Personal Numeracy 28
2.03 It's Time 30
2.13 Getting Around 40
2.17 Putting it Together 44
2.09 Converting \& Estimating Time... 36
2.19 Assessment Task 46
2.11 Personal Numeracy - Location 38
2.21 Problem-Solving \& Toolkit 48

Activ	ities 2: Time and Place	p. Due date Done	Comment
2A	What about time	29	
2 B	It's time	31	
2 C	Telling the time	33	
2D	24-hour time	34	
2E	My daily time	35	
2 F	Converting time	- -	
2G	Estimating and converting		
2 H	What about place		
21	Preferred directions		
2 J	Different ways	41	
2 K	Maps: Pathways	42	
2L	Maps: Landmarks \& scale	43	
2 M	Whereabouts?	$\begin{aligned} & 44- \\ & 45 \end{aligned}$	
AT2	Map it Out	$\begin{aligned} & 46- \\ & 47 \end{aligned}$	
PST	Problem-Solving Cycle and Maths Toolkit	48	

Comments:

2.01 Personal Numeracy

Personal numeracy

In Unit 1 you will be assessed on your understanding and application of both Location and Systematics in relation to Personal Numeracy. As part of your learning activities, you are expected to naturally apply the 4-stage Problem-Solving cycle, as well developing and applying your Mathematics Toolkit.

Location

Location involves having an understanding of space, direction and location. In our lives we need to find things (locate), organise things (arrange or plan) and move from one place to another (travel).

Location involves directions, travel routes, travel times, maps and even our own personal space. Time plays an important part in these tasks so we'll start with a recap.

Location is also very important for vocational situations including getting to work on time, organising a safe and efficient workspace, deciding how best to service customers and clients and also organising for eries and orders.

Systematics

Systematics involves how we can make and apps to help us plan and organig n. social and recreational lives, our work ins wher a wies in our life. Systematics deals with data and in ard TV O. ©. your school timetable, a work roster, and a public transport the a in ant data and information in those. Data and information invc $6 ; 1$ ind rits. When using a SatNav you input information - your location and dest at en: fia you get outputs - a travel route and estimated time.

What About Time

1. Match each of the time terms, with the correct explanation.
2. For each one, briefly explain when this is important for you.

Term	Explanation	My example
	Seconds, minutes, hours, days, months, years and so on.	
	An organised collection of data that sets out specified times and durations for people, schools transport, and other settings.	
	These are hard copy, digital or app based tools for recording dates, times, appointments, etc..	
	This means how long somethi goes for, or the elapsed tin	
	This is a system of da used to star Nardis	
	This is the at ${ }^{2},+$ unchy out he ran 0 trask m. h take, ol Jow yo might it eio plan and organise ne.	
	This work schedule shows when, and for how long, employees work	
	The general term used for a person's varied personal, social, education and work tasks, times and commitments.	
	This is a summary of weekly hours worked and relevant pay rates.	
	This is the ability to accurately plan and arrange your time and your tasks in order to get things done.	

2.03 It's Time

Time

At this stage of the unit it is important to develop some essential numerical skills related to time.
Time is simply a method of counting.
Time breaks duration down into equal amounts. Our contemporary 'Western' time system uses units of time such as seconds, minutes, hours, days, months, years, etc.. This system is based on the Gregorian calendar of 1582.
A day has a duration of 24 hours. This is the approximate time it takes the earth to rotate on its axis.
The 24-hour day is thought to originate from an ancient Egyptian method of base 12 counting, and reflects the use of a sundial.
An hour is broken into 60 minutes, each of whis

How well do you relate to time?
Image: cindygoff/
Depositphotos.com seconds in a day ($60 \times 60 \times 24$). That's a 0 at to use wisely.
A year is 365 days.
This is the approximate time it $\mathrm{a}=\mathrm{s}$, 1.
This orbit actually takes aby $6 \times+1$ irs p ear, hence we have a leap year every four years to 'al this ? tra da. >6 hours)!
Time is the only resource that we all hathe same amount of.
We each have 24 hours a day, 7 days a week, 52.18 weeks a year and about 82 years a lifetime (on average).
So how do you use your time?

Hit songs with time in the title!	Hit songs about time!
Who sung these and when?	Who sung these and when?
\Rightarrow Time After Time	\Rightarrow Treaty
\Rightarrow The Times They Are A-Changin'	\Rightarrow Cats in the Cradle
\Rightarrow Sign of the Times	$\Rightarrow 9$ to 5
\Rightarrow (I've Had) the Time of My Life	\Rightarrow Nothing Compares to U
\Rightarrow If I Could Turn Back Time	\Rightarrow Leavin' on a Jet Plane
\Rightarrow Time is on My Side	\Rightarrow Yesterday
\Rightarrow Time Warp	\Rightarrow Tomorrow
\Rightarrow Summertime	\Rightarrow Forever Young
\Rightarrow Time	\Rightarrow What You Waiting For
Do you have any fave' contempor	performers who sing about tim

1. Match each of these terms to the correct statement related to time.
2. Discuss by talking about how these concepts relate to your own lives.24-hour timecalendar
ETAsecondsamdaysdigitalduration
\square hours
\square minutes
\square pmtime zoneswageweek

This sets out relative time based on where you are in the world.

2.05 It's Time

'Telling' the time

Time can be commonly shown in analogue terms using hands and numbers on a 12hour clockface or a manual watch, or in digital terms using numbers.
Some people prefer to use 24-hour time. Time is also the 4th dimension!

Analogue time

Analogue time generally refers to the traditional method of 'telling' time as shown on a clock or on a watch.
Analogue time uses a 12-hour clockface with an hour hand, a minute hand and sometimes even a second hand.
Many people use analogue timepieces in their professions, including
 doctors and nurses who may have to count seconds. Some people such as pilots and divers prefer analogue timepieces for their precision.

Digital time

Digital time is now the most common way of tell ather. People use digital devices such as their mobile phones, cocks, digital watches and other time devices to read tir, ir ar arical format.

9:00 pm Digital devices normally also indicate

24-hour time

24-hour time treats the day as non the the hours from 0 to 24 (or 23:59:59).
The day starts at 0:00 hours which, ridn and goes through to 24:00. (Note: 24:00 is also regarded as m night).
12:00 hours is midday. 13:00 hours is 1 pm and so on. Each pm hour adds 1 to the number 12 .

```
21:00
```

Sometimes 24 -hour time is communicated as " 14 hundred hours" (i.e. 2pm in Army time!).
Many industries use a 24 -hour clock to communicate and record work time for activities associated with rosters, work shifts, transport, automated tasks and many other work-related activities.

AM and PM

a.m. refers to the time between 12:00pm (midnight) and 12 (noon). am stands for ante meridiem (before midday).
p.m. refers to the time between 12:00 noon and 12 midnight. pm stands for post meridiem (past midday).
You can write 'a.m'. and 'p.m.' as just am and pm without the full stops.
So there you have it. A basic refresher of time. So time to put your knowledge to the test with a few activities to apply your skills.

1. Interpret these analogue clockfaces to estimate the time. (You might want to show key numbers on the clockface to help you).
2. Show the correct time on the blank clockfaces.

Tip: Remember that the hour hand does move continuously between numbers (but slightly) as the minute hand goes around an hour.

2.07 It's Time

2D 24-hour time

1. Use the signifiers of am and $\mathbf{p m}$ to interpret these $\mathbf{2 4}$-hour digital displays as 12hour time.

2. Choose $\mathbf{4}$ of the $\mathbf{2 4}$-hour examples hour clockface. Make sure to a riv innan PD..

3. What time do you usually get up and go to bed? Show these times on a 12-hour clockface, as digital time, and as $\mathbf{2 4}$-hour time.

4. So how does time impact on your life?

Consider your personal life, your school life, your working life, your social life, your family life and your recreational life.
2. For each of these different aspects of your life, identify $\mathbf{3}$ examples when time impacts on, or influences, what you do.
e.g. School: - On a school day I have to get up at 7am.

- The school day goes from 8:45am to 3:30pm.
- On my VET day I have to be at TAFE by 8:30am.

Discussion

As a class develop a list of strategies and tools and apps that you could use to help you organise, plan and use your time better.

2.09 Converting \& Estimating Time

Converting time

At times we have to convert hours into minutes, or minutes into hours, or even minutes into seconds; as well as other conversions using units of time. This is a very important skill when it comes to estimating, organising and planning for how long tasks might take, or for estimating, calculating and planning the duration of travel journeys.
The major units for recording time are hours, minutes and seconds. But the breakdown for counting time is different from our usual decimal counting method.
With hours, minutes (and seconds) we need to remember that there are 60 seconds in a minute and 60 minutes in an hour. So:
$\Rightarrow 1$ full hour is 60 minutes
$\Rightarrow 1$ half of an hour is 30 minutes
$\Rightarrow 1$ quarter of an hour is 15 minutes
$\Rightarrow 3$ quarters of an hour is 45 minutes
$\Rightarrow 1$ full minute is 60 seconds
$\Rightarrow 1$ half of a minute is 30 seconds (and

2F Converting time

Image: jordygraph/ Depositphotos.com

Complete the following time

Complete the following time N Nrsic \leqslant			
a. What is 1 hour in minutes?		that is 1 hour 15 utes in minutes?	d. What is 4 and $1 / 2$ hours in minutes?
e. What is 4 hours in minutes?	f. What is 20 hours in minutes?	g. What is $21 / 4$ hours in minutes?	h. What is 1 day in minutes?
i. What is 120 minutes in hours?	j. What is 180 minutes in hours?	k. What is 330 minutes in hours?	I. What is 495 minutes in hours?
m . What is 600 minutes in hours?	n. What is 960 minutes in hours?	o. What is 990 minutes in hours?	p. What is 15 minutes in hours?

Converting \& Estimating Time 2.10

Estimating duration

Sometimes you have to estimate time to better plan and organise your life.
This is a skill that requires you to estimate how long a task will take, or how long travel times might be, or even how much time you spend on particular tasks.
Estimating time is about using numerical skills to estimate, or even calculate, the duration for tasks. This is very important for cooking. You don't want to burn the roast!
A simple explanation of duration is how much time something takes to do. e.g. A train journey from Melbourne to Geelong might equal 63 minutes.
It is also important to develop skills in estimating and calculating total time, or accumulated time, over a number of hours, days or weeks. e.g. Maindi spends 2,912 hours per year checking her 'socials'. What about you?

Estimating and converting

1. Make estimates of the duration for these tasks
2. Then convert your estimates into the most
riate units of time.
3. Write or record your final answer, as you, ratll have students share their results with the class.

2.11 Personal Numeracy - Location

Location

Location refers to where something or someone is.

We need to understand location relative to where we are, and to where others are. Having this spatial understanding will enable us to better navigate the world. Spatial understanding is very important for work-related situations as well. Some jobs rely heavily on location and getting around, such as train, bus and tram drivers, delivery and courier drivers, paramedics, pilots, sportspeople and many other job roles. Understanding location often involves

It's a big country you know. how do we know where to go?

Image: hobbitt_art/Depositphotos.com to our position.
These can include words such as "left" or "ri "in front", "beside", "here", or even "up the oct. an round the corner"!
 We also use descriptors that give an inca prof in wi, such as "pretty soon", "3-blocks", "half-a-kilometre", "irs n, ty" on sin y even, "go just up the street and you'll find it"!
And of course, we can alsely o. Ul rig \rightarrow helpers to do the hard work for us. Where am I going? Let's just tap the ot into my phone and bingo - I'm off. So what about you? What do you use to help you understand location and get around?

1. Match each of the location terms below, with the correct explanation.
2. Briefly explain how you have used this, or could (or should) use this.
$\left.\begin{array}{|l|l|l|}\hline \text { Term } & \text { Explanation } \\ \text { Simply - where something is. } \\ \text { Making a quick or rough } \\ \text { approximation of travel distance, } \\ \text { or travel time, or both. }\end{array}\right\}$

\square digital maps	\square estimating	\square landmarks	\square planning
\square directions	\square hard copy	\square location	\square travel and
\square distance	maps	\square navigation	transport

2.13 Getting Around

Directions

A very important set of numerical skills includes the ability to be able to give and follow directions to find your way (navigate) around. Giving and following directions is applied use of the problem-cycle in action. Directions may be in these forms.
\Rightarrow Oral: Verbally, such as asking someone the way to the nearest train station.
\Rightarrow Written: By following a sequence of directions from a starting point to a destination.
\Rightarrow Visual: Using a print or digital map to find your way around a location, such as using a store layout map when in IKEA.
\Rightarrow Digital: Using GPS in a car, or a maps feature, or an app on your phone to find key landmarks while on holiday in an unfamiliar city.
\Rightarrow Physical: Showing, pointing or leading someone so as to 'act out' appropriate directions.

When we both give and receive instructions we usually use a combination of these methods. However, people have different communication styles; and also different preferred learning styles for understanding inform
Some people like to be shown, some like to be th some like to follow a map while others simply just like 'being lost' and stumblii \gg
So what type of method for 'directions' तo use when you are trying to get around?

21
 Preferred directions

Comment on each of then Tor aranst) to describe your preferences for giving and receiving din.ction. Drecr, ——an example for each method.

Method	Explanation for me	
e.g. Digital	I like to use a map on my phone because I can set my location and see the directions on my screen.	When I travelled to my appointment for work experience in the city I put the address in my phone and followed its directions very easily.
Oral		
Written		
Visual		
Digital		
Physical		

Getting Around 2.14

There to here and back again

Sometimes we know how to navigate around familiar places because we have done it before. For example, you know how to get from your home to school, and back again. Even if you use different travel methods and routes.
But think back to the first time you had to navigate your journey. How did you work out your travel route? A map? An app? Did someone show you? Did someone take you?
So, now that you are experienced, how would you 'show' someone how to get from there to here, and back again?
\qquad

1. Create a map that shows your usual journey fron your home to school.
2. What types of information and landmarks scy you show on your map?
3. On your map, show a different travel jou $-\infty$ not you can use to get home.
4. Why might people travel one route $t \bigcirc$ at - ination, and then a travel different route to get back again?

Then create yours araing paper, or multimedia.

2.15 Getting Around

Using maps

Whether you are using maps to get around or you are drawing a map to help others, you have to make the map functional so that it can be effective.

This means that the map must guide the person about how to get from their origin to their destination.
The map should also be efficient.
This means that the map needs to enable the person to quickly and easily work out how to get from their origin to their destination.

Three key mapping features that make a map more usable (i.e. both more effective and more efficient) are pathways, landmarks and scale.

Pathways
When using or making a map, you are likely to t 4 a travel route (or a pathway). A pathway is the route that includes the ways $t \rightarrow-10 m$ 'point A' to 'point B'. A person might mark the route on the ma la the going to follow. Or they may

 Many GPS and e-devices wisco nomm jay route when you enter in your destination. These device, rignt 0 mn mate the route aloud. In fact many people follow these verbal instruction curl on travelling.
Pathways are also important as escape rutes for emergency evacuation procedures.
〔Have you noticed any of these, usually as green arrows, around your school?
Pathways might also include public transport routes, bike paths, pedestrian traffic areas, waterways, terminals and exchanges (e.g. airports) and so on.

2K Maps: Pathways

What is a map 'pathway'?	Why is a map pathway important?

Features and landmarks

Most maps will include common or key features or landmarks.
These landmark features might include places of interest, government buildings and services, emergency facilities, green areas, schools, signs and other distinguishing and useful features.
Landmarks might be located in the correct spot on the map, but may not be drawn to scale.
These map features help people by getting them to look out for key landmarks that they might

Image: tovovan iStock/Thinkstock notice on their journey. For example:
\Rightarrow "If you reach the canteen then you've gone too far."
\Rightarrow "Turn left at the traffic lights."
\Rightarrow "When you come to the double-storey house doors down."
So, if you can find features and landmarks wh
Scale
Most maps are usually drawn to sale. Dis yenst distance shown on the map corresponds with a distance in al
Scale allows the user of a mos mis stimate of travel distance and time. Therefore it helps us to ge, ur sp•al vea ∇. However, not all maps are drawn to scale, nor do they need to be.
So when you are using a map see if it is to scale, or close to
 scale.
Also, if you are constructing a map, then try to make it close to scale so that people can estimate approximate distance and time. Your teacher will help you with this.

Maps: Landmarks \& scale

What are map 'landmarks'?	What is a map scale?
How are map landmarks useful?	How does a scale help a map user?

2.17 Putting it Together

2M Whereabouts?

4 PS 2 3 ค

Use the map below to identify the location of the features and landmarks and other information in the table on p. 45 .
\Rightarrow The map is not exactly to scale, but it is pretty close.
\Rightarrow Of course, the size of people, vehicles and other features may not be that large - especially the duck - ducks don't come that big!
\Rightarrow You could do this working in pairs, but each of you should fill in your own table. If you need more space, enlarge the table, or use your workbooks.

Image: WINS86/Depositphotos.com

On which 'roadway' is the train station?	On which 'roadway' is the fire station?	On which 'roadway' is the pier?
On which 'roadway' is the airport?	On which 'roadway' is the shopping mall?	On which 'roadway' is the hospital?
On which 'roadway' is the petrol (gas) station?	On which 'roadway' is the garbage tip?	On which 'roadway' is the city edge?
On which 'roadway' is		
the church?		

2.19 Assessment Task

AT2 Map it Out
 Personal Numeracy: Location

Overview

You are going to create a map that directs a friend from your school to your home. Note: Your teacher might change the 'location' and/or the 'destination'.
You should construct your final map using multimedia or your hand-design skills. At all stages of this task you will need to apply the 4-Stage Problem-Solving Cycle:
1 Identify the maths 2. Act on and use the maths 3 . Evaluate and reflect 4. Communicate and report.

You will also have to use, develop and apply tools and techniques from your Maths Toolkit.

e. Trace a pathways route on your map.

Consider labelling key routes, roads, pathways, etc.. You should also include some estimates of distances and/or times.

f. Show some key landmarks on your map.
 These will help the person navigate the route more easily.

g. Add instructions such as turn left, travel north, etc..

Choose suitable language that suits you and the user. (i.e. How many people know which way is north when they are walking down the road?)
h. When finished, compare your map to an analogue or a digital map.

How did you go? What was good about your map and not so good? How could you improve your mapping skills for the future?

Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

Additional information:

Signed: \qquad Date: \qquad
2.21 // Problem-Solving Cycle // Maths Toolkit

Location and Planning

3.01 Location and Planning 50
3.03 Describing Location 52
3.09 Directions in Action 58
3.11 Distance and Time 60
3.17 Planning and Organising 66
3.23 Assessment Task 72
3.25 Problem-Solving \& Toolkit 74
(1)

Activ	fies 3: Location and Planning	p.	Comment
3A	Location \& planning	51	
3B	Compass directions	52	
3 C	Language of location	$\begin{aligned} & 54- \\ & 55 \end{aligned}$	
3D	Personal space	$\begin{aligned} & 56- \\ & 57 \end{aligned}$	
3E	Tour guiding	$\begin{gathered} 58- \\ 59 \end{gathered}$	
3 F	Distance and time		
3G	Apps v maps		
3H	Travel		
31	Distance and time II		
3 J	Calendars \& diaries	67	
3 K	To-do list	68	
3 L	Timetables	69	
3 M	Rosters	71	
AT3	'Appy Birthday	$\begin{aligned} & 72- \\ & 73 \end{aligned}$	
PST	Problem-Solving Cycle and Maths Toolkit	74	

Comments:

3.01 Location and Planning

Personal Numeracy

In this section, you will continue to develop your skills related to location, and apply these skills to personal and vocational situations.
You will also investigate the use of systematics to help you plan, organise and schedule various activities that people are expected to do in their lives.

Once again you are expected to naturally apply the 4-stage Problem-Solving Cycle when completing Personal Numeracy activities, and add more tools and techniques by further developing and applying your Mathematics Toolkit.
Here are some key numerical skills that you will develop and apply. Your teacher might also focus on others.
\Rightarrow Knowing and understanding deadlines.
\Rightarrow Estimating, planning, and organising personal time.
\Rightarrow Organising and balancing personal commitments and responsibilities.
\Rightarrow Using calendars, dairies and to-do lists.
\Rightarrow Understanding schedules, rosters and timetar and
\Rightarrow Investigating places, maps and distances.
\Rightarrow Reading, using and making maps.
\Rightarrow Planning a travel route.
\Rightarrow Finding landmarks, and interproting
\Rightarrow Giving and following directin,
\Rightarrow Estimating, planning, arr ro inis o trave Ne.
\Rightarrow Estimating distance anc ravel fies
\Rightarrow Comparing travel options, times ancos.

Location and Planning

1. Describe an example of how each of these location and planning terms can help you in your life.
2. Identify the types of information/apps/tools and other things that you make use of, to help you with each of these location and planning terms.

| Term | Explanation |
| :---: | :---: | :---: |
| routes | |
| maps | |
| directions | |
| timetables | |
| deadlines | |
| timelines | |
| diaries | |

3.03 Describing Location

The language of directions

When giving and following oral directions we often use, and listen for, certain language to describe 'where' and 'how' related to location and directions. We also often combine oral directions with physical gestures such as pointing.

Compass directions use terms such as north, south, east and west, or north east, south west and so on. But most of us usually don't use this more formal way of speaking. And many times we don't even know which direction is which, unless we have a map, or have prior knowledge of an area. But when we hear about the direction of the wind on the weather report, compass directions can tell us a lot!
As you know, we can make use of directional words that are relevant to our position such as "left" or "right", "up" or "down", "over there", "behind", "in front", "beside", "here", or even "around the corner". We can say that these types of descriptions describe relative position.
We also use descriptors that give an indication of how far, such as "pretty soon", "2blocks", "200m", "in 3 minutes" or simply even, "jus' yo down the corner and you'll see it."
So what type of language do you prefer to us \uparrow cribe location and how to find your way around?

3B Compass directions

1. Label the compass poind rs viti \odot _inpp. Nace directions.

2. Using a compass, place this page flat on the desk in front of you. Use the compass to draw an arrow showing north on this page. In which direction is your home?
3. The school will be the opposite direction to your home. What direction is that?
4. In which direction is the city? From which direction is the wind blowing?

Location

It is important that you develop a vocabulary of location to enable you to accurately describe the relative position of people, features and objects with one another.
Correct terminology assists when following and giving directions, when helping people deal with spatial issues; in sport and recreation, as well as in work-related situations such as helping co-workers to use equipment, or to position themselves around work stations, or when guiding a customer to find different items in a store. At times it is important to consider your own perspective. If you are facing someone then your left is right for them. To overcome this people sometimes face the same way when giving directions. Do you?

3.05 Describing Location

3C Language of location

1. For each of these situations use appropriate language to describe the relative position of the people, objects and equipment shown. e.g. Left, right, behind, next to, and so on! You choose the language that suits.

Describing Location 3.06

2. Use the language of location to describe where these tools are placed.

Some tools are in an absolute position, (e.g. 'top right'). Whereas others will need to be described relative to another tool or tools (e.g. 'opposite').

| Location | Description | | Location | Description |
| ---: | :---: | :---: | :---: | :---: | :---: |
| top left | | right | | |
| top right | | above | | |
| bottom
 left | | below | | |
| bottom
 right | | over | | |
| top | | under | | |
| bottom | | beside | | |
| centre | | opposite | | |
| left | | | | |

3.07 Describing Location

3D Personal space

1. Personal Space

All people have a personal space zone that guides how close they want to get to other people (proximity). We all have to respect other people's personal space. It is important that you have an understanding of personal space 'comfort zones' and how these might change depending on the closeness of your relationships with others.
a. Describe what is happening in each of these situations.
b. Why do personal space comfort zones change in different situations?

2. Work Space

When we work, some of the rules of personal space get changed. This is because different workplaces need to set up floor layouts and work stations to best suit the tasks that a worker is expected to do for customers and clients.

1. Choose an occupation and describe how that worker's work station or work site is set up. Create a sketch or an image.

2. Are the personal space zones for that person different as a worker?
3. How would that worker make sure that they respect other people's personal space zones?
4. What types of job tasks require workers to 'breach' personal space comfort zones?

Discussion

What happened to the acceptable zones of personal space as part of social distancing requirements during the COVID-19 pandemic? How did this impact on you? Have 'spatial' zones returned to normal?
How do you do on public transport? Do you find your personal space invaded? What positive actions can use to deal with this?

3.09 Directions in Action

Directions in action

As you have experienced, we normally use more than one method for giving directions.
One of the most common combinations is through using visual directions such as a map, combined with oral instructions and perhaps even supported by some physical pointers.
As a class discuss this example. Your teacher will also read it aloud for the class.
Roberto is walking along the main shopping street in his town. A backpacker comes along, and in broken English asks Roberto how to get to the train station. The backpacker has a map of the local area on his phone, but can't seem to work out which way to walk.
Roberto looks at the phone and takes it from the backpacker and turns
Image: toxawww/ the phone upside down. Roberto then points in the direction the phone is now oriented and says, "train that way".
Roberto draws the attention of the backpacker to
phone and traces the route on the map while at the same + on sa, ing the words out loud.
"Straight - 5 minutes, turn left - 3 minute oro av bridge (Roberto makes an arc with his arm), there!"
At which Roberto points down hà station on the phone map.
"Got it?"
The backpacker nods and fers
"Thanks, gidday beaudy mate," and mar es off in the correct direction.

Roberto smiles but is a little perplexed. He hasn't heard anyone say "gidday beaudy mate" before and wonders what the rest of the world must think of Australians!

3E
 Tour guiding

1. Which methods for giving directions did Roberto use? Give examples.
2. How effective were the directions given by Roberto? Why so?
3. Explain whether you would use the same methods for giving directions that Roberto used, or whether you would use different methods.
\qquad
\qquad

4. What digital devices and ausc. 5 around in unfamiliar or fore on as a ra used any of these?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Extension
Choose a place in your suburb or town where you might get asked directions to a local landmark, such as a train or bus station or some other important landmark.
In your workbooks, give directions from where you are located to help a tourist get to this landmark.
What methods would you use? Explain why.
Note: You could role-play this for the class using a partner and relevant tools such as a map and/or phone.

3.11 Distance and Time

Distance

As you already know, distance is a 'how far' sort of measure.
"How far is it to the Melbourne CBD?"
For some of you, not very far, especially if you live locally in one of the city's nearby inner suburbs!
What about people in Melbourne's expanding outer west? And those living east, west, south, outer east, or north, or north east or south east? What about those in Bendigo, Wangaratta, Benalla,
 Yarram or Bairnsdale? How about those in Mallacoota, Mildura, Wodonga

Image: goglik83/ or Swan Hill? And let's not forget about those of you in another state.
So what do you reckon? How far - from where you (e sitting right now - to the city?
How will you know?

Time

When we are travelling, knowing the dista journey from our origin to destination is only one part of the eq att n!
The second and more important r mber $v e r a$ work out, is the time it might take to travel that distance.
In fact, sometimes we don't but the distance. If you are catching a train to the city for a job ervie Qou do $>$ sally worry about how far you have to travel. What you are more likely to blerned with is how long it takes you to complete the journey.
If you are travelling by public transport you will check timetables (using systematics).
If you are travelling by car you will rely on someone else's expertise to advise
you, because they are likely to be able to estimate travel time based on their own knowledge and experience of travelling at this time of the day.
However, if you are getting there under your own power, such as by cycling, then you will need to know the distance.
You will factor in how fast you usually cycle - let's say an average of 20 km per hour.
Then there's the distance - let's say 20km. So that's 20km/ 20kmh which actually equals 1 hour! (Your teacher will show you how to do this calculation).
You will need to add more time for traffic conditions, traffic lights, getting lost in the city, parking and locking your bike, freshening up, changing clothes, finding the building, getting to the right place in the building and so on.
So what time is the appointment? Better give it another 30 minutes to do those other things. Also better hope it doesn't rain; and you don't want a puncture.
So that are a lot of things to consider!

Travelling: How long?

Time of day e.g. peak hour vs off peak.

Familiarity with journey.

Weather conditions.

Day of week
e.g. work day vs weekend.

Mode of transport

 e.g. public vs private transport.1. Calculate the distance travelled for these differgnt transport modes. Which type of transport might these be?

2. Estimate the distance to each of n se prin io.
3. How much time do you thir it ri. 4 ke y 4 travel to these destinations using the types of tran wo

Journey	Estima distance	Journey time: by public transport	Journey time: by your choice
a. Your school to your home.			
b. Your home to the nearest train station.			
c. Your home to the CBD.			
d. Your home to the airport.			
e. Your home to your workplace (or a place you'd like to work)			

4. Research these distances and times using maps, GPS or other resources. Set up another table in your workbooks. How well did you estimate?

3.13 Distance and Time

Issue to consider

One of the main reasons for using maps is to estimate travel distance and time so that you can organise yourself and others better.
As you know, a scale shows the distance ratio that a map represents to real life.
Most properly prepared printed maps, such as street directories will use an accurate scale.

Digital maps use Global Positioning System (GPS) satellite data to calculate distance.
However, not all maps are drawn to scale, especially site maps and retail maps.
And when using maps to plan your travel you have to take into account travel time issues such as peak traffic flows, congestion, local knowledge and other issues.

One advantage of digital mapping devices is that they can give you a travel time estimate.

This is especially good for longer trips and driving through regional areas. And you can usually choose alternate routes to see different variations.
However, digital maps can be quite inaccurato for shorter city trips which might have more hold-- 0 , especially around peak times, such as and school. And the alternative routes ft$) \mathrm{i}+2 \mathrm{~s}$ more of the same issues, becausc the 'cenis ter' h's not know about local issues are han.c.

3G Apps v maps

In the contemporary digital world, man; people use apps to tell them where to go. They don't bother looking up a map at all, they just listen to what the app tells them, or follow the pointer on their screens. But maps can be very useful, and are a great way of embedding knowledge about location and travel.
When it comes to travel and transport which do you prefer, apps or maps? And what types of apps, or maps, do you prefer?

Travel speeds

A travel speed represents the ratio between one quantity (distance) and a second quantity (time).
This relationship can be expressed as a rate, such as kilometres per hour (km/h or kmh), or metres per second (m/s or mps).

This sounds complex but it is really quite straightforward. We apply this numerical skill all the time when driving!
An international passenger jet travels at about 700-900 km per hour. That's
pretty fast over a sustained distance.

Image: PinkBadger/Depositphotos.com In his heyday, Usain Bolt could sprint at just under 10 metres per second for a short distance - up to about 200m. For a human, that's really bolting along! Back in 2011, Kurt Fearnley wheeled the Boston Marathon in just under 79 minutes at an average speed of about 32 kmh . That really is moving!
So how fast can you move?

bus - metro	cycling - easy	cycling - moderate
cycling - hard	driving - peak	driving - metro
driving - outer	driving - freeway	jog - easy
jog - fast	international flight	running
skating	train - metro	tram
walk - strolling	walk - normal	walk - brisk

3.15 Distance and Time

31 Distance and time II

1. Calculate the following travel times.

Distance: 60 km at 60 kmh	Distance: 30 km at 60 kmh	Distance: 25 km at 100 kmh
Distance: 12 km at 6 kmh	Distance: 7 km at 21 kmh	Distance: 10 km at 2 kmh

2. Estimate how long it would take you to travel these distances, using these different travel modes. What would be the average speed of each?

| Walk/roll | | Sog | Skate | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 km | | | | |
| 3 km | | | | |
| 5 km | | | | |
| 10 km | | | | |
| 20 km | | | | |
| 50 km | | | | |
| 100 km | | | | |

	Public transport Choice 1	Public transport: Choice 2	Car	Other
1 km				
3 km				
5 km				
10 km				
20 km				
50 km				
100 km				

Applied

As part of your vocational studies you are likely to undertake work experience and/ or work placements. Let's just call these work placements from now on.

Complete these tasks for your current work placement you are undertaking, or for a potential work placement that matches your vocational goals.
a. Create a map that shows the journey from your home to your work placement.
b. What types of information and landmarks should you show on your map?
c. What travel modes does this journey involve?
d. How much time should this journey take? How do you know this, i.e. timetables, apps, etc.?
e. How effective or convenient is this travel journey?

Assume your normal transport mode is unavailable.
f. Create a new map that shows the journey fr placement.
g. What types of information and landmark
h. What travel modes does this new
i. How much time should this new jo $\in \in$, Non you know this, i.e. timetables, apps, etc.?
j. How effective or converie

Old-school vs new -school
k. Use digital technology to re-plan yo first journey. Compare the results to the first map you created.
I. What were the similarities and differences between the analogue and the digital journeys?
m . Which format, your map or the digital map, suggested a better journey? Why?
n. Use digital technology to re-plan your new journey. Compare the results to the second map you created.
o. What were the similarities and differences between the analogue and the digital journeys for the second journey?
p. Which format, your map or the digital map, suggested a better second journey? Why?

Recommendations

q. So, which was better? Your own hand and brain-created analogue maps - or the digital maps. Why so?
r. What skills did you develop applying each method?

3.17 Planning and Organising

Planning and organising

Planning is about knowing what to do and when to do it. Organising is about actually doing these tasks. All the plans in the world will come to nothing unless people organise themselves appropriately.

Organising involves setting short-term or day-to-day goals using tools such as calendars, daily planners and to-do lists. Organising means understanding task deadlines, knowing how long tasks will take (duration) and scheduling which tasks to do first (prioritising).
Organising is about using resources to achieve goals and objectives. This means weighing up alternatives and making sacrifices.
Personal organising involves using your time to meet all of your different personal, family, social, recreational, educational and work commitments and responsibilities.
Planning and organising also involves interpreting and using timetables, schedules, and rosters.
By planning and organising you can achieve a bet balance between personal, workrelated and other commitments. This helps you
\Rightarrow set and achieve short-term, mid-term and ∇ er erm goals
\Rightarrow use your time more efficiently and ae \rightarrow n
\Rightarrow improve your punctuality and relio (ii) y
\Rightarrow better manage transport and in vel ra eln
\Rightarrow meet deadlines and compiters. rean actively
\Rightarrow achieve a better workl $s \rightarrow$ चand
\Rightarrow improve your own personal wensera.
Planning and organising tools

There is a range of planning tools that you can use to plan and organise your time.
These come in both analogue (hard copy) and digital forms.
Some common examples of planning and organising tools include calendars, to-do lists, rosters and timetables.

Planning and Organising Tools

ii. To-do lists

iii. Schedules \& rosters

i. Calendars \& diaries

A calendar is the most common and basic method of recording and measuring dates and times. Calendars are normally organised as a universally accepted 'year of dates' broken into months.
Each month shows its specific days and dates. Some people also follow religious calendars. We use the internationally recognised Gregorian Calendar, with

Image: Faithie/Depositphotos.com weeks starting on a Monday.
Some people prefer hard copy calendars on a wall, their fridge or in a workplace. Others prefer desktop diaries.
Many people now use e-dairies and apps to manage their personal commitments and responsibilities. They rely on the computers, phones and other devices to plan and track dates, and trerd important personal commitments and responsibilities, by setting rem. Ner notifications and alarms. Many work email programs and apps allore ple se calendars to record dates and times of meetings, appointm for decilys; and these tools send people advance notifications of ti
It is important to realise that althoug virs an of divices are good, you don't need to use an app to nla ans mer you can use paper or your 'brain'.
However, e-diary and app renindes a food way to keep you on track.
Calendars \& diaries

1. When do you use a calendar? Why? And what types?

2. When do you use a diary? Why? And what types?

3.19 Planning and Organising

ii. To-do list

A to-do list is one of the most useful tools you can use at the first stage of any planning and organising process.
A to-do list involves the following steps.

1. Identify the key tasks (or steps) you need to do to achieve the overall goal.
2. Number these key tasks in order.
3. Estimate how long it is likely to take to do each task.
You can use a diary or notebook, Post-It Notes, or the 'note' function on an e-device.

Construct a to-do list for the following overa
Organise the details for 2

1. Identify the key smaller tasks or $s i v$, how long it is likely to take vo roda täc \boldsymbol{o}^{\prime} p.
2. In your workbooks write a. nomplete to-do list!
3. Use Post-It Notes to $<$ Noll program, such as an assinmern onsibility you have to meet.

Planning and Organising 3.20

iii. Timetables

A timetable is a schedule that sets out various times and durations for a particular activity. The most common timetables that you use include:
\Rightarrow your school subject timetable
\Rightarrow your VET timetable
\Rightarrow public transport timetables
\Rightarrow work timetables (rosters)
\Rightarrow services appointment timetables such as for a doctor or dentist, hairdresser or barber, and many others
\Rightarrow government services timetables such as Centrelink;
\Rightarrow and any other activity that uses set times and time durations.
One person's timetable is designed to fit in with \sim ther timetables that are part of the same activity, network or system.
This means that timetables must be desigrd very rigid time schedules.
For example, your school timetabler hz, Ni. N^{\in} le zeeds of students,
 construct a suitable timetable. Of vise ha' o riow that timetable. And then on your VET or work i, n, bat deal with your TAFE timetable, your employer's work rost commitments (such as look..y afte. yolige orolings or doing domestic chores) and perhaps even your own personal casuar \mathbb{D}, roster. So it can get quite complex!

What types of timetables do you use and access? Do you access these in analogue or digital forms? Describe some examples.
\square

3.21 Planning and Organising

iv. Schedules \& Rosters

Two important time management tools for personal, educational and vocational situations are schedules and rosters.
A schedule is the general term used to describe planning, organising and doing all the tasks, and meeting all the responsibilities and time commitments, of an individual, a team or some other entity. e.g. "You free for a coffee today." "Let me check my schedule."

Rosters

A roster is a planning and organising tool that sets out the labour needs of an organisation.
Rosters are used to make sure the appropriate number of staff is available to effectively do the work roles and responsibilities needed.
Rosters set out and communicate employees' scheduled work hours. This includes workers with specific skills to do particular job roles, as well as supervisory and management staff.
\Rightarrow Rosters need to be planned well in advance.
\Rightarrow Rosters are often drawn up using 24-hou
\Rightarrow Rosters need to be communicated to 0 R involved.
\Rightarrow Rosters should ensure that an app, akice akills, training and authority is covered by the workers.

Jack Fromage works at Hungry Macs. The boss has just texted Jack with the roster for next week. But it's a long string of information!

Monday: 11am to 7pm; Tuesday: Day off; Wednesday: 7am to 5pm; Thursday: Day off; Friday: 12pm to 9pm; Saturday: 10am to $2 p m$ then 6 pm to 10 pm ; Sunday: 12 pm to 4 pm .
Jack is going to enter the roster in his e-calender. He'll also print this out and put it on his fridge as a reminder.

1. Set out Jack's roster for the upcoming week. How many hours will Jack work for the week?

Name:	Dates:						
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
7:00							
8:00				-			
9:00				1			
10:00			-	-			
11:00							
12:00			\bigcirc	-			
13:00							
14:00							
15:00							
16:00							
17:00							
18:00							
19:00							
20:00							
21:00							
22:00							

2. Use the roster on p. 70 for Gramble Newsagency to tally the weekly hours for each worker. How many hours do staff work in total? When is the newsagency less busy? How do you know? Which shift would your prefer? Why so?

3.23 Assessment Task

AT3 'Appy Birthday Personal Numeracy: Location \& Systematics

Overview

You are going to plan and organise a surprise birthday party for a good friend for next Friday.
(:) What would you do?
(:) What food, drink, entertainment and other party favours will you need to organise?
(). Who will you invite - and to where - and at what time?
() You will need to use both digital and analogue tools and apps for different steps.

Your teacher might get you to work in pairs. You will present a final report to your teacher and perhaps an oral report to the class.
At all stages of this task you will need to apply the 4-Stage Problem-Solving Cycle:
1 Identify the maths 2. Act on and use the matry 3. Evaluate and reflect
4. Communicate and report.

You also have to develop and apply tools an

Steps

1. Create a to-do list of the key ta s en or arprise party and place these in the correct order. nalog argin
2. Prepare a timeline to thona arga surprise party. Analogue or digital?
3. Choose appropriate me pods fol
4. Identify key tasks required to be le by each time period (or milestone). Analogue or digital?
5. Estimate the time needed to complete these key (milestone) tasks. Analogue or digital?
6. List external people and suppliers you might need to deal with and contact. Note important contact information. Analogue or digital?
7. Tick-off milestone tasks as you achieve them. Analogue or digital?
8. Create specific to-do lists for smaller tasks as required. Analogue or digital?
9. Check to see that you have organised everything you need to do. Analogue or digital?
10. Reflect on which analogue or digital tools and apps were more useful.

Final report

Present your plans to your teacher, including the use of analogue and digital tools. If required, present your plans to the class using multimedia, and get feedback.

Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

Name(s):

Task planning

\approx Negotiate the task details with my teacher.
\Rightarrow Decide on the location and the destination.
Determine digital or analogue tools and apps to use.

Plan and organise the party

1. Create overall to-do list.
2. Prepare a timeline.
3. Create smaller time periods.
4. Identify key milestone tasks.
5. Plan time needed for key milestone tasks.
6. List external suppliers and contacts.
7. Tick-off milestone tasks.
8. Create specific to-do list(s
9. Check that everything is

10. Reflect on use of analogue tools, and on igital tools.

Task completion and reporting

Use and apply appropriate digital tools and apps.
n Use and apply appropriate analogue tools.
\Rightarrow Use appropriate numerical language.
$\int_{3}^{4 \mathrm{PS}_{2}}$ Describe applied use of the problem-solving cycle.

Identify the maths
Act on \& use maths
Evaluate \& reflect

Communicate \& report

Develop and apply mathematical tools and techniques.
\Rightarrow Prepare and discuss my final plans with my teacher.
Present a report to the class (if required).

3.25 // Problem-Solving Cycle // Maths Toolkit

Comments:

4.01 Money

Money

When you hear the term money, what does it mean to you?
Money is used as the key tool to make purchase transactions, to pay wages, to build wealth from investments, and for a variety of other purposes.
Money is a medium of exchange that uses a recognisable currency unit (i.e. notes and coins).

Money might exist in cash form, or as cheques (mainly in business but becoming less common), and increasingly as digital credit values that utilise eCommerce payment methods.
Now in the 2020s, more than 50% of all retail transactions are made using digital payment methods. And this percentage is growing.
A huge growth in digital transactions occurred as a result of the COVID-19 pandemic. This event saw a lot of people switch to online shopping.
At the same time, there was also a move away from the use of cash in retail and hospitality outlets.
What about you? Are you mainly a cash buyer, a Igital shopper, or an even mix of both - and why?
And raise your hand if you feel you have? Anyone?
Why do think this is the case?

1. Match each of these numbers to the correct numerical statement.
2. Discuss as a class by talking about what these numbers show about the world.

used for wages, salary, profit and interest is:

The minimum hourly adult pay rate for 2022/23 was:

$\square 5 c$

- 100
income
- $\$ 21.38$
\square profit
- \$46.50wage
- \$100

Buying things without enough funds to pay straight away leads to:

A planning tool to better manage finances is a :

The general term for retail electronic transactions is:

4.03 Money

Currency

In Australia we use a decimal currency. This means that $\$ 1$ is made of up 100 cents. People then tend to count money in 10s, 100s, 1,000s, 10,000s and so on.
We use a combination of coins and notes as money. These coins and notes allow us to carry out everyday transactions. Most people also use e-transactions which debit (subtract) and credit (add) money from and to their bank accounts.
Small items we purchase are usually expressed in dollars and cents such as $\$ 2.50$ for a Mars Bar.
Large items are usually expressed in dollars such as $\$ 19,990$ for a new Hyundai Accent.

Wages are paid as dollars and cents, such as $\$ 12.50$ per hour for a 16 year-old working in a take-away shop.
People in professional jobs are usually paid a salary expressed only in dollars, such as $\$ 65,000$ per year.

How much currency do you estimate is in this picture?
Now calculate this. How close were you?

Cash vs digital

Although the use of e-transactions is growing rapidly, cash is still a preferred form of currency in some industries and businesses, especially for smaller transactions, for older people, and for younger people.
So you need to be able to work out the right currency units for different amounts of money.

This is important because digital apps and e-payments are doing the hard work and taking over the money-calculating tasks. But because people are getting de-skilled by their digital tools, we have to do even more training to manage our cash effectively.

Indicate the correct combination of notes and coins needed to represent each of these amounts. Try to use the least number of currency units.

4.05 Money Calculations

In your head

One way to do simple money calculations is in your head. Developing this skill is important for many personal, social and work-related situations. Your teacher will do this example for the class as a better way of showing you how it is done.

Adding money

For addition, add the dollar amounts first. Then keep that number in your head.
e.g. $\$ 3.50+\$ 2.45=\$ 5$ (i.e. $\$ 3+\$ 2$)

Then add the cents amounts.

$$
50 c+45 c=95 c
$$

Now if the cents amount is less than 100 just add the cents to your dollar amount.

$$
\$ 5+95 c=\$ 5+0.95=\$ 5.95
$$

But if the added cents equal more than 100, then you need to add an extra dollar to your dollar calculation, plus the remaining cents:
e.g. $\$ 10.50+\$ 1.95 c=\$ 11+145 c=\$ 12.45$

Now your teacher will work through these examp with the class.
i. $\$ 6.30+\$ 3.20=$
ii. $\$ 5.6 c<3.50=$

E
 from your dollar calculation to get the final answer.

$$
\text { e.g. } \begin{aligned}
\$ 7.40-\$ 3.80 & =\$ 4(\text { i.e. } \$ 7-\$ 3) \text { and }-40 c(i . e .40 c-80 c) \\
& =\$ 4-40 c \\
& =\$ 3.60
\end{aligned}
$$

Now your teacher will work through these examples with the class.
i. $\$ 6.30-\$ 3.20=$
ii. $\$ 5.60-\$ 3.90=$

Now, what if I tell you that you can do this quite easily in your head as long as you have a basic grasp how to add and subtract numbers? Do you believe me? Have a go!

In your head add: $\quad \$ 5.50+\$ 2.20=$? How about: $\$ 4.60+\$ 8.50=$?
Now try a subtraction: \$9.70-\$3.50 = ? And try: \$8.25-\$4.75 = ?
See, it's easier to do this in your head rather than following the correct, but complex, instructions above. It's a natural numeracy skill you can develop through your life experiences. That's why these types of numeracy skills are about applied learning. Note: If the calculation gets too complex then just set it out on paper and make sure you right-align! It's all about problem-solving.

Money Calculations 4.06
Quick money calculations

1. Complete the calculations based on money, 'in your head'. Then check your answers using a calculator. How did you go?

a.	75 cents + \$1 =	b.	\$10 + \$5 =	c.	\$99 + \$59.99 =
d.	$50 \mathrm{c}+90 \mathrm{c}+$ \$2.45 =	e.	\$9 plus 900c =	f.	\$9.95-\$5.50 =
g .	\$7+\$0.75-\$3 =		- \$ 100 + \$40	i.	\$17.55-\$6.55-\$11=
	\$ $700+\$ 975-\$ 235=$				$\begin{aligned} & \$ 24.95-\$ 12+ \\ & \$ 27.95-\$ 16= \end{aligned}$

2. Complete these real-life calculamo 'in your head'. You'll need to know, or research, or estimate prices. Then chick your answers using a calculator.
$\left.\begin{array}{|c|c|}\hline \text { a. A Big Mac, large fries and a large shake. } & \begin{array}{c}\text { b. Train (or bus) fare from your suburb or } \\ \text { town to the CBD, and back home again. }\end{array} \\ \hline \text { c. } 50 \text { litres of petrol, } 91 \% \text { blend. } & \text { d. A mobile phone contract of \$10 per week } \\ \text { for } 12 \text { months. }\end{array}\right\}$

4.07 Making Change

Making change

When you are buying things using cash the transaction will often involve change.
The change amount is the difference between the purchase price and the money tendered.
If you are the customer it is important to know that you are being given the correct amount of change. This prevents you from being shortchanged.
If you are the worker then you must be able to calculate change accurately. Even if you use an electronic point-of-sale register that tells you how much change to give, you will have to manually 'make' the correct change using notes and coins.
As more and more everyday purchases are transacted usir, \& $10-\$ 85=\$ 15$ eCommerce, the skill of m 人 change actually becomes i re important, rather than less important.

Making change

One step is used when:
\Rightarrow it is a single purchase, or
\Rightarrow the total is calculated using a cash register, POS terminal or some other means.
The correct process is:
'money tendered' less 'purchase price' equals 'change'.
For example: Purchase $\$ 75$. Given $\$ 100$ \$100-\$75 = \$25
Two (or more) steps are used when:
\Rightarrow there are multiple purchases, and/or
\Rightarrow you have to work out the totals manually.
The correr process is:
 addition snd/or multiplication.
ey tendered' less 'total = 'change'.
\$50 and \$35. Given \$100
archases $=\$ 50+\$ 35=\$ 85$
\rightarrow er. \mathbf{H} rhases of 5 items @ \$12. Given $\$ 100$
Si 1. Total purchases $=5 \times \$ 12=\$ 60$
ep 2. $\$ 100-\$ 60=\$ 40$
Why do you think this might be the case?

Change process

Making change might involve 2 or 3 of the 4 basic calculation functions. Remember that the 'money tendered' is the amount that a customer hands over for payment.
\Rightarrow Addition: Calculating total purchases.
\Rightarrow Multiplication: Calculating total purchases for multiple items.
\Rightarrow Subtraction: Calculating the change by taking away the purchase amount from the amount given (tendered) by the customer.
\Rightarrow In some cases division might also be needed such as when calculating bill splitting.

Making Change 4.08
Making change I 4D

Indicate the correct combination of notes and coins needed to make change for these transactions. Try to use the least number of currency units.

4.09 Making Change

Counting change

One tried and true method of making the correct change is by using a physical counting method.
The best physical counting method involves counting up from the purchase amount using the currency units to move to round numbers - making sure you say each step and amount aloud.

This usually involves placing the change either in the customer's hand, or down on the counter for contactless service.
Which method do you think you would prefer using? Have a go using training currency and try for yourself!

So for example, if the customer makes a
purchase for $\$ 27.50$ and tenders a $\$ 50$
note the process is as follows.
" $\$ 27.50$ plus 50c equals $\$ 28$.
Plus \$2 equals \$30
Plus \$20 equals \$50."
A second method is to make the change from the biggest units through to th smallest units starting from the rurchas. price.
price.
So for the same example;

Counting change

You physically count and say aloud the currency units to make the change.
\Rightarrow State the amount tendered.
"You gave me a \$20."
\Rightarrow Then 'state' the purchase price
"Your purchase was $\$ 14.50$."
\Rightarrow Count up to whole numbers by counting the change out from lowest unit to highest unit. " $\$ 14.50$ + 50c makes \$15."
\Rightarrow Count the next highest unit. " $\$ 15$ + \$5 makes $\$ 20 . "$
\Rightarrow Finish to get to the amount tendered. "Your change from \$20 is \$5.50."
"Thank you and come again!"
When balancing your register at the end of the day, counting the coins can take the longest time!
" $\$ 27.50$ plus $\$ 20$ equals $\$ 47.50$.
$\$ 47.50$ plus $\$ 2$ is $\$ 49.50$.
And $\$ 49.50$ plus 50 cents equals $\$ 50$."
A thio ethod is to just physically count
the ange amount.
$\$ 2$ plus 50 cents.
ange of $\$ 22.50$ plus the purchase

S

Making Change 4.10
Making change II
Work out the change for each of these purchases and amounts tendered. Then count out the currency notes and/or coins to make the change.

Purchase	Amount	Change	Currency	Purchase	Amount	Change	Currency
$\begin{aligned} & \text { e.g. } \\ & \$ 7.50 \end{aligned}$	\$10	\$2.50	$\begin{gathered} \$ 2+20 c+20 c \\ +10 c \end{gathered}$	$\begin{gathered} \text { e.g. } \\ \$ 16.30 \end{gathered}$	\$20	\$3.70	$\begin{gathered} \$ 2+\$ 1 \\ +50 c+20 c \end{gathered}$
\$5.00	\$10			\$9.00	\$20		
\$3.00	\$10			\$17.50	\$20		
\$9.50	\$10			\$15.00	\$20		
\$7.50	\$10			\$3.75	\$20		
\$2.20	\$10			\$19.40	\$20		
\$4.80	\$10			\$1	\$20		
\$1.45	\$10				\$20		
\$6.60	\$10			+	$\$ 20$		
\$0.75	\$10			1.3	20		
\$5.99	\$10				\$20		

Purchase						chase	Amount Change		Currency
e.g. \$26.50		\$50	\$23.50	$\begin{gathered} \$ 20+\$ 2{ }^{2} \\ \$ 1+50 \mathrm{c} \end{gathered}$	e.g. \$38.75		\$100	\$61.25	$\begin{gathered} \$ 50+\$ 10+ \\ \$ 1+20 c+5 c \end{gathered}$
a.	\$11.00	\$50			a.	\$65.00	\$100		
b.	\$3.50	\$50			b.	\$28.75	\$100		
c.	\$29.95	\$50			c.	\$75.50	\$100		
d.	\$48.50	\$50			d.	\$92.00	\$100		
e.	\$49.75	\$50			e.	\$82.25	\$100		
f.	\$17.50	\$50			f.	\$16.75	\$100		
g.	\$22.00	\$50			g .	\$9.60	\$100		
h.	\$0.95	\$50			h.	\$33.50	\$100		
i.	\$32.50	\$50			i.	\$54.15	\$100		
j.	\$15.25	\$50			j.	\$41.75	\$100		

4.11 Money - Rounding

Round numbers

When dealing with money it is important to keep track of how much things cost (the purchase price).
It is also important to be able to know how much change you should give or receive when completing money transactions.

It is also important to know how much you are spending in total so as to have control over your own personal finances and budget. A numerical skill that can assist you to do these things is estimating. One effective approach to numerical money estimating is to use rounding.
Rounding helps you to be able to estimate roughly how much you are spending when making purchases.
Rounding also enables you to estimate approximately how much change you should be given, or should give, when doing money transactions.

It is always better to round to ienaly jmbs at are more easily calculated in your head. e.g. 5, 10, 20, 0, $0, ?$
\Rightarrow When rounding for mey ps 0 lases \gg en dollar amounts and 50 cent amounts. e.g. $\$ 3.90$ becumes $\$ 4, \$ 35$ ecomes $\$ 2.50$. $\$ 1.05$ becomes $\$ 1$.
In most cases you should:
\Rightarrow round up for 'money spent' (e.g. costs, time, quotes, materials, expenses, etc.). This means that you are playing it safe and over-estimating potential costs.
\Rightarrow round down for 'money in' (e.g. income, revenue, time saved, etc.). This also means that you are playing it safe and under-estimating potential benefits.
For currency transactions, use rounding to estimate the major currency units you should use, or be given as change.
e.g. Purchase a meat pie of $\$ 4.80$. Pay with a $\$ 10$ note.
\Rightarrow By using rounding the pie costs about $\$ 5$.
\Rightarrow By using rounding you should get at least $\$ 5$ change.
\Rightarrow You will expect to receive a $\$ 5$ note; or perhaps $2 \times \$ 2$ s and a $\$ 1$ in your change (or some other combination of currency units); and a coin.
e.g. Purchase the pie for $\$ 4.80$ and a Pepsi Max for $\$ 2.75$. Pay with a $\$ 10$ note.
\Rightarrow By using rounding the pie costs about $\$ 5$ and the Pepsi costs about $\$ 3$. Together the rounded total = \$8.
\Rightarrow By using rounding you should get at least $\$ 2$ change. You have rounded both of your purchases up so you will expect some more small coins as well as the $\$ 2$.

1. Use rounding to complete the table for the following transactions.
(You might even use training currency for this task.)

Purchase amount	Rounded amount	Money tendered	Estimated change	Estimated currency	Exact change	Exact currency $\$ 2+\$ 1$
e.g.	$\$ 7$	$\$ 10$	$\$ 3$	$\$ 2+\$ 1$	$\$ 3.25$	$\$ 20$ $+20 c+5 c$
$\$ 2.95$	$\$$	$\$ 5$	$\$$		$\$$	
$\$ 1.25$	$\$$	$\$ 5$	$\$$		$\$$	
$\$ 9.45$	$\$$	$\$ 10$	$\$$		$\$$	
$\$ 7.80$	$\$$	$\$ 10$	$\$$		$\$$	
$\$ 1.95$	$\$$	$\$ 10$	$\$$		$\$$	
$\$ 14.80$	$\$$	$\$ 20$	$\$$		$\$$	
$\$ 15.10$	$\$$	$\$ 20$	$\$$			$\$$
$\$ 17.75$	$\$$	$\$ 20$	$\$$			$\$$
$\$ 4.95$	$\$$	$\$ 20$	$\$$			$\$$
$\$ 33.75$	$\$$	$\$ 50$				

2. Use rounding to comps $+z^{+}$Sor th. liowing multi-step transactions. (Once again you could <en ustrainii $>$ irency for this task.)

Purchase amounts	Calculation	Rounded amount		stimated change	Estimated currency	Exact change	Exact currency
$\begin{gathered} \text { e.g. } \\ \$ 2.50 \\ +\$ 2.25 \end{gathered}$	= \$4.75	\$5	\$10	\$5	$2 \times \$ 2+\$ 1$	\$5.25	$\begin{aligned} & 2 x \$ 2+\$ 1 \\ & +20 c+5 c \end{aligned}$
a. $\begin{gathered}\$ 1.90 \\ +\$ 1.99\end{gathered}$		\$	\$5	\$		\$	
b. $\begin{gathered}\$ 3.25 \\ +\$ 2.70\end{gathered}$		\$	\$10	\$		\$	
c. $\begin{array}{r}\$ 4.95 \\ +\$ 3.95\end{array}$		\$	\$10	\$		\$	
$\begin{array}{lc} & 75 \mathrm{c} \\ & \text { d. } \\ +\$ 1.55 \\ & \$ 14.50 \end{array}$		\$	\$20	\$		\$	
e. $\begin{gathered}\$ 2.75 \\ \times 3\end{gathered}$		\$	\$50	\$		\$	
f. $\begin{gathered}\$ 41 \\ +\$ 2.85\end{gathered}$		\$	\$50	\$		\$	

4.13 Digital Money

Digital wallets

A digital wallet is a mobile application that enables a person to:
\Rightarrow make payments from their existing account balance (like a digital debit card), or
\Rightarrow to make payments using credit from the app provider such as a bank (like a digital credit card); or
\Rightarrow a combination of both debit and credit transactions.
Most digital wallets are operated through a smart phone or a smart watch or a smart device

Digital wallets can also store loyalty cards, discount coupons and other similar digital shopping add-ons.
So in the digitised world of the 2020s, digital wallets are quickly becoming a replacement for cash-based transactions.
As long as the user transfers money into their debit account, it's just like having cash in their wallet.
This can help a person more easily manage theil yudget or weekly spending limit. As they can't spend what is no rise digital wallet. Many of the apps have push notification riv ejser up-to-date on their balance and other information.
 of credit feature, then it is very arsine control of their spending, especially given sea en online and digital shopping.
And digital wallets can also be set up to sily and regularly transfer funds from an existing debit balance.
So in this age of all the smart apps and devices managing your life for you, it is even more important for you to "check your digits".

So what does your class reckon about digital wallets? Yea or nay!

1. List the major examples (i.e. brands or providers) of digital wallets in Australia.

2. What are the advantages and disadvantages of a digital wallet?
\qquad
\qquad
\qquad
3. Do you use a digital wallet or do you use cas. Or both? Why so?

4. Think ahead to $\mathbf{2}$ years' time. Do you think you'll mainly be a cash user or will you be more likely to use a digital wallet? Why so?

Research

a. Form into a team and find out the main types of digital wallets available to use in Australia, such as those from banks, from global tech giants, and other providers. Your teacher might allocate specific examples to your team.
b. Summarise the key features, costs and security measures associated with each.
c. Report to the class about which ones you would recommend and why; as well as which ones you'd steer clear of (hint: credit/loan types of digital wallets).

4.15 Multiplication and Division

Multiplication

With multiplication you are calculating an answer based on repeated 'adding' of a particular number.
The best way to clearly understand multiplication is by saying the words in the calculation out loud.
For example:
\Rightarrow Calculate: Four times six.
\Rightarrow This means you have to work out the total of four sixes.
\Rightarrow Four sixes is just: six plus six plus six plus six. i.e. 4×6.
\Rightarrow The answer to this, is of course, 24 !
Can you hear how saying the words out loud helps make multiplication much easier to ur erstand?
Multiplication is simply: something times some rine.
\Rightarrow Ten times ten? Well ten tens is a
\Rightarrow What about 20×5 ? Well 20×5
\Rightarrow And how about nine by five? vers pe θ ? ay multiplication this way; i.e. something by sometr c, sme ais $(9+9+9+9+9=45)$.

Multi jcation ssing visual data
What is 20×5 ?
Well here we can show this visually.
$\Rightarrow 5$ boxes (in rows) repeated 20 times (and a nice pattern!)
\Rightarrow If we count the boxes you find there's 25 in each rectangle.
\Rightarrow If you count all of the boxes you will eventually get to 100 . But this is going to take a long time. And your eyes will go all funny!
So it's easier just to do multiplication.
\Rightarrow Multiplication involves a particular number, multiplied by another number.
\Rightarrow So in other words, you count the first number, by the amount of times of the second number. i.e. 5×20. (And now you can do the calculation both ways because 5×20 is the same as 20×5 !)

> Multiplication (times) ...shown by a ' x^{\prime} or ${ }^{\prime * \prime}$ sign)

Multiplication involves repeated addition of the same number to find the answer (also called the product). In other words, you are adding the same number together for however many times is specified. e.g.

$$
\begin{aligned}
2 & \times 4
\end{aligned}=8 \text { or } \quad \begin{aligned}
(4+4 & =8) \\
5 \times 7 & =35 \text { or }
\end{aligned}
$$

$$
(7+7+7+7+7=35)
$$

$$
12 * 11=132 \text { or }
$$

Multiplication calculations

When performing multiplication it is important to know these instructions.
\Rightarrow You have to set out the question in the proper way. This includes making sure that you right-align the numbers.
\Rightarrow You might also have to carry a number (or numbers). Your teacher will explain how to do this.
\Rightarrow For bigger numbers you might have to include a 0 to show place value for 10 s, and another 0 to show place value for 100 s and so on. Once again your teacher will explain how to do this.
These might sound a bit confusing written in words. But when your teacher works through examples it will be much easier. This is because most people learn better from watching and doing numerical calculations, rather than from reading how they're done! Do you agree?
Tip: Always perform any calculations in brackets first!

In your workbooks complete the following multiplication calculations.
Make sure that you show appropriate workings out.

a.	$9 \times 6=$	b.	$4 \times 8=$	c.	$12 \times 10=$	d.	$14 \times 3=$
e.	$15 \times 5=$	f.	$8 * 12=$	g.	13 by $11=$	h.	$24 \times 6=$
i.	20 * $12=$	j.	$0.50 \times 20=$		35 by $15=$	I.	\$25 \times \$2 $=$
m.	twelve times ninety $=$		one hundred by $20=$	o.	seven times forty-six =	p.	$10 \times 60 \mathrm{mins}=$

4.17 Multiplication and Division

Division

With division you are calculating an answer based on how many times one number (the divisor) goes into another number. You can better understand division by saying the words in the calculation out loud. e.g.
\Rightarrow Calculate: 30 divided by 10.
\Rightarrow This means you have to work out how many 10 s there are in 30 .
\Rightarrow So if we say "10", "10", "10" we quickly count up to 30 .
\Rightarrow The answer to this, is of course, 3 !
But dividing for 10 s is easy, as is working out division for small numbers by counting. To deal with less uniform numbers, as well as bigger numbers, you will need to learn and apply the skills for calculating division. And you should also know that doing the \square sil the multiplication calculation.
\Rightarrow Multiplication: $10 \times 10=100$ Divisun

Can you see the division/ multiplication relationship now?

We can once again use visual data to uncer and division.
\Rightarrow Here are 100 boxes. You can count 20 rows of 5 (or 20 columns of 5).
\Rightarrow You can also count 4 squares of 25 .
\Rightarrow You could even count 100 small squares (if you have time and good eyesight!) Let's look at the divisors for 100 here. $\checkmark 1$ is a divisor - there are 1001 s in 100 !
$\checkmark 2$ is a divisor - there are 502 s in 100 !
$\checkmark 5$ is a divisor - there are 205 s in 100 !
$\checkmark 10$ is a divisor - there are 1010 s in 100 !
$\checkmark 25$ is a divisor - there are 425 s in 100 !
We can see each of these divisors quite easily on the diagram. You could draw a circle around them. However, there are other divisors for 100.
 What are they?
Perhaps you could try drawing 'circles' around the blocks using different colours to work these out.

Division calculations

When performing short division it is important to know these instructions.
\Rightarrow You have to set out the question in the proper way. This includes using a division box as shown below.
\Rightarrow You set out the dividend (the number you are dividing into) by the divisor (the number you are dividing by). i.e. 20 (the dividend) divided by 5 (the divisor).
\Rightarrow You might also have to carry a number (or numbers) if you get a remainder. Your teacher will explain how to do this.
Remember that most people learn better from watching and doing numerical calculations rather than from reading how they're done! That's why your teacher will do some examples for the class and then get you to try some on your own.
Tip: Always perform any calculations in brackets first!

In your workbooks comple the toring Rivision calculations.
Make sure that you show appropriate NDings out.

a.	$20 \div 10=$	b.	$18 \div 6=$	c.	$75 \div 5=$	d.	$64 \div 8=$
e.	$45 / 3$ =	f.	$100 \div 5=$		$160 / 10=$	h.	$144 \div 12=$
	$300 \div 20=$		$1000 / 10=$		$75 \div 37.5=$	I.	$7.5 / 5=$
	seventy divided by five $=$	n.	$\begin{aligned} & 110 \text { divided by } \\ & 11= \end{aligned}$		one hundred how many twos =		how many halves are in $5=$
	\$25 / \$5 =		\$140 \div \$ $7=$		6 hours divided by 2 =		how many 15 mins in 2 hours =

4.19 Fractions and Decimals

Fractions

A fraction represents a part or a portion of a whole number. Essentially a fraction divides the top number (numerator) by the bottom number (the denominator).

For example: Fractions

\Rightarrow An orange cut equally in two portions $=1 / 2$ an orange $+1 / 2$ an orange. If you eat one of these portions you have eaten $1 / 2$ of an orange. And 1 divided by $2=1 / 2$. (Or, "how many 2 s go into 1 : a half!")
$\Rightarrow 25$ cents $=$ a quarter of a dollar or $1 / 4$ (in the US they have 'quarter' coins and not 20c coins like in Australia; so our 20c = 1/5 of a dollar).
\Rightarrow A pizza sliced in 8 portions $=8 \times 1 / 8$. Each slice is $1 / 8$.
Peckish? 2 slices $=1 / 4 \quad$ (or 2 eighths or $2 / 8$)

Hungry? $\quad 4$ slices $=1 / 2 \quad$ (or 4 eighths or $2 / 4$ or $1 / 2$)
Famished? 6 slices $=3 / 4 \quad$ (or 6 eighths or $6 / 8$ or $3 / 4$)
Starving? 8 slices $=1 \quad$ (or 8 eighty or 4 quarters, or 2 halves)
Now, Igor is really greedy and eats his whon nizza, which is cut into 4 pieces.
So that's 4 quarters (or 2 halves)
how big his mouth is!
His friend Frankie goes to ge ryy isc?
sauce and Igor quickly s
quarter slice of Frank's
Igor has now eaten on and a yuzjel izzas
(or $5 / 4$ which is $4 / 4$ plus another $1 / 40$
Now that is a very improper thing to do!

Fractions

Proper fraction:

A proper fraction is one where the number on top (numerator) is less than the number on the bottom (denominator).
This means that the number represented by the fraction will be less than 1 (for positive numbers). e.g.

$$
\begin{array}{llllllllll}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{3}{5} & \frac{1}{10} & \frac{5}{6} & \frac{1}{8} & \frac{3}{7} & \frac{13}{20} & \frac{25}{100}
\end{array}
$$

Improper fraction:

An improper fraction is one where the number on top (numerator) is more than the number on the bottom (denominator).
This means that the number represented by the fraction will be more than 1 (for positive numbers) e.g.

$$
\begin{array}{llllllllll}
\frac{3}{2} & \frac{4}{3} & \frac{5}{4} & \frac{10}{5} & \frac{11}{10} & \frac{14}{6} & \frac{12}{8} & \frac{10}{7} & \frac{60}{20} & \frac{200}{100}
\end{array}
$$

Decimals

A decimal is another way of representing a fraction. Decimals are based on our number system which uses the power of 10s, i.e. 1, 10, 100, 1000, 0.1, 0.01, 0.001 .

Some numbers include a decimal point. These represent a whole number, such as 2 , plus a fraction of a whole number, such as 0.5 . Written together this will be 2.5 (or 2 and five tenths). 2.5 can also be written as 2 1/2.

For example, Ellie ran 2 full laps plus another half of a lap of the oval before she had to stop. In decimal terms, Ellie ran 2.5 laps of the oval.
For really accurate numbers such as in medicine, pharmacy and other technical and scientific jobs decimals might go up to the hundredth (i.e. 2 numbers after the decimal point; 0.01); or even to the thousandth, (i.e. 3 numbers after the decimal point; 0.001). For this stage of numeracy we can keep decimals to the tenth, which is one number after the decimal point, or 0.1 .
However, when dealing with money you will need decimal places; and when converting measurements you might also requir \& (- even more) decimal places. Why is that?

1. Colour in the shapes to indicat accillor ior

2. Write each of these as their correct decimal or fraction.

$1 / 2$	$1 / 4$	$1 / 3$	$1 / 5$	1	$2 / 4$	$2 / 3$	$3 / 5$	$7 / 10$	$3 / 4$
0.5									
0.4	0.2	0.5	0.33	0.9	0.67	1.0	0.75	0.6	1.5

| $1 / 2$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4.21 Fractions and Decimals

Working with fractions
Sometimes when you apply numeracy to financial, personal and vocational situations you might have to add or subtract using fractions. One way to do this is to say the numbers in your head. e.g.
$\leqslant \Rightarrow$ "One half plus two halves means that l've got three halves (or one and a half)."
\Rightarrow "One quarter plus two quarters equals three quarters."
\Rightarrow "One minus a half $=$ a half."
\Rightarrow "Three quarters minus a half $=3 / 4$ minus $2 / 4$ which equals $1 / 4$."
But if the calculation gets more complex then you will need to follow a numerical method. Your teacher will work through a number of examples with you.

Fractions: Addition and Subtraction

If the fractions have the same bottom number (denominator) then simply add or subtract the top numbers (numerator).

e.g. i	
$\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1$	$\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}+\frac{4}{2}-\frac{3}{2}=\frac{9}{2}-\frac{3}{2}=\frac{6}{2}=3$

But, if the fractions have different hott bers (denominators) then you will have to find the lowe ry denominator (or lowest common multiple). After this 10 m numbers.

$$
\frac{1}{2}+\frac{1}{4}=\frac{2}{4}+\frac{6}{4}+\frac{2}{4}
$$

Working with decimals

Working with decimals is common in life, especially in workplaces and job tasks that deal with money, and for measurements using the decimal system. The easiest way to do this is to use the same rules for calculating by setting this out vertically. But the key is to make sure your numbers are aligned based on the decimal point.

Adding and subtracting decimals

| e.g. Calculate
 the total of: |
| :--- | :---: | :---: | :---: | :---: |
| $0.5+0.2$ | $0.5+0.25$ | $2.5+3.4$ | $0.45+3.40$ | $1.5+2.3-1.6$ |
| 0.5 | 0.50 | 2.5 | 0.45 | 1.5 |
| $\underline{+0.2}$ | $\underline{+0.25}$ | $\underline{+3.4}$ | $\underline{+3.40}$ | $\underline{+2.3}$ |
| $\underline{0.7}$ | $\underline{0.75}$ | $\underline{5.9}$ | $\underline{3.85}$ | |
| | | | | $\underline{-1.6}$ |
| | | | | $\underline{2.2}$ |

1. Calculate these fraction and percentage amounts.

a.	$1 / 2$ a dollar	b.	$3 / 4$ of $\$ 10$	c.	$1 / 4$ of $\$ 100$	d.
e. of $\$ 172.50$						
	25% of $\$ 10$	f.	10% of $\$ 1,000$	g. 30% of $30+\$ 50$	h.	50% of $\$ 99.95$

2. Perform the following calculations in your head or on paper. Time this.
3. Now do the same calculations using a calculator. Time this.
4. Estimate how many calculations you have done correctly.

Your teacher will give the answers after the class has done both tasks.

a.	$1 / 2+1 / 2=$	$=$	$1 / 2+$	$=$	
b.	$0.5+0.25=$	$=$	- 0.25	=	
c.	$1.50+3.50=$	$=$	-	$=$	
d.	$1 / 4+2 / 4=$	-	2 $2+2 / 4=$	=	
e.	$201 / 2+9$ 1/4 $=$,	$201 / 2+91 / 4=$	$=$	
f.	\$1-\$0.5 =	=	\$1-\$0.5 =	$=$	
g .	1-1/4	$=$	1-1/4	$=$	
h.	\$50-25.50 =	$=$	\$50-25.50 =	$=$	
i.	$0.5+1 / 2+0.25=$	$=$	$0.5+1 / 2+0.25=$	$=$	
j	$3.5-0.5-1 / 2=$	$=$	$3.5-0.5-1 / 2=$	$=$	
k.	$1 / 8+3 / 8-1 / 4=$	$=$	$1 / 8+3 / 8-1 / 4=$	$=$	
Estimated correct		/11			/11
Total correct:		/11			/11

5. Discuss with the class how you went. What were the patterns around your own areas of strength and weakness? What about for class as a whole?

4.23 Comparing Prices

Comparing prices

An important numeracy skill that people need as part of their everyday lives is to compare prices. When comparing prices it is important that you take into account other issues such as product quality, product features and whether you actually need that quantity of product in the first place.
Developing the ability to compare prices will help you to:
\Rightarrow be able to compare the relative price of different-sized products
\Rightarrow make your dollar go further when making purchases to help save money
\Rightarrow manage your finances as part of a personal budget
\Rightarrow factor in issues such as personal preferences, product quality and product features.

False economy

The concept of false economy means that although you think you might be saving money in the short-term, you are likely to end up spending more money in the longterm. Here are some examples, but you should be able to think of more.
\Rightarrow Buying more than you need and ending up wasting most of the item. e.g. You buy a discounted box of fruit and most of it goes bad before you can eat it all.
\Rightarrow Buying cheaper items on special but then consuming more than you would've. e.g. Instead of 1 packet of chips for $\$ 4.50$ you buy 2 for $\$ 7$ on special. Not only do you spend more, you end up scoffing down twice as much!
\Rightarrow Buying low quality goods that break down and need to be replaced, e.g. A tradie buys cheap power tools that end up costing more in money and lost time.

1. Working in pairs estimate the price of these common household grocery and shopping items. You will have to take into account product size as well.

Milk	Loaf of bread	Roast chicken	1 kg mince	Vegie sausages	Butter
1kg tomatoes	1kg apples	1 kg bananas	1 kg potatoes	Lettuce	Zucchini
Cheese slices	Can of tuna	Pasta	Pasta sauce	Coco pops	500 g coffee
Tim Tams	2l of Cola	Corn chips	Block of choco te	BBQ shapes	Ice cream
Toilet paper	Toothpaste	Dishwashing liquid		Den	Deodorant
Shampoo					

2. Now go online and find out the curront rins ehae items. Where will you look - just one seller, o. win cormmare?

Milk	Loaf of breza	Putter			
1kg tomatoes	1 kg apples	1 kg bananas	1 kg potatoes	Lettuce	Zucchini
Cheese slices	Can of tuna	Pasta	Pasta sauce	Coco pops	500 g coffee
Tim Tams	21 of Cola	Corn chips	Block of chocolate	BBQ shapes	Ice cream
Toilet paper	Toothpaste	Dishwashing liquid	Soap	Deodorant	Shampoo

3. In your workbooks, do calculations to show the differences.
4. How did you go? Did you underestimate, over-estimate or were you close?
5. Should you do the shopping? Why or why not?

4.25 Comparing Prices

Units costs

Under Australian law, large grocery and fresh produce retailers need to show unit pricing for relevant items. This is called the Unit Pricing Code.
What this means is that the shelf price tags and online options must include a unit price per relevant measure, such as $\$ 1$ per 100 g or 50 cents per 100 millilitres.
Unit pricing enables a shopper to do quick and easy comparisons on which size item might be the least expensive option.

For example: Unit pricing comparison

One of the most commonly purchased grocery items in most household shopping trolleys is Vegemite. But Vegemite (like most items) is available in a range of sizes. Based on prices from June 2022:
Vegemite: $150 \mathrm{~g} \mathrm{jar}=\$ 3.50$ Unit pricing is $\$ 2.33$ per 100 grams
Vegemite: 220 g jar $=\$ 4.00$ Unit pricing is $\$ 1.82$ per 100 grams
Vegemite: $380 \mathrm{~g} \mathrm{jar}=\$ 6.50$ Unit pricing is $\$ 1.71$ per 0 grams
Vegemite: $560 \mathrm{~g} \mathrm{jar}=\$ 8.45$ Unit pricing is $\$ 1.49 \mathrm{p}-200$ grams
Vegemite: 200 g squeezy bottle $=\$ 4.50$ Unit pr ∇. S .25 per 100 grams Vegemite: 350 g squeezy bottle $=\$ 7.00$ Ur? Vegemite: 145 g travel pack tube $=\$ 4.0$ it \sim is $\$$ per 100 grams So which would you recommend pole thing though - there might be other factors to consider rather an, as it prine. Iscuss this as a class. And how do these prices compas to mionary? Nilation occurred?

4M Unit pricing

1. Work in pairs and go online or visit a supermarket to do unit pricing comparisons for 3 different items. Choose a food product, a drink product and another product. Record your results in the table.
2. What advice would you give about choosing between different-sized options?
\square

Jatz is having some friends over and she is going to offer some light snacks and sandwiches. After researching online and in catalogues, she has put together a table of this week's prices for the key products she wants to buy.

1. Calculate the column totals of the 'basket of goods' at each of the supermarkets.
2. List an 'other' source for each of these products along with a price.
3. From which supermarket or supermarket(s) would you recommend Jatz source her products? Explain using evidence.
4. What other issues should Jatz take into account when choosing between these different sellers?

Product	Size	Coolworths	Boles	IPA	Baldi	Other
Wholegrain bread	680 gm	\$3.50	\$3.50	\$3.85	\$2.79	
Free range eggs	dozen	\$5.75	\$6.25	-	\$4.85	
Iceberg lettuce	na	\$1.50	0^{95}	1	\$1.50	
Curry powder	100 gm	\$2.45	2	,	\$2.15	
Tasty cheese slices	24 pack	+2	6	\$5.9	\$4.99	
Tomatoes	1 kg			\$5.99	\$5.25	
Hummus dip	250 gm	\$3.15	2.99	\$3.50	\$1.79	
Packet of crackers	250 gm	\$1.50	\$1.25	\$1.50	\$0.99	
Cola drink	2 litres	\$1.40	\$1.10	\$1.50	\$0.99	
	Totals	\$	\$	\$		

Applied: Comparing prices in action

1. Choose shopping items that your household regularly purchases.
2. Research their current prices from different sellers. Check for any items on special.
3. Complete a table like the one above. Calculate the total price for the 'basket of goods' and potential savings.
4. Make recommendations to help your family's shopping budget, e.g. should they shop around more?

4.27 Comparing Prices

40 Finding patterns

1. What patterns are occurring in each of these sets of numbers? What might be the next number in the series?

$\$ 2$	$\$ 4$	$\$ 6$	$\$ 8$	$\$ 10$	$\$$	Pattern?
$\$ 6$	$\$ 5$	$\$ 4$	$\$ 3$	$\$ 2$	$\$$	
2	4	8	16	32	$\$$	
132	64	32	16	8	$\$$	
$\$ 1$	$\$ 3$	$\$ 6$	$\$ 10$	$\$ 15$	$\$$	
$\$ 30$	$\$ 29$	$\$ 27$	$\$ 24$	$\$ 20$	$\$$	

2. Consider each of these products based on thy ize. Predict what the next prices would be, based on applying a simple patte

Sugar	$\begin{gathered} 500 \mathrm{~g} \\ \$ 2 \end{gathered}$	$\begin{aligned} & 1 \mathrm{~kg} \\ & \$ 4 \end{aligned}$	$\begin{gathered} 1.5 \mathrm{~kg} \\ \$ 6 \end{gathered}$		Pattern?
Eggs	$\begin{gathered} 6 \\ \$ 3 \end{gathered}$	$\begin{aligned} & 12 \\ & \$ 6 \end{aligned}$			
Coffee	$\begin{gathered} 5 \text { cups } \\ \$ 25 \end{gathered}$			$\begin{aligned} & \text { I cup } \\ & \$ \end{aligned}$	
Milk	$\begin{aligned} & 1 \text { litre } \\ & \$ 1.50 \end{aligned}$	$\begin{gathered} 2 \text { litre } \\ \$ 3 \end{gathered}$	$\begin{aligned} & 3 \text { litre } \\ & \$ 4.50 \end{aligned}$	$\begin{aligned} & 6 \text { litre } \\ & \$ \end{aligned}$	

3. As you know, when you buy many packaged items in bulk, the pattern of prices changes and you are more likely to save. Can you find clear patterns here? What is the general trend as you upsize?

Sugar	500 g $\$ 2$	1 kg $\$ 3.50$	1.5 kg $\$ 4.50$	2 kg $\$ 5.50$			
Eggs	6 $\$ 3$	12	18	24			
Coffee	1 cup						
	$\$ 5$	2 cups					
$\$ 10$	4 cups						
$\$ 20$							5 cups
:---:							
$\$ 20$	\quad.						

Sometimes we can use patterns to make it easier to estimate and calculate discounts. This is especially useful when shopping and seeing all different prices, offers and discounts - and needing to quickly judge which offers might be suitable.
As you know, calculating 10% of anything is really quite simple. Once you can calculate 10% of a number or a price, then you can easily double this for a 20% discount, or halve this for a 5% discount; and so on.
4. Calculate a $\mathbf{1 0 \%}$ discount on these amounts. Then halve or double this for 5% or 20%, and so on.

Price	$\mathbf{1 0 \%}$	New price	5%	New price	20%	New price	30%	New price	40%	New price	50%	New price
$\$ 100$	$\$ 10$	$\$ 90$	$\$ 5$	$\$ 95$	$\$ 20$	$\$ 80$	$\$ 30$	$\$ 70$	$\$ 40$	$\$ 60$	$\$ 50$	$\$ 50$
$\$ 200$												
$\$ 50$												

Applied

You can also use number patterns t ikly estimate how much you might be spending. You can use amounts of $\$ 1, \$ 2, \$ 3, \$ 4, \$ 5, \$ 10, \$ 20$ and so on depending on the price of your purchases. You round up the prices of products to the nearest whole dollar (ignore those misleading .99c and .95c amounts)
For example, to estimate if you have enough money to buy lunch for 4 people, using $\$ 20$ 'lots', you can look at the menu and say that:
Burgers = \$5, fries = \$3, drinks = \$4.
So you might say: 4 burgers $=\$ 5, \$ 5, \$ 5$ and $\$ 5$ so that's one $\$ 20$ lot.
People want 6 serves of fries = $\$ 3, \$ 3, \$ 3, \$ 3, \$ 3, \$ 3$ which $=\$ 18$ which is almost another \$20 lot.
And people want 4 drinks $=\$ 4, \$ 4, \$ 4, \$ 4=\$ 16$. This is almost another $\$ 20$ lot.
So you are going to need approximately $\$ 60$, but you should expect some change.
Pair up and use this method to compare a lunch for you two at different fastfood outlets Compare at least 3. Did this method make it easier and faster for you to estimate the total cost?

4.29 Assessment Task

AT4 Adding Up to Take Away Financial Numeracy: Number

Overview

For this task, you are required to apply your financial numeracy skills to estimate and calculate the best take-away dinner option for your family within a budget of $\mathbf{\$ 2 0}$.
You should compare at least $\mathbf{3}$ different options, including a meal from a major national chain and a local take-away meal option. Consider these possibilities.
() A major take-away hamburger chain.
(:) A major take-away chicken chain.
(:) A major take-away pizza chain.
(-) A local take-away hamburger shop.
(-) A local take-away fish ' n ' chip shop.
() A local general take-away shop.
(:) Other take-away food options.
Your teacher might get you to work in pairs or investigation to your teacher, and perhaps ar ∇ rinort to the class.
At all stages of this task you will need to
1 Identify the maths 2. Act on andse her ins -valuate and reflect 4. Communicate and report.

You also have to develop and
In your investigation you
«ques from your Maths Toolkit.
these considerations.
How many people areyou nedi@Are there any meal deals available? to feed?
\square How much does each person eat?
\square Are there any dietary or cultural requirements?
\square Does the meal option include drinks? \square Are there any specials or loyalty offers available through apps or coupons?
\square Are there delivery fees, or will you pick-up the meal?
\square Other issues relevant to availability, choice, price and preference.

Add any other important information here.

Name(s):Key dates:			Financial Numeracy Number Module 2	
Tasks - AT3: Adding Up to Take AwayE Negotiate the task details with my teactiole	Must Do?	Due by	Done	Level
	(V)		\square	
Investigation of take-away dinner options				
a. - Amount of food required?				
- Dietary or cultural requirements?				
b. - National take-away chain.				
- National take-away chain.				
c. - Local (other) take-away provider.				
- Local (other) take-away provider.				
d. Does the meal option include drinks?				
e. - Meal deals available.				
- Specials or loyalty offers available.				
f. Delivery fees?				
g. - Other issues:				
- Other issues:)			

Task completion and reporting

\Rightarrow Explain your recommendations and conclusions.
\sim Use and apply appropriate digital tools and apps.
Use and apply appropriate analogue tools.
\Rightarrow Use appropriate numerical language.

Describe applied use of the problem-solving cycle.

Identify the maths

Act on \& use maths
Evaluate \& reflect
Communicate \& report

Develop and apply mathematical tools and techniques.
Prepare and discuss my investigation with my teacher.
Present a report to the class (if required).

4.31 // Problem-Solving Cycle // Maths Toolkit

Dollars and Sense

Comments:

5.01 Dollars and Sense

Dollars and sense
In Section 4 you built and applied some key numerical skills to better understand money. In this section, you are going to develop and apply more financial numeracy skills.
You will start to explore the different types of income that people are paid for working.
You will also develop financial numeracy skills to help you estimate and manage the common expenses of life.

You will investigate the importance of personal budgeting for financial numeracy, and create a

Image: StudioM1/iStock/Thinkstock basic 4-week budget for your own personal situation.
You will be given an introductory summary of a pay slip. Your teacher might expand this topic if you have a number of people iour class working, or soon to be working.
You will also be introduced to personal bank cash and digital security to improve yo - wer crooks can target a person's cash and ander av. Tht topic in itself could be the entire focus of an assessment task i. .e

Money at work

Work-related tasks are dri i by $Q_{\mathrm{incial}}^{+ \text {inis }}$ in profit-making businesses such as calás, shops, farms, trades and manufacturers; full the way through to large organisations such as Woolworths and McDonald's.
You might have to use money when dealing with customers and clients, ordering stock and supplies, preparing quotes to cost jobs, and of course, when being part of a successful business!
People who work for not-for-profit enterprises such as schools, hospitals and welfare organisations, and government agencies such as local councils or government departments must meet strict budgetary constraints.
And of course there is also the issue of the wages you earn that are paid for your time, labour, skills and expertise. You need to know how to calculate your wages. You also need to be able to check that you are being paid correctly.

Sing it loud, sing it proud
Hit songs with money in the title!
Who sung these and when?
\Rightarrow Money
\Rightarrow Money, Money, Money
\Rightarrow Money (That's What I Want)
\Rightarrow Money Makes the World go Around
\Rightarrow Money Changes Everything
\Rightarrow Money for Nothin'
\Rightarrow She Works Hard for the Money

Hit songs about money!

Who sung these and when?
\Rightarrow Can't Buy Me Love
\Rightarrow Working Class Man
\Rightarrow Bills, Bills, Bills
\Rightarrow If I was a Rich Man
\Rightarrow Who Wants to be a Millionaire
\Rightarrow I Need a Dollar
\Rightarrow Don't Worry, Be Happy Do you have any fave' contemporary performers who sing about money?

Advanced Numeracy Skill: Order of operations

When you work through some of the activities in this section of Numeracy: VPC you might have to combine calculations using addition, subtraction, multiplication and division, even though you won't be strictly assessed on this.
But knowing how to do this is a common skill needed for personal and work-related money management.
For example, you might earn $\$ 10$ an hour for 30 hours, plus $\$ 12$ an hour for another 10 hours of overtime. Working out your total pay for the week combines both addition and multiplication.
So, how might you set out the calculation to work this out?

$$
\text { e.g. = \$10 x } 30+\$ 12 \times 10=\text { Total pay for the week = }
$$

Which do you think is the correct answer: \$420 or \$3,120?
Your teacher will discuss how to do this with the class and check to see who got it correct, and who made the common mistake that many people do.
There is a set of rules that govern the order in which t/ do these types of calculations. This involves you following the correct order of op stic for these types of calculations. If your teacher thinks it's necessary to learn this whe show the class how to do it.
2. Describe some examples of when other people deal with money for you, or on your behalf.
\square
3. How would you rate your skills in dealing with money? Explain.

5.03 Percentages

Percentages

A percentage represents a portion (or a fraction) of a whole amount. A percentage represents a fraction out of 100%. With percentages the whole amount is 100%.
Half of that whole amount equals 50%. One quarter of that whole amount represents 25%. One tenth of the same whole amount represents 10%.
Percentages are used a lot when dealing with money including for discounts, for cost mark-ups and even for weekend penalty rates on wages.
Percentages are one of the most straightforward calculations going around, because a percentage simply represents a proportion of a whole! Every percentage is going to be between 0% (none) to 100% (all) of a total. But sometimes people can get confused. So the 4-stage Problem-Solving Cycle can be your 100\% best friend here! If you have a look at this image of the percentages of an orange we are showing the fractions as a percentage.

2. Colour in each of these shapes to show the percentage.

Calculating percentages

If there are 10 people at a McDonald's, and 6 of these buy a Big Mac, then the percentage of Big Mac eaters in this McDonald's is 60%. See it's easy in words. It's easy in numbers as well.
$\frac{6 \text { (number of Big Mac eaters) }}{10 \text { (total number of people in McDonald's) }}$
$=\quad 0 \frac{100 \%}{1}$
$=\quad 60 \%$

So to work out percentages you divide the amount or the portion you are focusing on, by the total amount. This gives a fraction or a decimal (such as 6/10 or 0.6).
You then multiply by 100% to express this as a percentage.
So if there are 25 people in Hungry Jacks who buy fries with their order and there are 50 diners in total, what percentage of Hungry Jacks diners bought fries? The fraction is $1 / 2$ and the decimal is 0.5 , so the percentage is 50% !

Proportion as a percentage

A percentage represents a smaller proportinn \geqslant ar ple; let's consider these examples. And while you're are it, discuss these made-up percentages might be.
$\Rightarrow 50$ out of every 100 Australians vith \approx rt p lave an iPhone. That's 50%.

$\Rightarrow 25$ out of 100 adults de \Rightarrow the \ominus aiv
$\Rightarrow 10$ out of 50 people surveyed agre $\in=$ watching MasterChef made them want to eat more food. That's 20%, i.e. 20 oui $\mathbf{\sim} 100$.
$\Rightarrow 99$ out of 100 Numeracy: VPC students believe that after doing this topic they will know how to calculate percentages. That's 99%, do you agree?

Calculate each of these percentages.

a.	10% of 100	b.	10% of 150	c.	50% of $\$ 500$	d.	20% of $\$ 200$
e.	25% of $\$ 1000$	f.	75% of 500	g.	10% of $\$ 2+$ 20% of $\$ 1$	h. 33% of 300	

5.05 Income

Income

So how's your income situation? Income is money that you earn from various sources. A lot of people commonly refer to this as their 'pay'.
The most common form of income is from wages and salaries earned from being an employee. In Australia as at late-2022, about 13.5 million people are 'employed' - with most workers being paid a wage or a salary. However, some workers might instead receive a commission and/or a retainer (such as real estate agents, and sales representatives).
Of those 13.5 million, about 2 million are working to try to earn profits as a result of owning and operating businesses.
Other people might receive transfer income from the government through various welfare payments (such as aged pensions and the JobSeeker allowance).
Many people also earn investment income in the form of:
\checkmark interest from savings
\checkmark dividends from owning shares \checkmark capital gains from selling assets (shares, pr erty, etc.) and \checkmark rent from investment properties. These various sources of income allo standard of living whereby we can ph and services, save for the future, a decent lifestyle.
come

Wages
\Rightarrow Wages are income amounts paid for an employee's labour and determined on an hourly basis.
\Rightarrow Wages normally apply in trades, for skilled and semi-skilled employees and other employees.

Salaries

\Rightarrow Salaries are income amounts paid to professionals and 'higher-skilled' or managerial employees.
\Rightarrow Salaries are calculated (but not paid) on a yearly (annual) basis.

Commission/Retainer

\Rightarrow A commission is an incentive payment usually based on a proportion of sales, fees or revenue, and is often used for people in sales roles.
\Rightarrow A retainer is a base level of payment made in conjunction with a commission.

Payment-in-kind

\Rightarrow Payment-in-kind refers to nonmonetary payments given in return for labour.
\Rightarrow For example, a caretaker who is employed at an island resort might receive payment-in-kind of accommodation and meals in addition to their wages.

1. Complete the following sentences using the most appropriate 'income' term. Then calculate the amounts asked in the question. Some require more complex numerical skills that your teacher might have to show the class.
a. Jon works at Splash Converters as a customer sales assistant. He is paid $\$ 25$ for each hour he works. John's form of income is called a \qquad .
How much does John earn for a standard 38 -hour full-time week? (multiplication)
b. Jon's partner Amal works at Rare Flares as a finance manager. She is paid according to an annual amount of $\$ 52,000$. Amal's form of income is called a \qquad .
How much does Amal earn (approximately) for a standard full-time working week? (division)
c. Jon and Amal's housemate Sonya is a sales rep.
is paid a $\$ 20,000$ annual amount plus 20% of the total sales value she mak form of income is called \qquad If Sonya averages $\$ 200 \mathrm{~K}$ of sales in a year, \quad. 1 ld she be paid for these sales; and also in total? (addition and perce: ${ }^{\circ}$

e. Bessie is 77, doesn't work but is otherwise in good health. She receives a fortnightly welfare payment from the government of $\$ 936$. This payment is likely to be the
\qquad .
Do you know anyone who receives payments from the government?
2. Do you receive or earn any forms of income? Which types and how much? For your situation, this can also include amounts such as allowances, etc..

5.07 Income

Multiplying money...shown by an ' x ' or '*' sign)
Multiplication with money again involves repeated addition of the same number to find the answer (the product).
In other words you are adding the same number together for however many times is specified.
But this time there will be a dollar and cent component as well e.g.

$$
\begin{gathered}
4 \times \$ 4=\$ 16 \text { or } \\
(\$ 4+\$ 4+\$ 4+\$ 4=\$ 16) \\
5 \times \$ 7=\$ 35 \text { or } \\
(\$ 7+\$ 7+\$ 7+\$ 7+\$ 7=35) \\
12 * \$ 11=\$ 132 \text { or } \\
(\$ 11+\$ 11+\$ 11+\$ 11 \ldots . \text { and so on }) .
\end{gathered}
$$

Multiplication of more than two numbers involves finding the answer (or the product) of the first 2 numbers.
Then you multiply that answer by the next nir and so on.
You always move from left to right. e.g.

5E Multiplying \& money

1. Complete the following sultip. Natin culations for money. Make sure that you show appropriate workings out.

a.	$9 \times \$ 6=$	b.	$\$ 4 \times 7=$	c.	$\$ 12 \times 8=$	d.	$\$ 14 \times 3=$
e.	$\$ 12 \times 5=$	f.	$\$ 8 * 11=$	g.	$\$ 10 \times 15=$	h.	$\$ 25 \times 5=$
i. $\$ 20 * \$ 12=$	j. 0.50 cents $\times 20=$	k.	30 by $\$ 15=$	I.	$38 \times \$ 15=$		

2. Money amounts are often communicated in spoken word form. Calculate the following totals.

a.Customer orders 4 coffees at $\$ 4.95$ each.	b.Customer orders 9 burgers at $\$ 9.99$ each.	c.Customer needs 8 lengths of pipe each at $\$ 12.50$. d. You work 27 hours at $\$ 15$ per hour.	e. You work 20 hours at \$15 and 10 hours at $\$ 20$.

5.09 Expenses

Expenses

Well you all know it - living your life costs money. And the lifestyle you might want to live can be really expensive. And at times, living even just a basic life can be full of day-to-day, week-to-week, month-to-month and even year-toyear expenses just to meet your needs.
For personal situations, expenses might include mortgage repayments or rent, groceries, utilities, motor vehicle costs, bills, personal items, health and medical bills, education costs, entertainment and other outlays.
Expenses can refer to the costs incurred in business such as wages, materials, utilities, stock, inputs, equipment, rent and many other expenses.
Sometimes expenses might simply be called costs or outgoings.

Expenses and you

Your most common and costly expenses at this stage of your life will be quite different from when you were 10-11 back in primary school. In 2-3 years' time - as a young adult - you will alsr dyour pattern of expenditure will be different from now.
And of course, when you are living independe ${ }_{S}$ responsibility for a whole new range of au \bullet
And should we mention the expenses $\left.S_{s}\right)$, sometime in the future? Well, that a whre ew ron aye.
KThe diagram below shows soreform el andegories for young people, your age, attendings tu Lrios to these match your life?
Add 2 more expenses that e mo. reeve $>$ you.

Main Expenses Now...

1. Without calculations, rank these 10 major expense items (and add 2 more) in order from 1, highest, to 12 , lowest, for you at this stage of your life.clothing \& footwear digital subscriptions electronic items gifts \& presents
hobbies \& interests phone \& data public transport fares snacks \& treats
2. Estimate and then calculate how much your expenses are per week/or per 4 weeks in these categories.
3. Calculate a total. Calculate their amounts as a percentage of your total.

4. Think ahead to 2-3 years' time.

Estimate how much your expenses might be per week/or per 4 weeks, across your top 10 major categories. Calculate an estimated total.
5. Calculate the amounts as a percentage of this total.
6. Comment on why these two sets of figures are similar or different.
7. What might you have to change in your life to cover these expenses?
8. Who actually pays for your expenses now? Is it you who covers the costs? Or is it your parents, your siblings, or someone else? Why is that?
9. How might this change in the future? Will you take the responsibility for some, most, or all of your expenses then? Or will you need to get help?

Extension

This activity would really suit using pie charts. Have you used pie charts before?

5.11 Expenses

5G Expenses in action

1. Estimate how much money you will need to do the following activities. Add 2 more.
2. Find out the actual amounts.
3. What other information, such as amount, quality, etc. might you have to consider when making decisions about these activities?

How much money will I need to...	What is the actual cost of these activities?	What other information do I need, and what decisions might I have to make?
Buy lunch at Lord of the Fries? a.		
Go to the cinema? b.		
Go to the football? c.		
Take out my partner for a birthday dinner?		
Fill up the family carsin e. tank of petrol?		
Go on a 1-week holiday to the f. Gold Coast?		
Buy a new outfit for the school formal? g.		
Have Netflix for the whole h. year?		
i.		
j.		

4. Use your numeracy skills to solve these money problems. Add 2 more.
5. What decisions might I have to make?

	Money problems	Calculations	What decisions might you or they have to make?
	You have $\$ 10$. Can you make a dinner for 4?		
	You have \$20. Can you do a day out in the city?		
	You have $\$ 50$. Can you cater a birthday party for 10 people?		
	You have $\$ 100$. Can you buy your lunch at school for 4 weeks?		
	You have \$1,000. Can you buy a new iPhone?		
	Jed has \$50 Can Jed do his food shopping for a week		
	Zed has $\$ 20$ on her Myki. Will it get her to school and back for 2 weeks?		
	Ned worked 10 hours at \$15. Can they buy new runners?		
	Red has saved \$2,000. Can she buy a decent car?		
j.			
k.			

5.13 Budgeting

Personal budgets

Being able to create and manage a personal budget is an essential skill for your life.
A budget will help you balance your 'money in' (e.g. allowance, wages and so on) versus your 'money out' (e.g. spending and other costs).
Many people find that their money out (their expenditure) far outweighs their money in (their income).
As a result, they have to go into debt - which can be a severe long-term problem! It is essential that you manage your expenditure and minimise the use of credit; especially seemingly easy sources of credit such as credit cards, 'payday' or instant loans, buy-now pay-later and AfterPay borrowing, and interest-free purchase contracts.
You also need to explore income sources such as wages and salaries, interest income and government benefits and assistance.
Balancing your money out with your money in hed to manage your day-to-day financial obligations. Doing this can help you pla and save for longer-term spending requirements, such as a new phone, a holida $>$ or even to save for your future.

Budgeting

A budget is a financial management pla. in all of your estimated

\Rightarrow estimate if you expect to Na, n, in ing which is called a surplus (i.e. you earn more tha ras ous scinco ne > expenses = surplus)
\Rightarrow estimate if you expect to have mure dory going out, which is called a deficit (i.e. you spend more than you earn; sexpenses > income = deficit)
\Rightarrow plan your spending more responsibly
\Rightarrow take control of your finances.
When budgeting, it is important to be as accurate as possible, and to list all of the expenditure items that you are likely to encounter.
You should also budget for 'other' expenses; some of these unknowns are likely to crop up unexpectedly.
Budgeting enables you to check to see how well you are doing at managing your money, and if you are being realistic in your spending.

1. What is a budget, and why is a budget important?
\qquad
\qquad
\qquad
\qquad
\qquad
2. What are some of the most common sources of income (or money in) for a young person in your situation in life?

\qquad
3. What is the difference between a surplus and a deficit?
\qquad
\qquad
4. Calculate the following budget monthly outcomes (surplus, deficit or balanced).
a. Income: $\$ 450$, Expenses: $\$ 375$. Result is a \qquad of = \$
b. Income: $\$ 1,250$, Expenses: $\$ 1,500$. Result is a \qquad of $=\$$
c. Income: $2 \times \$ 350$, Expenses: $\$ 950$. Result is a \qquad of $=\$$
d. Income: $\$ 800 \times 3$, Expenses: $\$ 600 \times 4$. Result is a \qquad of $=\$$
e. Income: $\$ 950$, Expenses: $\$ 850+\$ 95$. Result is a \qquad of $=\$$
f. Income: $\$ 0$, Expenses: $\$ 50$. Result is a \qquad of $=\$$

5.15 Budgeting

5I Feed the kitty

Consider this budget for Alain who lives in a sharehouse. Alain works as a regular casual, but Alain can't predict their exact work hours for each week.

The expenses in the budget represent the amount that Alain has to contribute to the household kitty for the month.
Therefore this budget doesn't include Alain's own personal expenses as part of their normal day-to-day lives.

1. Calculate whether Alain is likely to have a surplus or deficit for the month.
2. What would be some other household expenses Alain might have to meet?
3. Calculate whether Alain had an actual surplus or deficit for the month.
4. Why might this variation have occurred?
5. What is Alain going to have to do about their household budgeting and their own financial management?

Cash Budget/Finan $>$ PMner					
Name: Alain (Sharehouse contribution)Situation: Household budget					
Income	$\underset{\$}{\text { Foreco }}$		8	$\begin{gathered} \text { Forecast } \\ \$ \end{gathered}$	Actual \$
Alain's income week 1	2			500	500
Alain's income week 2				75	100
Alain's income week 3	350	Gas		25	50
Alain's income week 4	400	Food	rages	200	300
		Inter		25	25
		Hou	products	25	10
		Insu		20	0
		Ente		50	75
Other:		Other		20	20
Total Revenue		Total Expendifure			
Forecasted Surplus		Forecasted Deficit			
Actual Surplus (savings)		or Actual Deficit (debt)			

1. Use this planner to forecast a 4-week budget for yourself based on your current lifestyle situation.
2. Keep track of your income and expenses. Then at the end of the 4 weeks you can compare your budget estimates to your actual income and actual expenses to see how accurate you were.

Research Go online and find some budgeting tools and apps. Try these to see how useful they are for young people at your stage of life. Report to the class. Visit ASIC's Money Smart website - a trusted tool: www. moneysmart.gov.au (Be careful with other free tools that are actually trying to sell you a product such as a budgeting service - which is not likely to be free at all!)

5.17 Pay Slips

Pay slip
A pay slip is a hard copy or digital document that must be issued by law for each pay period. Pay slips should include the following.

Basic information:
\Rightarrow employer's name and ABN
\Rightarrow employee's name.

Pay information:

\Rightarrow the pay period and date of payment
\Rightarrow amounts for gross and net pay.

"Which day do all workers like most pay day of course!"

Pay rate information:
\Rightarrow If the employee is paid an hourly rate (i.e. a wage):
\Rightarrow the ordinary hourly rate
\Rightarrow the number of hours worked at that rate dur the pay period
\Rightarrow the total dollar amount of pay at that rate $<$ the pay period.
\Rightarrow Or if the employee is paid a salary - the ar \square gss salary amount.
\Rightarrow A pay slip usually will also include:
\Rightarrow loadings, allowances, bonuses, 0 res enc sates, other entitlements, leave balance etc. ~ 4 ourgin mation.

Deduction information:

\Rightarrow amount and descriptions istan and income tax and employee superannuatic cont, qutigns $>$ sell as total deductions made
\Rightarrow any superannuation contributions map by the employer for the employee
\Rightarrow details of the superannuation fund to which contributions have been made.

Summary information:

\Rightarrow The total gross and net payments made for the pay period.

P\&Q Enterprises	ABN: 45		Date:	June 16, 2023
Employee: Glonsork Elver			Period:	June 9-13, 2023
Entitlements			Deductions	
Ordinary hourly rate:	Total	Total		
\$20	38	\$950		
Overtime hourly rate:				
\$30	4	\$120		
Gross entitlement		\$1,070	Tax deducted:	\$214
Net entitlement		\$856		
Paid into bank account: 016534360 BSB 023145				
Year to date		\$3,210	Year to date	\$642
Employer superannuation contribution				
RESFund		\$107	Year to date	\$321

1. Use the pay slip on p. 124 to complete the information in this table.
2. Do the same for a pay slip of your own, or one supplied by your teacher, or for a pay slip from a worker you know.

Employer details	
Employee \& bank account details	
Pay date/ pay period	
Ordinary hourly rate	
Ordinary hours worked	

5.19 Personal Banking

Deposit accounts

Banks, financial institutions and credit unions are a key part of the economy and play a major role throughout our lives.
People use various banking products to make transactions and to save for the future through deposit accounts.
People also borrow money from banks through credit cards and various loan products.
Nearly all workers will have their wages or salaries paid (or deposited) into a bank account.
We use transaction accounts to pay for goods and services using cards, EFTPOS, PayWave, online banking and an increasing range of digital wallets and apps.
People also withdraw cash from their bank accounts.
However, the use of cash is declining in this digital age.
What do you use?
As people start to earn money throughout their 1 s they are likely to open a savings account to put away money for a ho car or even a house!

Transaction accounts

Transaction accounts are the main type \in enajchan ig accounts.
 and any government payments Transaction accounts are inn ing your day-to-day life. These accounts often have 10 w , or fos, or young people under 18 (with some limits).
People use transaction types of accounts to:
() withdraw cash for day-to-day living
(:) link up their digital wallets
() make EFTPOS, PayPass and PayWave purchases
() make online and mobile payments; and
(:) to set up ongoing regular direct debits, such as for electricity bills.

Beware:

(:) You will need to watch out for high transaction fees if you make too many transactions.
(:) You will need to be careful of overspending, especially using e-payment methods, as your bank balance can run down very quickly; and you can be hit with large fees for being overdrawn.
(:) Don't expect much, if any, interest on these accounts.
(:) The fees for just a few ATM withdrawals (from unsupported machines) can be higher than any interest you might ever earn on this account!

Savings accounts

As people start to earn more than they spend, they usually choose to open a savings account with a bank or financial institution. This is a safe way of storing accumulated money - much better than under the mattress.
A savings account usually pays a higher interest rate. This can help you to save for a long-term goal such as a bike, a phone or even a car!
The savings account might require a minimum deposit amount to get started, as well as a minimum amount that needs to be deposited regularly (e.g. monthly).

People use savings accounts to separate their money. They hold some money in transaction accounts to pay for their day-to-day lives, and put their left over money in their savings accounts.
A term deposit is a special kind of savings account where you 'lock your money' away for a period of time (e.g. six months) in return for higher interest. This imposes financial discipline, as you can't waste your money on things you don't need!

1. What is the difference between a trar ci nunt and a savings account?

\qquad
\qquad
2. How often do you use your bank account, and for what purposes?
\qquad
\qquad
\qquad
3. What interest rates, and fees and charges, apply to your account?
\qquad
\qquad
\qquad
\square

5.21 Keeping It Safe

Cash security

It is your responsibility to look after the security of your money. This means keeping your cash money safe.
There are a lot of shifty characters out there who are more than happy to steal from you if they see an opportunity to do so. Indeed some of these people actually make a 'living' from being a crook. So don't be one of their victims.

Lots of people get ripped-off when they are on the phone because their attention is elsewhere. Don't let this be you!

Image: VitalikRadko/ Depositphotos.com

Cash smart

Cash is convenient and portable. But it is one of the easiest ways to be ripped off. So be cash smart!
Your teacher will read through this (unfortunately, ong list with the class.

So listen out for situations that relate to you.
 Money

:) Only carry the cash yo' ne ?
Don't store too much. Ash as
That is what the bank is for!
$:$ Use a good quality wallet, purse,
:) Only carry the cash yo' ne ?
Don't store too much. Ash as
That is what the bank is for!
$:$ Use a good quality wallet, purse, © Use a good quality wallet, purse, handbag, money carrier, etc..
-) Carry your wallet, purse, handbag, etc. in a safe manner - not sticking
out of your back pocket or slung back etc. in a safe manner - not sticking
out of your back pocket or slung back over your shoulder.
) Separate big notes from little notes so
Separate big notes from little notes s
that when you open up your money stash only a small amount can be seen.:- Don't tell people about all your cash - and certainly don't show them. When travelling, or in large pushy crowds, at shopping centres, at ATMs, or on public transport, AND ON YOUR or on public transport, AND ON YOUR
MOBILE, be aware of pickpockets and wallet/bag lifters (who often operate in teams). handbag. money carrier,

1. Your teacher will discuss all of the cash security methods with the class. Add others that are also important.
2. Develop a list of the top 3-5 tips for keeping cash safe.

Add images and other visuals, and set this up
You might do this in pairs, or as a group.

3. In pairs or groups, develop and act out a series of role-play scenarios about safe cash security.
a. Develop a range of scenarios in common situations featuring some or all of the following:
\square people your age
\square people generally, such as your family
\square older people
people travelling, or in unfamiliar places or situations.
b. Take turns playing roles such as the person with the cash, the crook or scammer, and other relevant people.
c. You might also video your best scenario and show this to the class.
d. Report back to the class about your best tips and guidelines for keeping cash safe.

5.23 Keeping It Safe

Digital security

One of the problems with contemporary methods of banking and paying electronically is that there are so many ways to get ripped-off! Scammers and crooks have devised many strategies to steal money from unsuspecting, naive, greedy or even trusting people.
Once again here is an unfortunately long list. Yet these are only some of the many digital rip-off methods for you to be on the lookout for.

Money Security - Digital

© Don't tell people your PIN, except relevant adults (i.e. family). No-one in the workplace, shops or in other situations can ever demand your PIN.
-) Don't store your PIN and/or password with your card.
(:) With PayWave and other tap methods, your card or phone provides easy access to your ban account for crooks. They can quickly make a lot on mall transactions using your mos. keep your card, phone rr tux ie!): Use a transaction ac int, s. P as a digital wallet, for digitar and on nf banking which only has a small portion of your funds as a safeguard.
© Keep your cards safe when out and about (refer to methods for carrying cash).
() Don't lend your cards to other people.
If you are helping them out by giving them some money, then you make the transaction, not them.
(:) When your card is out of your hands, watch it carefully.
©) If your card is lost or stolen then report this to the bank immediately. This will help cover you for any purchases that a crook might ring up using your account.
() Your phone might include many onetouch apps to make transactions.

So what happens if your phone gets lifted? Crooks can start spending all your money. So know where your phone is at all times.
stec ur phone and bank th difficult passwords. u are using a public computer or ce (or someone else's) to make a ansaction, then make sure you log out of the online portal when you are finished. Otherwise the next person could access your accounts.
(:) Don't post your PIN, your account details, or your signature on social media. This includes photos that might have these in the background.
;- Be very, very careful of different online payment methods. These must be safe, secure and verified (usually with a https).
:) Don't ever disclose account details, card numbers, passwords or PINs to people calling or emailing you and asking for these details.
These scammers will often pretend they're from a bank, the Australian Taxation Office, Centrelink or some other authority.
The real organisations will NEVER, EVER do this.

1. Your teacher will discuss all of the digital financial security methods with the class. Add others that are also important.
\square
2. Develop a list of the top 3-5 tips for achieving digital financial security.

Add images and other visuals, and set this un a poster or multimedia work. You might do this in pairs or as a group.

3. In pairs or groups, develop and act out a series of role-play scenarios about digital financial security.
a. Develop a range of scenarios in common situations featuring some or all of the following:
\square people your age
\square people generally, such as your family
\square older people
people travelling, or in unfamiliar places or situations.
b. Take turns playing roles such as the person using digital financial methods, the crook or scammer, and other relevant people.
c. You might also video your best scenario and show this to the class.
d. Report back to the class about your best tips and guidelines for achieving digital financial security.

5.25 Assessment Task

AT5 Applied Financial Numeracy Financial Numeracy: Number \& Change

Overview

For this task, you are required to complete $\mathbf{3}$ applied Financial Numeracy activities.
Your teacher might change the nature and applied focus of some of these activities, and might add others that are more relevant for your own applied personal and vocational situations.

Part A: My budget

Prepare a basic weekly and/or monthly budget for your own personal situation.
Information, key dates, resources and tools to use.

Part B: Pay slip
Identify and summarise the key information תra ay slip.

Part C: Investigating prices
Investigate prices of common household lems. Undertake:
\square a price comparison of items from different retailers
\square a unit price comparison of items with different sizes
\square a comparison of price changes over time in items.
Information, key dates, resources and tools to use.

At all stages of this task you will need to apply the 4-Stage Problem-Solving Cycle:
1 Identify the maths 2. Act on and use the maths 3. Evaluate and reflect 4. Communicate and report.

You also have to develop and apply tools and techniques from your Maths Toolkit.
Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.
Identify the maths
Act on \& use maths

${ }_{3}^{4}{ }_{3}^{\text {PS }} 2$ Describe applied use of the problem-solving cycle.

Task completion and reporting

Use and apply appropriate digital tools and apps.
Use and apply appropriate analogue tools.
\Rightarrow Use appropriate numerical language.
Identify the maths
Act on \& use maths
Evaluate \& reflect
Communicate \& report
Develop \& apply mathematical tools and techniques.
Prepare and discuss my findings with my teacher.
Present a report to the class (if required).

5.27 // Problem-Solving Cycle // Maths Toolkit

Shapes and Objects

6.01 Shapes and Objects 136
6.07 Properties of Shapes 142
6.09 Size and Colour 144
6.15 Changing Size 150
6.19 Assessment Tasks 154
6.23 Problem-Solving \& Toolkit 158

Comments:

6.01 Shapes and Objects

Shapes

For this module in Unit 2, you will focus on developing numeracy skills related to shape and measurement. Then, under guidance from your teacher you will apply these skills to various health and recreation situations and contexts.
This means that you will be required to think of how the skills you are developing apply to these contexts. So that requires always having the first 2 stages of the problem-solving process in mind. That is: 1. To identify the maths and 2. Use and then apply the maths.
When you are exploring shapes and objects for applied situations you are investigating design, function, aesthetics, and even the psychology that drives how we respond to, create and work with shapes and objects.
The clothes you are wearing now, your phone, buildings, structures, cars, food items, tools and technology all are designed and created to shape your life.
Then there's the natural world - all sorts of shapes exist in nature. And these natural shapes are usually non-uniform. Which is z hood thing!
And we even use shape-related phrases for hec and recreation such as, "get into shape", "I'm outta' shape", "shape uA \gg out", "I was all bent out of shape".
So how important is shape to you? Ar Rivisting about eating BBQ Shapes here - the original resipe C

Health and Recreational Numeracy

Shapes and Objects 6.02

Shape up

1. Have a think about each of these numerical situations. Describe how the numerical skill would be important for you in your life.
e.g. "Understanding shapes is important for me when relaxing because it is important that I get some time out from stress. I find that watching curvy and wavy lines moving on a big screen helps me calm down and breathe deeply. That's probably why I like sitting at the beach so much."

a. Understanding shapes	b. Understanding shapes
In cooking...	
In art or design...	

Applied

Choose a sport, a hobby or some activity you do for recreation. Describe some of the key shapes that are important in the activity. Source an image.
(Hint: Think of making, how things are designed, and movement patterns.)

6.03 Shapes and Objects

Shapes

Shapes are an important part of our lives and form the basis of design.
Some shapes are uniform and easy to recognise.
These include squares, rectangles, circles, triangles and other common shapes.
We might encounter these shapes as road signs, as buttons on apps, as sporting fields and as the basic building blocks of 3D objects.
People who have well-developed visualspatial awareness are good at recognising and manipulating different shapes. These people often go on to work in design, technical, practical, manual and other similar types of work.
<So, what types of jobs do you think they might do?

Can you name each of these shapes?

6B Basic shapes

1. Name these basic shapes.
2. List 2 objects that you come into (Try to list a small object and arse t). image of one of these.

Shapes and Objects 6.04

1. Draw the following objects and then describe their basic shape. Add 2 more of your own, including images.
2. Estimate the size of these objects, and then research to check your estimates.

6.05 Shapes and Objects

Objects

When we see and describe shapes such as squares, rectangles and circles we are usually operating in just 2 dimensions. In other words, we are seeing these shapes as flat.
This is fine when drawing on paper or viewing on a screen because those are 2D media. This means that we are seeing the outline of the shapes.

However, we are not taking into
account that the shapes we see 'in the real world' have depth, because they are 'objects'.
When we refer to objects, we are referring to the reality of the 3D world in which we live. In the 3D world, (our world), all objects have byt, width and depth - the 3 dimensions.
So in design terms, an object is the term we rescribe anything that has 3dimensional depth. This includes all living oad naturally occurring things in the world and space, and all man-mad, Fu a large bus, a packing box or even a tiny micro-electronic circuit. Now jus - Nout everything that is real in the physical world.

6D Basic objects

1. Choose 4 shapes and draw them as: objects.
2. List things that you come into contact in with that resemble each object.

1. Describe the 2D shape of each of these objects, as well as their 3D form. Add 2 more.
2. From memory, draw both the 2D shape and 3D object.
3. Find an image of the object, affix it here (or in your workbooks) and describe the object's shape and size.

4. Describe the shape of 5 objects from your classroom; and 5 from your home.
\square

6.07 Properties of Shapes

Lines

Lines are 1D shapes. Lines might be straight, curved or even wavy!
The most common types of lines we encounter are:
\Rightarrow horizontal lines
\Rightarrow vertical lines
\Rightarrow diagonal lines
\Rightarrow parallel lines
\Rightarrow perpendicular lines.

One way to imagine lines is to think of dry spaghetti. If you accidentally drop the spaghetti on the floor you'll get lines going out in all directions.

Or perhaps consider your hair. There are likely to be lots of lines there. But if it is very curly then you'll have to pull your hair to extend it into a line.
So line-up everybody!

Shapes
Shapes (also known as polygons) are 2 D 〇arsa ack depth. The most common shapes are:
\Rightarrow circle - curved.
\Rightarrow Triangle - 3 sides (or edges, arn < sigleo (o, Pertices).
\Rightarrow Square -4 sides of equa er thi, 0 s. earigles of 90%.
\Rightarrow Rectangle -4 sides, an 4 eq ${ }^{\circ}$ ariale $>50 \%$.
\Rightarrow Pentagon -5 sides, and 5 angles (2ices).
\Rightarrow Octagon - 8 sides, and 8 angles.
Shapes can be either regular shapes or irregular shapes.
Regular shapes have all sides the same length; and also all inside angles will be the same as one another.

For example, a square has equal sides and 4 equal angles!
Many regular shapes look even and symmetrical. That's why we use regular shapes in building, product design, packaging and other man-made endeavours.
Irregular shapes may have sides of different lengths; and not all of their inside angles will be the same.
For example, a rectangle has all the angles the same, but different lengths, so it is irregular. A right-angled triangle doesn't have all sides the same length, and nor are all of its angles the same length.
Many irregular shapes look imperfect to the eye and asymmetrical. That's the way nature intended them to be. Nothing is perfect in nature, except nature itself. Some designers, artists, architects and even hairdressers and barbers use irregular shapes to break convention and make something look more striking!

1. Name each of these lines. When do you see them in the real world?
2. Are all the lines the same length? Measure them. Is that what you expected?

3. Complete the table to describe these shape \sim ideir properties. Add 1 more.

6.09 Size and Colour

Size
Objects come in all shapes, sizes and colours. Some of these features are naturally occurring as part of nature. Living creatures, which really shouldn't be called objects, are diverse. Consider the size of your pet cat, dog or bird and compare this with a lion, a timber wolf or an eagle.

Have a think about the plants, trees, rivers, oceans, mountains and all the other naturally occurring features that exist. They are of varied sizes and contain every colour on the earth (of course)!
Man-made objects also vary in size and colour. Consider an ocean liner, the Sydney Harbour Bridge, a flashy red Ferrari, your home, your clothing, your phone and even the fries you may gobble down without even trinking about them.
The size of man-made objects relates to their fuy jic. ality and to their utility. Functionality simply refers to the purpose fc whese objects were designed. This purpose can differ between industria' O Ol 1 and personal use. Utility refers to how well the object ser in in object of a suitable size for the people using it, anc $0 \in \sim$ whar \%romises? Megastructures such as skyscrzen is sime sheng arenas and shopping centres are designed to service pur oth and pheir function and their utility. Smaller structures such a<sern nows have a size that reflects their own different function and unity; i.e.peple ave to live in them.
Vehicles such as trains, trucks, cars, mot bikes and scooters also reflect function and utility - especially utes (an Aussie invention)!
Of course, we shouldn't forget about the influence of fashion on the design of objects. You could come up with hundreds of examples of how fashion has dictated how an object looks. How about discussing this as a class?

For example: Family Cars

Family sedans used to be larger with more room for passenger seating. This was because people had larger families.
Some sedans could even safely seat six people. The function these types of cars served was for family transport. You didn't buy a motor scooter as your family vehicle if you had four kids to cart around!
Families made use of (or utilised) the extra space given to them from a large family car, including boot space.
Features such as seating and roominess offered specific utility for large families. But times have changed.
Now people buy family SUVs instead of family sedans. What does that stand for?

1. Use appropriate language to compare the size of each of these pets. Identify each animal. Are they pictured to scale? Name them if you like.

2. Describe how a man-mare objet '
why this might be the case. why this might be the case.

Find an image from the past, and a current image, to illustrate your description.

3. In your workbooks draw the following car 'shapes'. Try to get close to scale with your sizing as well. Sedan, coupe, sportscar, ute, hatchback, convertible, SUV.

6.11 Size and Colour

Colour

Another important design element is colour. Colour can be used for a variety of purposes.
\Rightarrow A design or fashion feature, e.g. pink iPhones or tortoise shell spectacles.
\Rightarrow A warning, e.g. using red in danger signs, stop signs or traffic lights.
\Rightarrow An instruction, e.g. green emergency exit signs or go lights.
\Rightarrow Camouflage, e.g. military uniforms and vehicles.
\Rightarrow A signifier of level, rank or purpose, e.g. a Karate brown belt, a store uniform or a soccer goalkeeper's jersey.
\Rightarrow An identifier, e.g. a football jumper.
\Rightarrow A symbol, e.g. green for the environment red for fire, blue for water.
What other examples can you think of?

6H Colour

Find 4 images that show hau arnition design feature or function of an object. Briefly descrik an an in artant design feature for this object, (e.g. safety).

Have a close look at the image above then answer the following questions.

1. What is the image depicting in general?

2. What is the image showing more specific

3. Use descriptive words ad te, stu de © the changes to the 'object' depicted in the image.
\qquad
\qquad
\qquad
\qquad
4. Why do you think these changes might have happened over time? Suggest possible time periods to match the picture.
\qquad
\qquad
\qquad
\qquad
5. As a class discuss other 'objects' (or products) that have changed over time.

6.13 Size and Colour

6 J Odd colours

1. Form into pairs. Are any of these signs using the 'wrong' colour? Why is that? Can a colour actually be 'wrong'?
2. Sometimes the use of colour is universal. But different cultures may treat colours differently. This is especially evident in art, fabrics, decorations, buildings, paints, food and celebrations. Find some examples to share with the class, including colours that are important for different Aboriginal and Torres Strait Islander peoples. Some of you may already know this from your own cultural experiences.

3. "Gee Sondra is looking a bit pale today?". In what circumstances is colour important for health? Describe some examples. Add 1 more.

A. Changes in skin colour.	B. Changes in face colour.
C. Changes in eyes.	D. Colour of food.
Applied	
Many sporting and rec how we can distinguis	ane prominent use of achletes and teams.
Describe examples wh Sometimes it is their nicknames and monic	to identify a team or an can also be in the words eate some visual samples.

6.15 Changing Size

Representing size

When drawing and designing you might often have to represent shapes and objects as different sizes from what they actually are. You will usually have to show large-sized shapes and objects as smaller design elements or images.
At other times you might have to do this representation the other way around, and make smaller shapes and objects bigger.
Two important numerical techniques that you can use involve scale and ratio.

Scale and ratio

A scale is used to represent the relative distance or size of a map, diagram, shape or object compared to itself in real life.
Scales use quantity ratios, e.g. 1:4, 1:20, 1:10,000 or even 2:1!
A map scale of 1:10 (in cm) means that every 1 cm on the map represents 10 cm in real life. Or, the map is $1 / 10$ th the size of real life.
An action figure might be in 1:6 scale. This means that every 1 cm of the action figure represents 6 cm in real life. So the action figure is $1 / 6$ th the size of the character it is representing.
A small object such as a fly might be drawn at 4:1. This means that the drawing is increasing the real-life si fly the fly by factor of 4 .
e.g. Tul draws a 3 cm square at a ratio of 1:1.
Measure this square to see how well he has done.

Now Tul draws the 3

cm square at a ratio of
2:1. He has doubled the size of the square.
Measure this square to see how well he has done.

Finally Tul draws the original 3 cm square at a ratio of $1: 2$. Now he has halved the size of the square.
How well did he do with this drawing?

Consider:
One thing you will notice about these scaled drawings is that the square that has doubled in size (2:1) actually looks a lot bigger than simply being doubled. Do you agree?
And the square that is half the original size (1:2) looks much smaller than being halved. And it looks much, much smaller than the 2:1 square.
(The 2:1 square is actually 4 times the size of the smaller 1:2 square but it looks much larger than that!) The reason for this 'difference' relates to measurements of area.

1. First, estimate the dimensions (size) of these shapes.
2. Now, measure these shapes. How did you go with your estimates?
3. In your workbooks, or by using multimedia, convert these shapes by:
\Rightarrow doubling their size
\Rightarrow halving their size.
4. Check your answers by measuring the new dimensions of your enlarged and reduced shapes. How did you go?

| Estimates | Measurements |
| :---: | :---: | :---: | :---: |

6.17 Changing Size

Art and design

Representing size and scale is important in art and design and helps an image or a model to look 'right'.
As humans, we make size comparisons based on our experience of natural and built environments. And we look to relative size to help us perceive the world, including order, connection, safety, and even danger.
Size can be used to represent relative scale, such as a drawing of a person against a dinosaur, or a floorplan for a house.
Size can be used to create models such as an action figure in 1:6 scale, or an architectural model that scales-down buildings, inserts tiny people and vehicles, and uses other featroes and green spaces.
Size can also be changed to challe in rity ρ^{λ}. rception, such as a toddler drawn large then suggests that the child is more 'importantt wh Size can also be used to repesen yord a demotion, such as a sad teenager represented as very smali, sitting in the corner of a room.

This image uses size and shape to influence emotions. How so?
Size also drives aesthetics such as the repeated use of geometric or abstract shapes and patterns in design, textiles or art.
Of course, size can indicate strength and power such as the relatively larger size of a 'level boss' in a video game, or even King Kong! And size can also be used to influence emotional connection such as exaggerated facial features of cute drawings and toys, such as children's stuffed toys, Funko Pops and even sporting mascots.

The animal world is full of wondrous beasts of all different shapes and sizes. This is also reflected in the pet world from Great Danes down to Chihuahuas, Maine Coons to moggies and Carpet pythons down to goldfish.

1. Form into pairs. Without research, name these big cats.
2. Number them in order of
 their relative 'size' i.e. height.
3. Will their relative weight be in the same order?

Q

4. Go online and research the species' name and size.
5. Re-number them in ord 0 relative 'size' i.e. heig'
6. Is their relative weight in the same order?

Applied

Find examples of how size is used in art and design to:
\Rightarrow illustrate relative scale
\Rightarrow challenge perception
\Rightarrow create mood and emotion
\Rightarrow indicate strength and power.
Report back to the class with your examples

6.19 Assessment Task

AT1a Art, Drawing and Design Health \& Recreational Numeracy

Overview

For this assessment task, you are required to investigate and report on how shape, size and colour of visual elements are used to create drawings, art or design works or products.
You will also investigate the use of visual elements in Indigenous art and design, and show how this is similar to, and different from, common visual elements used in a different culture.

Tasks

1. Elements of art, drawing and design

\square Present annotated examples of art and/or drawing and/or design works.
\square Explain how visual elements are used to effect.
\square You are strongly encouraged to create ygin visual work to use as one of the examples.
2. Indigenous Fa sis nd design
\square Present annotated examples ol idin. chan, and/or design works.
\square Explain how these visuzielCompare the use of is 'l andigenous art with the visual elements commo * use (D) anst| \gg ature.
You are strongly encouragentc a local First Nations artist or elder talk to the class, or to visit a Firstr. Nations cultural institute.

Task completion

To successfully complete this activity you must apply each of the 4 stages of the problem-solving cycle where appropriate.
You must prepare a visual report that:
\square Presents annotated examples of art and/or drawing and/or design works
\square Explains how these visual elements are used to effect
\square Presents annotated examples of Indigenous art or design works
\square Explains how visual elements are used in Indigenous art or design works
\square Compares visual elements in Indigenous art with another culture
\square Describes how you applied each of the 4 stages of the problem-solving cycle. indicate your level of performance for each part of the task.

6.21 Assessment Task

AT1b Shape it Up Health \& Recreational Numeracy

Overview

For this assessment task you are required to investigate the use, importance and application of shape in a sport, a hobby, a craft/art, or a similar recreational activity that you enjoy.
You will present your investigation in the form of an annotated report using text, numbers, images, illustrations, diagrams, and other visual elements such as video.

Tasks

In your investigation you should identify, describe and discuss the following for your chosen recreational focus. You can get some ideas by having a look at the examples.

1. Names and types of lines, shapes and objects.
2. Use of, and importance of, line and lines.
3. Use of, and importance of, shapes and objeno.
4. Use of, and importance of, the size of lips, - apes and objects.
5. Use of, and importance of, the coloy fies, ppes and objects.
6. Use of, and importance of, relati \Leftarrow
7. Other visual elements relater to ycarrana 1 .

Milo is going to report on how
is into fashion and will investigate different visual elements the design of video game this makes them more engaging. how line, shape and colour can be used to assemble outfits for people with different body types and sizes.

Silo will report on how the shape and design of sports cars has changed over time and how these changes have impacted on performance.

Wei loves footy and will investigate how the different size and shapes of grounds can be used to create a home ground advantage.

Kyle is into drawing and will report on how comic artists use different visual elements to create a story and emphasise mood and action.

Zay is going to investigate how visual elements can be used to make and present healthier food options that children enjoy eating.

Problem-solving cycle

To successfully complete this activity you must apply each of the 4 stages of the problem-solving cycle where appropriate.

Reporting

Your teacher might also instruct you to present your annotated report to the class.
Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

Name (s):
Key dates:

Health \& Recreational
Numeracy
Module 3 Shape
Do? Due by Done Level

\square

Focus:

1. Types of lines, shapes and objects.

Visual evidence and examples.
2. Use of line and lines.

Visual evidence and examples.
3. Use of shapes and objects.

Visual evidence and examples.
4. Size of lines, shapes and objects.

Visual evidence and examples.
5. Colour of lines, shapes and objects.

Visual evidence and examples.
6. Relative size and scale.

Visual evidence and ex
7. Other relevant visual elements

Visual evidence and examples.

Step 3: Task completion and reporting

Prepare a draft of your annotated report for feedback.
\Rightarrow Use appropriate numerical visual language.
${ }^{1} \frac{1}{2} 2$ Describe applied use of the problem-solving cycle.

\square

Prepare draft of your annotad report for feedback.

Identify the maths
Act on \& use maths
Evaluate \& reflect
Communicate \& report
\square

Develop and apply mathematical tools and techniques.
\Rightarrow Prepare and submit your annotated report \& visuals.

Present a report to the class (if required).

6.23 // Problem-Solving Cycle // Maths Toolkit

Quantity \& Measuring

7.01 Health \& Recreation Measuring. 160
7.03 Measuring Up 162
7.05 Length and Distance .. 170
7.15 Estimating vs Measuring........... 174
7.19 Temperature 178
7.21 Assessment Tasks....................... 182
7.25 Problem-Solving \& Toolkit....... 186

Comments:

7.01 Health and Recreational Measuring

Measurements

For this part of the module in Unit 2, you are focusing on developing numeracy skills related to measurement. Then, under guidance from your teacher, you will apply these skills to various health and recreational situations and contexts. This means that you will be required to think about how each of the skills you are developing applies to these contexts.
So that requires always having the first 2 stages of the problem-solving process in mind. That is, to identify the maths and then to use and apply this maths.
You should also reflect on how each of these measures, as well as the measure of time, is important in vocational situations.
\Rightarrow Length and distance
\Rightarrow Perimeter
\Rightarrow Weight
\Rightarrow Fluid volume
\Rightarrow Solid volume
\Rightarrow Temperature

Health and Recreationel Numeracy - Measuring

1. Describe examples in your personal life where you have to use measurements. Some prompts are given. Add 2 more. Use situations related to you.

Cooking	Exercising
Nutrition	Playing sport
Gaming	Art, crafts and design
Relaxing	king or building

2. Describe examples in yorcaralat you might have to use measurements.

So what do you think? Could you create a 'perfect' burger?
How big would it be? What would be in it? And how much of each ingredient?

7.03 Measuring Up

Measuring up

One very important set of numeracy skills involves the ability to make estimates, or to make accurate measurements, related to length (and distance), mass (or weight), capacity (or volume) and area.
We encounter these key measurements in our everyday personal and working lives. You learn how to make these measurements by choosing and using appropriate measuring devices.
You also need to be able to estimate key measurements when you don't have appropriate measuring devices available. And of course, you need to be able to understand appropriate units of measurement such as mm, cm, metres, grams, $\mathrm{kg}, \mathrm{mls}$ and litres.

7B Measuring up

1. Match the type of measurement - either lens $\$$, mass (weight), capacity or temperature with the appropriate descrip 1 dd 1 of your own.
2. Identify the most suitable measuri
3. List the appropriate unit(s) of meas err

How light something is.		Iss (wescription		Device	Unit
How long something is.			scale	grams	
How hot something is.					
How tall something is.					
How heavy something is.					
How far away a location is.					
How much fluid something can hold.					
How cold something needs to be.					
How much load a vehicle can carry.					
Other:					

1. For each of these situations identify what the people are measuring.
2. Identify the measuring devices they are using.
3. Estimate the approximate length, mass, capacity or temperature of the key elements shown in the images.

7.05 Length and Distance

Length

Length is a linear measurement that tells us how long, or high or wide something is; or how far away (or how close) something is from us.
We often make length estimates as part of our everyday lives such as when moving our bodies, when cycling or driving, and when working with and using physical objects. We use devices such as rulers and measuring tapes to measure length. Length is usually expressed in centimetres (cm), or in millimetres (mm) for trades, and in metres (m) or kilometres $(\mathrm{km}$) for travel distances.

For example. How tall are you?
In this case you are measuring your height, which is the total length from the top of your head to the bottom of your feet. We usually measure height in centimetres. And we are likely to use a tape measure or another similar measuring device to measure this length.
So if a 17 year-old person is 180 cm tall they
\Rightarrow above average height
\Rightarrow quite tall compared to people's he: 0 frrm Jars ago
\Rightarrow quite small for an AFL male foo: ai
\Rightarrow quite tall for an AFLW footb Ner.
So as you can see, length can ar eu merr
height and may be descrio d sh $\otimes+3 \mathrm{n}, \mathrm{c}$ maps
even how short, a pers is.

Height is a measurement of length. So what do you estimate the height of these cyber-creatures to be?

Image: Scott Maxwell/ Thinkstock

Length dimensions

Measuring length is important when you need to know the size of an object.
For example, if you are booking online to send a package by courier you will normally be asked to provide the object's length in 3 dimensions. These 3 dimensions are width, depth and height - so width, depth and height are essentially all examples of length.
Length, when expressed as height or width or depth is an important measurement for many situations. Some are listed below, but you could think of others.
\Rightarrow What size bed to buy?
\Rightarrow Whether a couch will fit in a space in the lounge room.
\Rightarrow Whether a truck will fit in a parking space.
\Rightarrow Knowing whether a vehicle will fit under a low bridge.
\Rightarrow How to pack a moving or courier van.
\Rightarrow Working out amounts of materials for construction, such as timber.

Estimate and then measure the following lengths. You are likely to need to work with a partner using a measuring tape.

Note: There are 10 mm in $1 \mathrm{~cm} ; 100 \mathrm{~cm}$ in 1 metre \& 1,000 metres in 1 kilometre.

i. Your height. Estimate: Measurement (mm): Measurement (cm): Measurement (m):	ii. Your height seated. Estimate: Measurement (mm): Measurement (cm): Measurement (m):
iii. The length of your arm from inside shoulder (armpit) to fingertip. Estimate: Measurement (mm): Measurement (cm): Measurement (m):	iv. The length of your lower body from your hips (top of your legs) down. Estimat Mer worn int (mm): $n \gg: \in \operatorname{pent}(\mathrm{cm}):$
v. The length of your arm-span from fingertip to fingertip. Estimate: Measurement (mm): Measurement (cm): Measurement (m):	i. Mr ing ~ ith one arm fully tst 1 h above your head. M1 purement (mm): Measurement (cm): Measurement (m):
vii. The height, width and depth of your school table/desk. Estimate: Measurement (mm): Measurement (cm): Measurement (m):	viii. The height and width of the doorway of the classroom. Estimate: Measurement (mm): Measurement (cm): Measurement (m):

ix. Calculate the perimeter of this rectangle.

7.07 Length and Distance

Perimeter

One common measure of length (or distance) is perimeter. The perimeter measures the total distance around an object.
For example, if you walked around a soccer pitch (which is usually rectangular) then you are walking around its perimeter. The total distance walked will be the length of each of the four sides you walked.
So to calculate perimeter we simply add up the length of all sides of an object.

$$
\begin{aligned}
\text { perimeter } & =\text { length }+ \text { width }+ \text { length }+ \text { width (or) } \\
& =1+\mathrm{w}+1+\mathrm{w} \text { or } \\
& =21+2 \mathrm{w}(\text { for a rectangle })
\end{aligned}
$$

Image:

$$
\Rightarrow \text { perimeter of rectangle }=4 \mathrm{~cm}+7 \mathrm{~cm}+4 \mathrm{~cm}+7 \mathrm{~cm}
$$ perimeter $=22 \mathrm{~cm}$ or 220 mm (Note: nearly all trades use mm as measurements rather than cm).

NUM

7E Perimeter

1. Calculate the perimeter of the soccer pitch shown above ($100 \mathrm{~m} \times 60 \mathrm{~m}$).
2. How long do you think it would take you to walk/roll, and run around this?

Investigation: Are all soccer pitches the same size?

Perimeter: Circles

Strictly speaking, you don't need to investigate measures associated with circles this year. But being able to understand these is very important in many vocational roles, especially in design, trades, manual and practical jobs.
The perimeter of a circle has its own name circumference. You might remember learning about that at some other time in your schooling. The circumference measures the total distance around a closed curve (i.e. a circle!).

The distance around a circle (the circumference) will always equal the distance across a circle (the diameter) multiplied by a constant amount. This is true no matter how big or small the circle is. Do you know the name of that constant amount?

Calculate the circumference of the pizza shown above (diameter $=30 \mathrm{~cm}$).
nvestigation:
What are the different circumferences of the pizzas in your local shop?

7.09 Weight

Weight (mass)

Weight simply refers to how heavy an object is. For example, when you buy a 1 kg bag of sugar its weight is 1 kg .
If you jump on the scale and it shows 70kg then your weight is 70 kg .
A very small amount, such as a teaspoon of sugar, might have a weight of just 5 grams.
Weight is usually measured in grams (g), kilograms (kg) and tonnes (t).
There are 1,000 grams in a kilogram and 1,000 kilograms in a tonne. So 1 tonne (which is very heavy) = $1,000 \mathrm{~kg}$; and $1 \mathrm{~kg}=1,000 \mathrm{~g}$.

1 gram can be broken into micrograms (ug), and this tiny measurement of weight might be used in phar Fc medications because absolutely exact small qua $<$ ies are needed.
We measure weight using a scale, which will ∇ ali rated with appropriate units such as grams and kilograms.
In our personal and working lives we (te) urs \& NO. \& eight' when describing how heavy an object is, although techrially yis. rn is ciect. This is because weight describes the force of gravity ρ
If you recall the astronauts fin in you might have seen them leaping about very easily. They co do 1.8 beca $>+$ +iey 'weighed' much less on the moon than on Earth, and were able to jump ro and longer.
Technically, we should use the term mass. But imagine going to the deli and saying,
"I want to buy some spiced olives with a mass of 500 grams." The deli server will think you are a bit strange!
However, in some industries such as transport and logistics they may use the term mass, especially for transport vehicles such as trucks and ships. But for nearly all situations you encounter, the heaviness of an object will be described by its weight. So you can use this term from now on.

Mass (and weight)
\Rightarrow Mass (weight) is usually measured in g, kg, and t .
$\Rightarrow 1,000 \mathrm{~g}=1 \mathrm{~kg} ; 1,000 \mathrm{~kg}=1$ tonne.
\Rightarrow We measure mass (weight) using scales.
\Rightarrow Cooking 'weights' might instead use amounts expressed in teaspoons, tablespoons and cups.
\Rightarrow We can use language such as how heavy, how light, how much, how little and so on. Essentially these are all measurements of weight.

Weight 7.10
Measuring weight (mass) 7G
Estimate and then measure these 'weights'. Some you will have to research. Note: There are 1,000 grams in a kilogram; and $1,000 \mathrm{~kg}$ in a tonne.

7.11 Volume - Fluids \& Solids

Capacity

Capacity is a measure of how much material a 3-dimensional object can hold. Essentially capacity is another word for volume (but not the loudness volume for sound as that is an entirely different measure).
Capacity can relate to fluid volumes such as with drink bottles; and solid volumes such as with packing boxes. Capacity (or volume) measures are very important in our everyday lives for cooking, medicine and of course, for fluid containers.
Think about different capacities of soft drink containers. You can buy 375 millilitre (ml) cans, 600 ml plastic bottles as well as larger bottles with a capacity of 1.25 and 2 litres (I). Most fluids are measured in millilitres (ml) and $1,000 \mathrm{ml}$ equals 1 litre. A millilitre is the same volume as a cubic centimetre (cc), which is a measure that is often used in medical fluids.

ink are the capacities (volumes) of containers shown here? butter and 1 kg of flour.
However, many recipes actually use amounts that were based on the old-style imperial measures such as ounce, pound and fluid ounce.
We can convert fluid measures to our metric system

Fluids

$\Rightarrow 1$ teaspoon $=5 \mathrm{ml}$
$\Rightarrow 1$ tablespoon $=20 \mathrm{ml}$
$\Rightarrow 1$ cup $=250 \mathrm{ml}$
$\Rightarrow 1$ fluid ounce $=28.41 \mathrm{ml}$
$\Rightarrow 1$ pint $=568.26 \mathrm{ml}$
$\Rightarrow 1$ gallon $=4.564$ litres using the guide opposite.

Capacity (volume)

\Rightarrow Fluid capacity (volume) is usually measured in ml and I .
$\Rightarrow 1,000$ millilitres $=1$ litre.
\Rightarrow Solid capacity (for containers) is usually measured in g and kg .
\Rightarrow Cooking 'weights' might use amounts expressed in teaspoons, tablespoons and cups.
\Rightarrow Object volume (such as packing boxes) can be measured using length x width x height and is expressed in cubic $\mathrm{cm}\left(\mathrm{cm}^{3}\right)$, or cubic metres $\left(\mathrm{m}^{3}\right)$ for very large objects like shipping containers.

Complete these tasks related to capacity. Some you will have to research. Note: There are 1,000 millilitres in a litre and 1 million litres in a megalitre.
i. How many mls of fluid normally represent
1 tablespoon? What type of fluids might be
measured using a spoon? measured using a spoon?
ii. Find out or (estimate) how many megalitres of water your family uses in a quarter (3 months).
iii. Estimate the amount of fluid you drink in an average week. Use categories of water, soft drink, fruit juice and other fluids, as required.

v. List examples from your own life when it is OK to just estimate fluid volume; and also when you need to measure fluid volumes more exactly.

7.13 Volume - Fluids \& Solids

Volume

When you learned about measuring area you were working in 2 dimensions, length x width. However, in the real world, objects come in 3 dimensions.
Sometimes we might need to estimate or measure how much space an object takes up in each of its 3 dimensions; length, width and height (or depth).
Consider situations involving a courier van, supermarket shelves or a packing box. These situations involve packing and fitting objects into a pre-determined space. We can measure this 'space' using volume. The volume of an object refers to how much space it occupies. It might be helpful to think of an object's volume as its capacity, or how much it holds. i.e. How many soft toys can you cram into a claw machine?
 The space inside the glass with the a certain volume. The operator tmore toys in and make more eality the operator wouldn't many prizes in. Why not?

\Rightarrow volume of rectangular prism (object) $=4 \mathrm{~cm} \times 10 \mathrm{~cm} \times 8 \mathrm{~cm}$ volume (v) $=320 \mathrm{~cm}^{3}$
Note: Here the unit, cm, is cubed $\left.{ }^{3}\right)$. That's because cm is multiplied three times in the calculation (i.e. $\mathrm{cm} \times \mathrm{cm} \times \mathrm{cm}$). And of course, you are working in 3 dimensions with volume, hence cm^{3} !

In life we often estimate the volume of solids. For example, you might take a punt on how many items you can fit in a shopping basket, how many suitcases you can fit in a car boot, or even how many chips you can fit in your mouth!

1. Use estimates of volume for these situations.

2. Calculate these volumes. Try making these objects out of card.

a. A box measuring $3 \mathrm{~cm} \times 10 \mathrm{~cm} \times 20 \mathrm{~cm}$.	b. A cube 5 cm in size.

3. List examples where you estimate volumes 'naturally' in your everyday life. Share these situations with the class.

7.15 Estimating vs Measuring

Estimating vs measuring

When it comes to measuring quantities for personal and vocational situations you might have to make estimates, make calculations or even do both! Estimates and calculations might involve food ingredients, building materials, heights and weights, lengths and distances - even how much hair to trim!
So have a think about when you rely on estimates for quantities; and when you instead use calculations for quantities.
For some situations it is easier, and more convenient, to make estimates rather than doing exact calculations.

Image: chesky_w/Depositphotos.com

However, for some situations it is actuains:asier, and better, to make close to accurate measurements, or even exact measurements, to calculate amounts.

For example: Getting the amounts right
If you need to buy a garden drip-watering system you will need to measure the lengths and widths of the garden areas in which the system will be installed. If you rely just on estimates, you might purchase too little hosing and come up short needing to go back and buy a bigger length, wasting both time and money. Alternatively, you might buy too much hosing and waste money and resources. What about if you are following a difficult recipe, such as baking a souffle? You will need to use quite exact measurements. You can be a couple of grams or millilitres out here or there, but in reality you will use measuring instruments and devices to make sure your measurements are as close to exact as possible.

So as a class, discuss when it is OK, or even better to make estimates. Then discuss when you need to measure exactly.

To Estimate or to Measure?

Quality issues

> Can you take away?

Waste
Time/urgency
Danger

Estimating vs measuring

1. List examples of when you make measurement estimates; and when you need

7.17 Estimating vs Measuring

7K Room to move

Part A

1. Estimate the size of this bedroom.
2. What visual information will you use to make your estimates?
3. Do you think that this image is drawn to scale? Why/why not?
4. How would the size of the room compare to your own bedroom? You should sketch your own bedroom to help.
5. What visual and numerical information can you use to make your comparison?

Part B

1. For this situation make estimates of any items or amounts needed.
2. Use the numeracy techniques you have learned to calculate exact measurements. Start out by using the 4 -stage problem-solving cycle.
3. Which do you think was the better and/or more useful method - estimating or calculating? Discuss why.

Selene has been given the job of buying soft drinks for the grand final party.
She can buy cans - but large bottles are more cost effective, which would mean that she'd have more drink to go around. They've got plenty of cups to use.
Her mate Ange reckons 20 people are coming, and of course being the grand final, they're going to be there for quite a few hours - and it's thirsty work cheering on your team!

Estimate the following.

a. How long are the guests likely to be there?
b. How much soft drink might Selene need tt Juy?
c. How many cups/glasses will this make? ?
d. How much drink could each pe
e. How much might this soft drink

Calculate the following.
f. Selene's got $\$ 20$ to buv cheaded off on her skateboard. Calculate the amove for huy the thirsty guests.
g. Calculate how much is wo. 1 rest.
h. What brands/types should she but Why so?
i. Can you predict any problems Selene might have? Explain.

The game is just about to start and the cheer squad puts up the banner. It looks huge. The crowd is screaming and the players are coming down the race.

Complete the following.

j. Estimate what size you think the banner would be.
k. Use your estimates to calculate the perimeter of the banner.

Applied

How much soft drink do you estimate you consume in a year?
Now work this out by using daily and weekly estimates.

Compare this to others and discuss as a class.

7.19 Temperature

Temperature

Temperature can be commonly referred to as the intensity of heat of an object, fluid, surface or other substance.
The most common unit of measurement for temperature is Celsius which is a comparative scale, based on the freezing point of water $0^{\circ} \mathrm{C}$, and the boiling point of water $100^{\circ} \mathrm{C}$. However, some slight variations to this definition do exist for scientific purposes. Temperature is usually measured by a scaled mercury-based thermometer.
\leqslant As a class discuss these temperature words and talk about what feelings and memories they evoke in you.

7L The heat is on
Briefly answer each question related to your own circumstances.

1. What is too hot?	2. When is too cold?	3. How does mild feel?	
4. When is warm better?	5. When is cool better?	6. When is the sun harsh?	
7. What should I boil?	8. What should I freeze?	9. What is lukewarm?	

Temperature in action

An awareness of temperature scales, and associated safe temperature ranges, is a vital concept for many personal, health, recreational and work-related situations. Can you think of more?
\Rightarrow Personal health and wellbeing, such as surface air temperature.
\Rightarrow Personal care and safety, such as bathing an infant.
\Rightarrow Household situations such as hot surfaces, heating and cooling, and clothing needs.
\Rightarrow Health diagnosis and medicine, such as fever, hypothermia, and other conditions.

Correct temperature is important in the beauty industry. Why so?
\Rightarrow Food storage and preparation, such as perishables, dairy and meats.
\Rightarrow Employee OH\&S/WHS such as exposure, heat and cool hazards, and fire risk.
\Rightarrow Cooking, such as cooking temperatures, and to kill bacteria.
\Rightarrow Manufacturing, engineering, food prodıintic ard construction.
\Rightarrow Transport, such as refrigerated var
\Rightarrow Exercise, such as energy burnin nis bco temperature zones.
 systems and radiant hea. ng times

Correct temperature is important when

Temperatures 7M
Estimate, and then find out, the temperature for each of the following.

Item	Estimated temp.	Exact temp.	ltem	Estimałed temp.	Exact temp.
The temperature in this room.			Hottest temperature ever in Australia.		
The temperature in LA today.			Coldest temperature ever in Australia.		
A caffe latte.			Car radiator fluid after a long drive.		
A bath suitable for a baby.			A shop fridge for milk.		
Healthy human temperature.			your choice		
A human with a fever.			your choice		

7.21 Temperature

7N Safe temperature investigation

You are required to undertake an investigation into safe temperature ranges in a variety of personal, social/recreational and work-related situations.

Complete the tasks specified in the table by describing relevant activities/items.
You might also need to undertake some online research.

| | Describe activity/item | | Safe rangel
 hazard control | Potential hazards |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Electrical item.... | | | |
| Personal
 situations | other... | | | |

Cooking

Who likes cooking? Many of you do. Some of you will have a whole range of cooking skills that you have developed. But even people who are not great cooks have something they can make and cook - even if it is a simple toasted sandwich.

Understanding temperature is vital for safe, tasty, nutritious and effective cooking. So do you know your blanching from your boiling? Time to skill up, or one day chef Ramsay might give you a dressing down!

AT2a The Right Stuff Health \& Recreational Numeracy

Overview

For this assessment task, you are required to prepare an annotated report that describes the use of measures and quantities for recreational activities that you like participating in.
It might be good to take an applied health focus to this assessment task, especially if you took an applied recreational focus for Section 6.

You will complete your annotated report using text, numbers, images, illustrations, diagrams, and other visual elements such as video.

Tasks

You might investigate:
\square Making recipes healthier by substituting ingredients.
\square Healthy eating and portion sizes.
\square Amount of macronutrients, (protein, carbohydrates and fatcl wities and measuring of in different foods.Amount of refined sugar i and beverages.
\square General personal and measures.Condition-specific health indicators and measures.Safe cooking temperatures and times for different foods.

Problem-solving cycle

To successfully complete this activity you must apply each of the 4 stages of the problem-solving cycle where appropriate.

Annotated report

In your report you must explain how these numerical knowledge and skills are applied; and describe the applied use of maths tools and techniques.
\square measuring units and devices
\square time measures
\square size and/or distance measures
\square amounts and quantities
\square temperature measures
\square volume and capacity measures

Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

Additional information:
\qquad
\qquad

AT2b Measuring Up - Workers Health \& Recreational Numeracy

Overview

For this assessment task, you are required to investigate a range of quantities and measures, including time, that apply in work-related situations. You should also focus on workers meeting workplace health and safety guidelines.
You will complete an annotated report using text, numbers, images, illustrations, diagrams, and other visual elements such as video.

Tasks

You might investigate:
Work-related task times.
Work-related measuring of shapes and objects.Specific work-related measuring tools and devices.
\square Work-related temperatures including safe operatipg 1 nos rons and other
\square Work-related estimest a n sures; measures of quärro.

- Work-related estimates anu measures of sizes.
- Work-related estimates and and vocational quantities and measures relevant to you.measures of volume and capacity.

Problem-solving cycle

To successfully complete this activity you must apply each of the 4 stages of the problem-solving cycle where appropriate.
In your report you must explain how and when these numerical knowledge and skills are applied; and describe the applied use of maths tools and techniques.
\square measuring units and devices
\square time measures
\square size and/or distance measuresamounts and quantities
\square temperature measures
\square volume and capacity measures

Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

Additional information:

\qquad
\qquad
7.27 /| Problem-Solving Cycle // Maths Toolkit

Data and Information

8.01 Data and Information 188
8.05 Tables 192
8.11 Bar Graphs 198
8.15 Pie Charts 202
8.19 Line Graphs 206
8.23 Infographics 210
8.25 Assessment Task 212
8.27 Problem-Solving \& Toolkit 214

Comments:

8.01 Data and Information

Data makes the world go around Your life is driven by data.
Data is all the measurements, records, facts, recordings and other information that can be expressed in numerical, visual and/or written form.
When we collect, organise, interpret and analyse data we are better able to make informed decisions based on the numerical information.
Data can be used to create tables, graphs, statistics, infographics and reports to communicate bulk information.

Some data might be technical in nature, such as readouts from industrial or production machinery.
Government departments and agencies collect, analyse and communicate data about society, the economy, the environment, and of course that very important information that we check on every day - the weather! Businesses use data to guide their production, stock, sales, pricingan distribution of various goods an They use this information \rangle databases about their custoners a. 1 their employees.
Schools use data to track attendance and report on student achievement.
Sporting teams use data to monitor players and to plan, develop and implement better performance strategies.
And what about those 'free' social media platforms? They love your data!
For them, you are a product.
They can use your biodata to target and sell advertising - some even sell your biodata to other businesses and agencies!
So what data is important for you in your life?

Image: agsandrew/Depositphotos.com

8.03 Data and Information

Collecting data

Data is really just a set of numbers, or a set of words, or a set of words and numbers. It is the interpretation of data that makes it useful. That's what turns data into useful information.

Data sources can include a survey which is a direct (or primary source) of information, e.g. surveying customers on their buying preferences.
Data also includes other (secondary) sources. These involve data that comes from external sources, such as government information about employment statistics.
In our contemporary world, digital data is collected, collated, analysed and communicated by varied means and media. These include:
\Rightarrow mobile phone usage data and billing
\Rightarrow banking and financial information
\Rightarrow internet and digital media usage
\Rightarrow search engines and digital assistants
\Rightarrow GPS location tracking
\Rightarrow Medicare and health-care information.
Data also includes personal information location, purchasing histories, income'

Not all data is 'digital'
Although you live in the digital yen in acknowledge that a lot of data and information is not digital, work-related roles.
We still use our eyes, ears, nose and oth senses to take in data. We communicate data and information verbally or via non-verbal communication. And we do a lot of assessing of our physical environment using our bodies when playing sport, when driving or when doing manual and practical tasks.
Straightforward uses of data might involve measuring a room to determine the amount of carpet needed, listening to the sound of an animal's breathing to pick up possible ailments, and calculating how much time and money you might need when planning a personal holiday.
Data is often easier to read and interpret when organised in tables, graphs and other visual forms. So, it is vital that you can develop these skills for personal and vocational numerical situations.

Working with data information can sometimes be complex. Applying the 4Stage Problem-solving Process, step-by step, can really make it a lot easier.

Checksheets

A checksheet is used to collect and record information. You have probably used variations of checksheets in your personal life to record and collate information.
Effective checksheets need the following.

1. A situation to be monitored and recorded.
2. A pre-prepared record sheet that is both easy to fill in and easy to extract information from.
3. A trained monitor to observe and record the information.
Checksheets might be used in vocational situations to record the:
\Rightarrow number of customers at different times
\Rightarrow type of product most ordered
\Rightarrow reason for a customer complaint
\Rightarrow cause of a breakdown.

Checksheet								
Work task/activity: cars parked illegally at weglakes primary school Other information: Morning shift Completed by: Aaron Tonto Day: Mon - Fri Dates: 17-21 Ang, 2024								
Reason/factor	Mon	Tue	Wed	Thu	Fri	Total	\%	
double-parked						84	34	
overstaying time	$\begin{array}{r} x / 1 \\ \hline \end{array}$	$\begin{aligned} & x / 1 / \times 1 / \\ & x / 1 \times \\| / I 2 \\ & 20 \end{aligned}$	$\mid \mathbb{N}$			57	23	
parking in no standing zone	${ }_{6}^{x / 1}$	$\begin{array}{\|c\|l\|} \hline \text { N/I } & \\ & 6 \end{array}$	$\begin{array}{\|c\|l\|} \hline x / 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline N / 1 \\ \hline \end{array}$	${ }_{6}^{x / 1}$	30	12	
parking in frout of driveways	$\underbrace{}_{3}$	$\begin{array}{lll} & 1 I I & \\ & & 3 \end{array}$	$\\|_{2}$	$\begin{array}{\|l\|l\|} \hline \text { III } & \\ & 3 \\ \hline \end{array}$	${ }_{2} / 1$	13	5	
parking too close to corner	${ }_{4}$	IIIII	$\begin{array}{\|l\|l\|} \hline \text { IIII } & \\ & \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { III } & \\ & 3 \\ \hline \end{array}$	${ }_{2}$	17	7	
other (describe) parking in bus zone	\|	$x / 1$	${ }_{6}^{x / 1}$	$x / 1$	${ }_{7}^{x / I}$	31	13	
all others together (all different)	$\begin{array}{\|l\|l\|} \hline \text { IIII } & \\ & \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline I I I & \\ & \\ & 3 \end{array}$	${ }_{3} 1 I I$	$\begin{array}{\|l\|l\|} \hline 1 I I & \\ & 3 \\ \hline \end{array}$	${ }_{3} / I I$	16	6	
Total	50	58	39	46	55	248	100	
\%	20	23	16	19	22	100		

1. Complete these wordse \rightarrow त土 \bigcirc in

Data and information

1. Complete these wordsa na nay in Nation.
\square an \qquad
\square bio \qquad
\square со \qquad -
com
\qquad
$\square d$ \qquad $-$
datab \qquad -

$\square \mathrm{gr}$ \qquad
\square info \qquad
\square infor
\qquad
\square pri \qquador \qquad
$\square \mathrm{sec}$ \qquad
sp
\qquad
\square st \qquad
\square ta
\qquad
\square re \qquadwo
\qquad
2. Have you ever used a checksheet before? How do checksheets help to collect and organise data?
\square

8.05 Tables

Tables

You have probably already used data tables this year.
Tables enable the user to organise information. They make it easier to perform calculations, including the use of spreadsheets.
Tables enable users to look for patterns and trends, and to do comparisons between sets of data.

Have a look at the table shown here as an example. A table will usually contain certain types of information
Heading: This indicates the type of information organised in the table.
Time period or date: The data will often refer to a time period.
Column headings: These headings indicate the type of data that is being shown in the table (including appropriate units such as \$).
Row headings: These headings indicate the variables being shown, such as people, customers, products, months of the year, et $>$.
Data: This is the collected information as showr the.
Totals: Row or column totals that perform a wintion.

Row headings	Bil	33	22	1.5
	Clo	27	18	1.5
Totals	Dom	16	4	4
	Totals	112	56	2

Column headings

Totals

So, from the information in this table we can say that:

- The top 4 goalscorers kicked 112 goals between them in 2023.
- The top 4 goalscorers played 56 games in total in 2023.
- The average goals per game scored by these top 4, was 2.
- Ash scored the most goals, kicking 36 in 2023.
- Of the 4 top goalscorers, Bil played the most games with 22.
- Both Bill and Clo averaged 1.5 goals per game in 2023.
- Of the 4, Dom scored the least goals, but had the highest average per game, of 4.

1. Use the data in the Sunnyfried Cricket Club table to describe at least 5 clear points of information.

Sunnyfried Cricket Club: Under 17s Top 4 Wicket takers - 2023 season			
Player	Wickets	Games	Average
Zeb	15	10	1.5
Yan	18	3	6
Xie	33	11	3
Woz	10	5	2
Totals	76	29	$\mathbf{2 . 6}$

2. Use the data in this table to desct points of information.

Average and Minimum Temperatures Melbourne		
Month	Long-term	

8.07 Tables

Tables at Work

Over the course of this year you have dealt with numerical data and information in many different personal situations.
It is important to understand that all workers have to deal with numerical data and information as part of their day-to-day work tasks.

In the workplace you might deal with internal numeracy data and information from inside the business or organisation; as well as external numerical data and information from outside the business or organisation.
Common examples of data and information that might be collected and communicated in tables are listed below. But there are many others - including those specific to a particular industry or occupation. Can you think of some more?

Tables and spreadsheets

Tables are used to collate and organise data and information. This table records key information about 4 different chocolate products for a lolly shop. The table clearly gives information about product cost, quantities, total cost, different \% mark-ups, retail price and total retail value of stock.

Item	SKU	Cost price	Quantity	Total Cost	Mark-Up	Selling Price	Total Value
Buntos	BUN	$\$ 1$	1,000	$\$ 1,000$	200%	$\$ 3$	$\$ 3,000$
Choclics	CHO	$\$ 2$	500	$\$ 1,000$	100%	$\$ 4$	$\$ 2,000$
Boxsters	BOX	$\$ 20$	50	$\$ 1,000$	50%	$\$ 30$	$\$ 1,500$
SpezSelec	SPZ	$\$ 50$	40	$\$ 2,000$	40%	$\$ 70$	$\$ 2,800$
Totals				$\$ 5,000$			$\$ 9,300$

	A	B	C	D	E	F	G	H
1								
2					=C2*D2		=C2+(C2*F2)	=D2*G2
3					=C3*D3		=C3+(C3*F3)	=D3*G3
4					=C4*D4		=C4+(C4*F4)	=D4*G4
5					=C5*D5		=C5+(C5*F5)	=D5*G5
6					=SUM (E2:			=SUM(H2:H5)
7								
8								

So if the lolly shop had a thousand differ it s meis. th spreadsheet would handle all this information as soon as itwa.

Graphs and charts
These can be used to communicate numerical data and information visually. This graph shows the number of coffees sold each hour by a busy coffee kiosk. The graph indicates a drop-off around lunchtime. Perhaps the kiosk needs to add a few snacks to the menu to attract more lunchtime customers?

8.09 Tables

8D The ladder

One of the most commonly checked data tables is the AFL ladder. Of course, not everyone is a fan of Australian Rules Football. But sporting tables are a good example of how to set out data information. So let's see how you go creating a ladder based on some imaginary games.

1. Based on the information for the first 3 rounds draw up the ladder as a table.

You could use your workbooks, software or even a spreadsheet.
Use the information to answer the following questions
2. Who won the most games? How many?

3. Who won the least games? How many?

4. Who drew the most games? How many?

5. Which was the highest scoring team? How much?

6. Which was the lowest scoring team? Hou

7. Which team had the least poi's kick gary low many?

8. Which team had the mat poil kizke against it? How many?

9. Which team had the highest percentage? How much?

10. Which team had the lowest percentage? How much?

11. What might happen next round? Why is that?

Extension

The SANFL calculates percentage differently from the AFL. How does it do this? Is it more complex? And is it better?

8.11 Bar Graphs

Graphs

One of the most useful elements of tables is the ability to turn the information into graphs.
Graphs allow a person to look at numerical information, including information involving lots of data, in a visual form.
This visual form can make it easier and faster to interpret data. A graph also allows for comparisons to be made more easily.
One very useful graph is a bar graph (or bar chart).

Bar graphs

\Rightarrow A bar graph shows a comparison between the data of various categories.
\Rightarrow A more complex bar graph can also be used to compare different variables on the same chart by using more than one 'set' of bars.
\Rightarrow The components of a bar graph are:

- Horizontal (bottom) axis (x): Plots the categories along the bottom, usually with spaces between the bars.
- Vertical (side) axis (y): Plots the amount along the side, which is usually a number, a count, a percentage, or a \$ amount.
- Heading and data labels: These tell the reader what is indicated by the graph so you know just what the graph is showing.
- Bars: The height indicates the amount being graphed. The bars can be drawn using the same colour, or different colours, depending on what is represented on the graph.

Bar graphs

Bar graphs are good at showing numerical information because the user can easily look at the size of the bars to interpret the 'data'.
We look at what each bar represents (the label), and the height of each bar (the scale) in comparison with the other bars.

Of course, we also first need to look at the heading.
A bar represents a particular category
 such as:
\Rightarrow a person (sales by employees),
\Rightarrow a time period (monthly electricity gas usage),
\Rightarrow a survey preference (favourite colour).
The height of the bars usually represent 'hnw
\Rightarrow total sales in \$ (for each salesperson)
\Rightarrow total electricity used (for that billing, 0 c, 0 mo $<$), or
$\Rightarrow \%$ of people surveyed whose fa writ in ur 0 in. (37%).
Comparisons can then be mat was "more", "larger" or "greater than", "less" (or "fewer"), "ran.e. ss than Ve can also use comparison descriptors such as "twice a much "rdf a much", "almost the same", "slightly more", "much more" (or "less") and so on. This vi help the user to make key points and to interpret the visual graph in words.

1. Answer each the following based on the bar graph shown above.

What is being measured?	What is the time period?	Approximately how many people used each method?	Which method was used most?
Which method was used least?	Which method was used about only half as much as the highest method?	Which methods were used more than walking?	What might the 'other' include?

2. Construct a similar bar graph based on a survey of your own classmates.

8.13 Bar Graphs

8F Working with bar graphs

Part A: Interpreting data and information

1. What information is shown on whan ald much is each choice?
2. Which lunch choice wastis. ing. ice ny?
3. Which lunch choice $<$ tne <1 ingh \gg iow many?
4. Which lunch was chosen by 35 pe
5. Besides 'Other', which lunch choice was the lowest?
6. What choices might have been in 'Other'?
7. How many people might be vegetarian? How did you work this out?
8. Would the lunch choices be different on a Friday? Why/why not?
9. Do the lunch choices reflect what might happen in your school? Why/why not?
10. Construct a bar graph based on a survey of your classmates, or year level.
\square

Part B: Driving hours

1. Construct a properly labelled bar graph to display this data and information. Use ' 5 ' bars. Use software or your workbooks.
2. Create concise statements to describe what the data and information is showing. You can write these below the table.

Monthly 'L' driving hours									
Name:					Month:				
1	2	8	1:30	15	1:10	22	0:50	29	1
2	1:30	9	1:15	16	nil	23	0:30	30	1
3	2	10	1:45	17	0:50	24	1:15	31	1
4	0:45	11	2	18	1	25	0:45		
5	nil	12	0:50	19	nil	26	nil		
6	0:15	13	0:30	20	0:25		0:30		
7	1	14	nil	21	0:3.	28	0:30		
$\begin{gathered} \text { Weekly } \\ \text { total } \end{gathered}$		$\underset{\substack{\text { Weekly } \\ \text { total }}}{ }$ total						Weekly total	
		$\begin{gathered} \text { Running } \\ \text { total } \end{gathered}$						Monthly hours	

Applied

This data table above is good as an informal personal record, but it will not be acceptable for your driving test.
a. What do learner drivers have to use to log, show and prove their hours?
b. What information must be recorded in the log book?
c. Who else must enter information in the log book?
d. Is there an app? If so, how does that work?

8.15 Pie Charts

Pie chart

Pie charts are a good way to visually show numerical information that represents proportions or amounts of a whole. So they are good for showing relative percentages.
The pie represents the whole. Each segment or slice of the pie represents a part of that pie.

Segments will usually be different sizes, unless the data is exact for each proportion. The size of the segment will correspond to the proportion (the \% of the total).
Segments will also be coloured, which helps the viewer
 to easily identify each segment.

Image: michaeldb/ Depositphotos.com

A survey allows you to research, collect and collate data information.
Many people now use online tools such as Survey Monkey and Google Forms to design their surveys. However, tools such as these, if misused, still design 'poor' quality surveys. It's just that they look better, and can be shared electronically.
Consider these problem-solving steps to help you design effective surveys. These apply whether you are devising a survey for face-to-face, hard copy or e-version.
Step 1: What am I trying to find out?
Step 2: Who do I need to ask?
Step 3: Which closed and open questions will I need to ask to gather the data and information?
Step 4: Does my survey work?
Step 5: How should I report the findings of my survey?

What style and format of survey will be most effective for your needs?

1. Answer each of the following based on the pie chart shown here.
2. In your workbooks show the information from the graph in a table.

What is being measured?	What is the time period?	If 100 students were surveyed, what would be the number of phones in each category?	
What about the number of phones if 50 students were surveyed?	About how ma, more students had Apple phones compared to Samsung phones?	What might the	Do you think that this pie chart should have more segments? Explain.
other' include?			

3. Conduct a survey of students in your class about their phones. Construct a table to collate the results and calculate the relative percentages.
4. Draw a properly labelled pie chart to show the results. Note: You are probably going to need more than 3 segments.
5. Summarise the results using words and numbers. Comment on whether the results are what you would expect, or if they are different. Suggest reasons for these results.

8.17 Pie Charts

8H Working with pie charts

Part A: Interpreting data and information

Sources of Australian Energy Generation

 as at December 2020

1. What information is showr
2. What is shown in each se
3. How much is each se ra..
4. Which resource does Australia is conr he majority of its energy generation?
5. Which resource does Australia use the least for its energy generation?
6. What proportion of Australian energy production is created from renewables?
7. What types of energy sources might be part of the renewables category?
8. How do you think the proportions would compare to 10 years ago?
9. How do you think the proportions would compare to now?
10. Construct a pie chart based on the current statistics. Where will you find these?
\square

Part B: New power or old power?

1. Create a properly labelled pie chart based on the information in the table. Use software, or do this 'old school' by hand.
2. Do a class survey and also show those results on another pie chart.
3. Create concise statements to describe what the data and information is showing. You can write these below the table.

Year 11 Student Survey: Preferred Choice of Electricity Generation: Sep 2023

Coal 20%	Wind 15%	Solar 40\%
Hydro 5%	Bioenergy 5%	Gas 15%

Numeracy VPC class: Preferred Choice of Electricity Generation

Applied

Australia is slowly but steadily increasing the use of renewables for power generation. But the nation can't suddenly stop the use of coal and gas until there is enough renewable capacity in the electricity generation system.
Different states have achieved different levels in the use of renewables. Find out which is out front, and which is lagging behind. You could create pie charts to help you compare the information.

8.19 Line Graphs

Line graph

The most common way to show connected data or numerical information over time is to use a line graph. Line graphs are generally used to plot data that is connected as part of a time series (or over time).

A line graph spaces the time
 periods of the data (such as monthly sales) along the bottom (or horizontal) axis using an even scale.
The amounts indicated by the data (or the numerical information) are shown up the side of the graph, also using an even scale (the vertical axis).
Joining the dots gives us an easy way to see highs and lows, as well as the overall trend of the data.
Line graphs are commonly used to represent de zonil as the weather over time, business sales and profit, savings amounts, A data and weight changes, and other infor otic
\Rightarrow A line graph shows a variabie $0 \rightarrow$ ad ad of time.
\Rightarrow The components of a lipe 9 rim

- The Horizontal 《cracrix ple the timespan (time series)
- The Vertical (or sia ϵ) axis \quad) the variable amounts over time
- Heading and data labels: Tells reader what is indicated by the graph
- Data line: Shows the data in visual or graph form.
\Rightarrow A line graph can also be used to show different variables on the same chart so as to make quick and simple visual comparisons of the data.

81 Line graph

Have a look at the line graph shown above. Once again it doesn't include headings or data labels. Fill in the blanks to explain what is missing.

Along the b \qquad there should be some type of a t \qquad period, such as
weeks. Up the side there should be some type of a s \qquad in numbers (or numerical information) to show what the graph is measuring.

This graph has a starting point and then includes \qquad periods of time.

Overall, the \dagger \qquad of the graph is upwards.

Part A: Fuel lines

A line graph is a good way to visually represent changes in prices over time. e.g. Sheree was keeping an eye on fuel prices at her local servo. She picked a Thursday as the comparison day. This week the price was $\$ 2.10 /$ litre. Last week it was $\$ 1.90$. The week before that it was $\$ 1.80$. 3 weeks ago the price was $\$ 1.75$ and the week before that the price was $\$ 1.70$.

1. Draw a properly labelled line graph based on Sheree's investigation of petrol prices over time. (Below, in your workbooks, or on a device).
2. In one sentence describe the trend of the graph.

Do you notice that although Sheree has found that the price of petrol has varied a lot, the graph doesn't really 'show' much change visually? This means that plotting the full price might not give a true indication of price changes.
3. Cut out a piece of cardboard or paper to cover up your graph all the way up to $\$ 1.60$. How would you describe the trend of the line graph now? Does this give a better indication of the situation? Why/why not?
Part B: Up, up and away - or down?
Choose $\mathbf{3}$ items that you or your family commonly buy which can fluctuate (change) in price. e.g. Fresh fruit and vegetables, meat products, petrol, etc..
a. Record the prices of these items over a 4-week period. Record in a table.
b. Draw line graphs to show these price changes over time.
c. Comment on your findings.
d. Do these price changes, or does this price stability, surprise you? Explain.

8.21 Line Graphs

8K Working with line graphs

Part A: Interpreting data and information

Number of Australian Apprenticeship in Training Australia 2012 to 2021

1. What information is shov www.ncver.gov.edu.au
2. Use the graph to ider an mat nomer of apprentices in training for each of the $\mathbf{1 0}$ years.
3. What year had the highest number apprentices in training? How many?
4. What year had the least number of apprentices in training? How many?
5. What is the general trend of the graph?
6. When did the trend turn?
7. What might be some reasons driving the trend?
8. What do you think the current amount might be? Why so? Find out!
\square

Part B: Hot and colds

Create a properly labelled line graph based on the information in the table. Use software, or do this 'old school' by hand.

1. Create concise statements to describe what the data and information is showing. You can write these below the table.

Average daily maximum temperature: Melbourne (1991-2015)

Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
27.0°	26.9°	24.6°	21.1°	17.6°	15.1°	14.5°	15.9°	18.1°	20.5°	22.9°	24.8°

Source: www.bom.gov.au accessed via Wikipedia, ‘Climate of Melbourne', April 9, 2022

2. Find a series of comparison data, such as averages for the most recent year, average minimum temperatures, or temperatures from another region.
3. Plot this data on the same graph. Comment on the differences.

Applied

a. People love talking about the weather and Melbourne is known for its changeable weather. Find out some interesting facts about Melbourne's unstable climate.
b. Do you think we should still be using the transplanted ideas of the 4 seasons from Western Europe?
c. What might be a more suitable understanding of the seasons for Australia's varied regions?

8.23 Infographics

Infographics

An infographic is a pictorial way of representing data and information. Infographics use a combination of:
\Rightarrow words (describing the data and information)
\Rightarrow numbers and percentages (presenting the statistics or observational data)
\Rightarrow images (pictures, symbols and pictograms presenting the information, the data or a combination of both).
Infographics are usually prepared using digital design software and specialised apps.
The aim of an infographic is to use design elements to communicate both linked and varied numerical data and information.
Infographics are increasingly being used to communicate information across digital platforms. Infographics also present well as posters.

Pictograms

 pre-historic times. with an object or a concept. What would theAncient Egyptians think of that!
Common examples include:
\Rightarrow the human form
\Rightarrow male and female gendered figures
\Rightarrow representations of common objects or themes, and
\Rightarrow other signs and symbols that relate to the specific data and information.

What visual elements can you spot in this unorganised infographic?

Have a look at the asthma infographic. What can you see, what did you already know, and what have you learned? Is this infographic effective?

Applied
a. The way you organise and display your apps on the screens of your smart device is a bit like an infographic. How do you recognise your favourite apps?
b. What does the way that your apps are organised say about you?
c. Compare your apps to different people. Comment on the similarities and differences between you and others.

8.25 Assessment Task

AT3 Analysing and Reporting a Civic Issue Civic Numeracy

For this assessment task you are required to collect, organise, analyse and report on data and information about social issues and civic situations.

The issue might be something you feel strongly about, or of local concern, or related to your Personal Development Skills, Literacy or Work Related Skills studies.

1. Choose a civic issue to investigate.

Your teacher will guide you and your class through this.
2. Design and use a survey.

Decide on the respondents, type of question format, and other matters.
3. Organise th $\rho-1$ a able.

Organise your data an (n) rre in seaningful way.
4. C

Represent the data irr a
ions of the results.
user-friendly visual format.
5. Source existing data, information and/or reports about the same issue.

Evaluate potential sources of suitable data and information.
6. Compare your results to the existing data and information.

Analyse both sets of data and information to find similarities and differences.

Problem-solving cycle

To successfully complete this activity you must apply each of the 4 stages of the problem-solving cycle where appropriate.

Note: In the final column, your teacher might also include an achievement level to indicate your level of performance for each part of the task.

8.27 // Problem-Solving Cycle // Maths Toolkit

Making Sense of the World

9.01 Likelihood and Uncertainly 216
9.05 Coincidence and Luck................ 220
9.09 Chance and Probability 224
9.15 Estimating and Predicting......... 230
9.19 Assessment Task 234
9.25 Problem-Solving and Toolkit.... 240

Comments:

9.01 Likelihood and Uncertainly

Making sense of it all

In life we are all faced with so much information and data that sometimes it is hard to make sense of it all. So, it is important that you develop numeracy skills to help you to better understand about 'likelihood'.

Civic situations impact on your personal life and your vocational life. We all need to make sense of what is happening in broader society. Understanding likelihood will help you to make predictive statements about the chances of events happening.

Forecasting

Information and data is used to make predictions such as with weather forecasting, all the way through to planning for a better future for ourselves and for society.
At other times, civic information and data is reporting on events that have happened, such as economic data about employment growth and unemployment levels.
Analysing civic data and information helps to develg, behaviours and strategies to reduce and avoid potentially negative outcomes.
This helps us all learn how to plan and make decisions to achieve more positive outcomes. You explored some of these actions in PDS through your investigations into personal health and wellbeing.

It's not just young people that struggle with making sense of data and information, it's a lifelong challenge!

9A What's next?

Predict the most likely outcome for each of these situations. Briefly explain how you made each prediction. Discuss with the class.

a.	2	4	6	8	10		Reason
b.	32	16	8	4	2		
c.	red	amber	green	amber	red		
d.	heads	tails	heads	tails	heads		
e.	21°	20°	21°	20°	21°		
f.	red	black	red	red	black		

For example: Jobs and prices

In times of strong employment growth we might say, "It is a good time to enter the labour market because the likelihood of me finding work is quite strong."
We experienced this in 2022 and 2023 in the post-pandemic world of work. Employers in many industries were having severe difficulties filling job vacancies as the economy recovered, due to skills shortages. This made it much easier for many people to find work.
Another example related to the economy, was the resurgence of inflation throughout 2022 and 2023 as the prices of most good and services rose.
Prices rise when there is higher demand. This can happen when the economy grows and people increase their spending. This can lead to shortages of items which forces prices up.
Prices can also rise when there is reduced supply of goods and services. This can happen when events occur to reduce supply levels, such as with the effect of flooding on vegetable crops.
Do you remember the great lettuce shortage midu-2022 when prices for a single, withered and sad-looking lettuce g \square ver $\$ 12$? What did your family do in response to this?
In times of high inflation we can p. (d) t ta rises likely to continue to rise, until suppliers are able to atch on anna Nen things get back to normal, the prices of fruit, vetar na rea might then drop. However, we generally find that most cthe $0.1 \otimes$ av st Noin.
See, this is not so harc una tard. you have just learned is applied economics in action. These are evers at people have to deal with as part of everyday life. People have to monitorne prices of what they need and want to buy; as well as the likelihood of having stable and secure employment.

What is the main information that you took in from the example 'Jobs and prices'?
\square
Discussion: How would you rate your ability to understand the explanations in 'Jobs and prices'? Why is that?

9.03 Likelihood and Uncertainly

Uncertainty

If there's one thing that is certain in life it is that nothing is certain. We live our personal, educational, social and vocational lives through a series of actions and events.

Our actions help determine outcomes. So an important part of your actions is recognising, and dealing with, uncertainty.
One strategy to help you do this is by having more information at your disposal. The better information you have, then the more likely you are to make better decisions.
A second strategy is to develop an understanding about risk, and then implement ways to minimise risk.

Risk is a normal part of life. All actions have an element of risk. From driving a car to flying in a plane. From starting a job to opening a business. From playing a sport to starting a new relationship.

It's how we understand and deal with risk that is important. Especially, the risk associated with actions that can cause harm to ourselves and others, including when driving motor vehicles. Another strategy is to understand abc likelihood. This involves understanding chance, randomness, probabilite ar \sim cause and effect. What this dot ${ }^{\prime}$ involve is relying on luck, 'carnival tricks' such as cons_lting a psychic.
"In your future I predict another shortage of toilet paper! That will be $\$ \mathbf{5 0}$ thankyou."

Uncertainty

1. In life, what are you certain of? Why is that?

2. In life, what are you uncertain of? Why is that?

3. Describe an event that is probably going to happen to you before the day ends.

4. Describe an activity in your life wheren jonanage risk. How do you

Investigation: People use varied terms, language and sayings to describe likelihood. This is especially apparent with different generations and different cultures.
Find out the meaning of these terms. Have you ever heard them used? Ask different people you know about the words and phrases they use to describe likelihood.

Deadset.	Dead cert.	Buckley's.
No way.	Even money.	A snowflake's chance.
Put down your glasses.	On any given Sunday.	Don't hold your breath.
Without a doubt.	A freak event.	Once in a blue moon.
A needle in a haystack.	On the first of never.	Six of one, half a dozen of the other.

9.05 Coincidence and Luck

Coincidence

As humans, we need to assign 'order' to the world around us. One way that we do this is by noticing coincidence.

Coincidence occurs when we connect two or more unrelated events to each other. As part of coincidence we make a connection that isn't really there. Instead, we infer a connection, by linking random events together.
Coincidence isn't reality. But it feels like it. Especially if there is a strong emotional connection between people, or if the outcome is important (either positively or negatively), or if the event has significant meaning such as special date or anniversary.
KSo have you got any strange or freaky coincidences to share with the class?

Coincidence in $/$ ction

Manny was thinking about an old crush he had back in school.
He checks his Facebook notifications and one of his friends has commented on a school reunion post by his oí flame and tagged Manny.
Manny is not connected 'love’ at all!

Manifesting Manny!

Mo is calling a football game.
The big forward lines up for a set shot from 30 m out, directly in front.
Mo proclaims that this is a simple shot and it will go through for a goal. But, the forward shanks the kick and Mo laments the commentator's curse.
Mozzing Mo!

Sam has lost his keys again.
He posts online and his friend Psi says
"Have you looked in the front door lock?"

Sure enough the keys are still hanging there!

Psychic Psi!
e has bought a dress for the She keeps it a tight secret. y night she arrives in style, ol tye limo to pose for the nd her bff appears wearing the dress.
mning Teonie!

Surhan is playing his first game of cricket. In a rush to get dressed he puts on odd socks.
Surhan makes a century on debut. He puts it down to the socks!
After that, Surhan always wears odd socks when batting. But he doesn't always make a century - in fact, far from it.

Superstitious Surhan!

> Laki likes to go to the casino with his best mate Ulbo.
> Whatever colour Ulbo chooses, Laki bets on the opposite colour.
> Ulbo always seems to lose and gives up after two bets.
> Unlucky Ulbo! Lucky Laki!

1. In your own words, explain what was happening to each of the guys on p.220. Are their 'feelings' correct?

Manny	Teonie
Mo	Surhan
Sam	Psi
Laki	Ulbo

2. Why do we, as humans, on in ond patterns that don't really exist? Have you? Sho ine © hix oncy to influence our decisionmaking? Explain and discuss us..g car oles.

Discussion: What does this statement mean?
"Of course coincidences are real. But they are a reality of our own making."

9.07 Coincidence and Luck

Luck
People love to believe in luck. Luck can a real thing. An event happens and you either benefit from it (winning lotto) or avoid harm from it (surviving a lightning strike). That's good luck.
But it could have just as easily gone the other way. If so, that would be bad luck! In your personal life, good luck is when you drop your toast and it lands butter side up. Bank it and move on. But don't think it will happen like that next time.
Or you get out of bed quickly and catch the earlier bus. And then you see them. Your heart skips a beat. Your eyes meet, and it's happily ever after. That's good luck. Some call this destiny.

Some cultures have strong beliefs in luck. Lucky and unlucky numbers. Lucky and unlucky words. Lucky and unlucky colours. Lucky and unlucky charms. Lucky and unlucky signs and symbols. Lucky and unlucky rituals. How do you think these beliefs evolved over time?

The thing about luck is it's just that - luck! If you st to apply patterns to luck then you're in for a big shock. Luck is not about 2 . Ns about randomness, and likelihood; or even more relevant, unlikelihd
So are you lucky? Why is that?
Being lucky vs being fortunate
People often say "I'm lucky beczus vis joc Pe, or "I'm lucky that I have good health". Sometimes you even $9+$'s.' in inecause you have a roof over your head", or "You're lucl an are, and fit." But these things don't

It is better to say that we are fortunate. Pitunate to have a secure job that brings a steady income into the home. Fortunate to enjoy good health and to not have any chronic illnesses or debilitating conditions. Fortunate to have a stable home; or
fortunate to have good genetics or self-discipline.

Image: Pazhyna/ Depositphotos.com
You might know of people in life who might not realise just how fortunate they are.

They try and chase luck and make luck work for them.

Sure a few dollars a week on lotto might not do much harm. But dreaming of a better life 'when' they get their big win, because 'they' deserve it - well that's not a very healthy approach to life at all.
We can make our own luck. We can do this by planning, organising, skilling ourselves and taking action.

Part A
Why do people want to believe in luck? Find out about the different 'beliefs' about luck held by different cultures. Some of these might be strongly held in your own family circles. Share with the class and learn from each other.

Part B
Meet unlucky Phil. Each time somethin< \boldsymbol{d}
to Phil he moves to a new Find out the likelihood of eari of, verrt pening in Australia. Are there locations in Australia wher tis s- inse co happen? What about other places in the world? WI. + cour an yc is ? Report back.

9.09 Chance and Probability

Chance

Chance simply refers to the likelihood of an event occurring. Chance doesn't mean that something will occur. Instead it refers to the likely possibility of an event happening.

We might hear people say, "What are my chances?" "There's no chance of that happening." "I'll take a chance, anyway." "Really, you're going to leave it to chance?"
Sometimes people get ahead of themselves and might say. "Put your glasses down, there's no chance she'll miss this shot!"
One of the everyday events in life that people want to find out the 'chance' of happening is the daily weather forecast.
Weather forecasting is conducted by the Bureau of Meteorology using scientific methods. It makes predictions such as maximum and minimum temperatures for different locations and regions, temperature ranges throughout the day and night, amounts and timing of rainfall, wind speed and direction, and other localised weather phenomenon.
Meteorologists make forecasts by using sophist. \&adelling processes and observational data. They take past informa $\ggg d$ d apply this to 'measuring' the weather patterns that are or or liva to impact.
But weather forecasting is, after all whant name suggests, a forecast. It is no sac. 0
science. It is an imprecise scien $=$
ESo do they get it right moss lue De Wh + you think? Or should they jusi roll the d'e?

9F Chance

1. What is chance? When has chance been your 'friend' and brought you luck?

2. Ways to improve your chances of success include gathering information, developing skills, and gaining experience. How can doing these things help you improve your chances of finding a job?

Chance and Probability

Randomness

In life, we sometimes hear people saying, "How about that hailstorm, gee that was so random!" But what do they really mean, and is this the correct term to use?
Randomness refers to the absence of a noticeable or measurable pattern or sequences to events. Essentially, a random event occurs without any real reason as to why.
For example, consider rolling a fair die. Most dice are numbered from 1 to 6 . And if the dice aren't loaded (i.e. weighted to favour one outcome over others), then the number that is rolled will be random - it could be anything from 1 to 6.
So you have as much likelihood or chance of rolling a ' 1 ' as you do a ' 6 '.
On the next roll, the outcome again is random. And so on. And so on. And so on!
Sometimes people try to influence random events They might blow on the die, or shake it very har They might try to cajole a favourable spin out
die with lines such as "Pappa needs a ne "Bring it home baby." You might have people in movies getting an attractive 0 . kiss the dice.
This behaviour is all about darn, un eret can be a bit of fun really,
trying to impose some contrs over n'em vents - in their favour.

1. What is randomness? What 'random' things happen in your life?

2. Some things in life might appear random, but they might follow a pattern or a sequence; and/or indicate something important. Are these 2 situations random, or are they something else? Can you think of others?

Flashing lights on a printer

9.11 Chance and Probability

Probability

You are likely to have heard the term probability before, even if some of you might not fully understand what it means.
It is important to be aware of the concept of probability because you might be in a work or community situation, and a manager or colleague might use the term to make a prediction about the likelihood of an outcome.
"There's almost zero probability of any customers coming in after 7pm."
"I reckon there's a 75% probability of it raining later. We might have to reschedule the BBQ!"
In simple terms, probability means how likely it is that something will happen.
This means that probability measures chance. And if you like, you can always substitute the word chance for the numerical term, probability.

'Tails never fails’

A good way to illustrate probability is with a simple coin toss. When tossing a coin, there are 2 potential outcomes. Heads or tails. (Yes, there is a minute chance that the coin could land on its edge, but that is so small that you can ign it...or wait until you see som- fis pigs!).
So the chance of landing as ieads is 102. The chance of landing as tails is also $1 / 2$. There is an equal likelihood of s_{1} nning heads or tails. That's 50/50. If you predict a head, you have 50% chance of being correct. If your friend predicts tails. Then they also have an even chance of guessing correctly.
So the likely outcome is the same.
But see and hear how different language was used. ' 1 in 2', '1/2'. '50/50'. '50\%'. 'Even chance'.
The language used doesn't alter the chances. The coin will do what it likes. And over time, if you spin a coin long enough, it will land on heads about 50% of the time, just as it will land on tails about 50% of the time.
But that doesn't mean it will alternate heads, tails, heads, tails, etc.. Nothing could be further from the truth.

The outcome is random. So this is where people can get sucked in. They try to see or predict patterns in an event that is random. And that's why gambling on chance can only ever see you lose, unless you quit after your first ever win and bet never, ever again!

Chance and Probability

What is the Likelihood?

Certain

 Probability $=1$This is the highest possible likelihood. e.g. a 100% chance of happening!

Likely
Probability is between 0.5 and 1 .
This is more likely to happen than not, especially as the probability moves away from 0.5 and gets closer to 1, e.g. 0.75.

Even chance

 Probability $=0.5$. This is as likely to happen as it is not likely to happen. e.g. 50/50.Unlikely
Probability between 0 and 0.5 This is more likely not to happen, especially as the probability moves away from 0.5 and gets closer to 0, e.g. 0.25 .

Impossible

Probability =0
This is the lowest possible likelihood. This will not happen! e.g. a 0\% chance.

1. What is the chance of a coin toss landing mon s ? Why is that?

2. A coin toss results in a head. What is the chance of it next being heads? Why?

3. A coin toss results in a tail. What is the chance of it next being tails? Why?

4. What is the chance of $\mathbf{2}$ heads in a row? Think carefully now.

9.13 Chance and Probability

Language of probability

Probability is often expressed using different terms and language. This can make it a bit hard to understand the potential likelihood of an event occurring.
Consider these examples. Some are about making a choice, or about playing a game, which can be about having a bit of fun.

But many of these examples are based on gambling - which by its very nature - is precisely calculated. Gambling is precisely calculated to ensure that almost every person participating will lose their money. That's why gambling is called a fool's game and is something to avoid as much as possible.
\Rightarrow Coin toss $=50 / 50$ (which is an even chance).
\Rightarrow Drawing a heart card $=25 \%$ or $1 / 4$.
\Rightarrow Die Roll $=1$ in 6.
\Rightarrow American Roulette spinning a single number $=37$ to 1
\Rightarrow Saturday Lotto $=$ One in $8,145,060$ chance .
\Rightarrow PowerBall Australia $=$ Almost 135 million to

91
 Probabilities

1. Put these chance likelihoods of o Un ins. sher \&m most likely, to least likely.
\Rightarrow Being attacked by a shaci in Australia).
\Rightarrow Drawing a spade ca.
\Rightarrow Guessing the Melbourne Cup winner.
\Rightarrow Rolling a 3 (6 -sided die).
\Rightarrow Spinning a 13 (on roulette wheel).
\Rightarrow Tossing a tail.
\Rightarrow Winning lotto (Australia).

. Describe the likelihood of these probabilities using 'very high chance', 'fairly high chance', 'even chance', 'fairly low chance', 'very low chance', 'no chance'.
```
=> 50/50
=>99 out of 100
A10 in 15
=>3 in 4
=> 1/2
=>2 chances in 5
=>1 in 10 }\quad=>1\mathrm{ in 36
```

\Rightarrow You walking on the moon

Chance and Probability 9.14

1. Pair up. You will each take turns tossing a 20c coin. Record your results.

Toss	Your call	Result	Their call	Result	Toss Your call Result Their call Result 1 6 2 7 3 4 9 5 10				

Analyse the results and make conclusions about chance.
Times heads:
Times you correct:
\% heads:
\% you:
\% correct:

Time tails:
Times them correct: \% them:
Time th wrong: \% wrong:

Extension: You could toss the co 100 sma and yrat patterns happen.
2. Change your pairs. You wit 2 corr sillir, sided die 36 times. You each need to nominate 1 ny of oni, Nolld your results.
Analyse the results, an in you workb . Make conclusions about chance. Report back to the class.

Roll	You	Them	Result
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

Roll	You	Them	Result
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			

Roll	You	Them	Result
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			

3. Why is this activity named '50 and 16.7 ?'

9.15 Estimating and Predicting

Estimating accurately

Estimating is one of the most important and useful skills to help people better manage their personal, social and vocational lives. Sometimes we don't always have enough time to make exact calculations. So it is important to be able to do quick and fairly accurate estimates. You might make numerical estimates related to:
\Rightarrow time
\Rightarrow length
\Rightarrow distance
\Rightarrow money
\Rightarrow size
\Rightarrow weight
\Rightarrow temperature
\Rightarrow quantity (amount).
Many examples are shown in the diad 1 rally use below. But there are other times when people estimate, so come up with men $^{\text {a }}$

Estimating

\Rightarrow Estimating involves making an initial 'guess' or coming up with a 'rough figure' based on knowledge, skills and past experience.
\Rightarrow Numerical estimating is important for things such as size, cost, time, distance and shape.
\Rightarrow At home you might estimate the time taken to mow the lawns; or the amount of cash needed to shop at the market.
\Rightarrow At work a carpenter might make estimates as part of a quote to build a new deck.
\Rightarrow A retailer might estimate how many rkers they need to ift

How much change you should be given.

shopping.
 Total cost of purchases when

Food and drink required for a party.

Quote for a practical job or work task.

The total wage you should be paid for a week's work.

Staff needed to fill a roster for work.

1. Estimate answers for these questions, but make sure that you do this quickly and without calculations.

Your teacher will then work through each example with the class, and show you how to best go about doing these estimates.
2. Work in pairs to calculate the actual answers to 3 of these examples. How close were your original estimates? Why so?

Question	Estimate	Exact calculation
1 Estimate the height of the table at which you are sitting.		
2 Estimate your foot length in centimetres.		
3 Estimate the length of your greatest arm span from fingertip to fingertip.		
4 Estimate how many students are enrolled in your school.		
Estimate how many students are absent today.		
6 Estimate the number of her spend a week using socia mor		
7 Estimate the number of Jurs y spend a week exercising.		
8 Estimate the number of hours you spend a week sleeping.		
9 Estimate how many weeks it would take you to save up \$1,000.		
10 Estimate how long it would take you to 'run' (or roll) 1 km .		
11 Estimate how much money your 11 family spends on food each week.		
12 Estimate how long it would take to drive from your school to the CBD.		

3. Complete this sentence using appropriate examples.

It is important for me to estimate things such as \qquad
because \qquad .

9.17 Estimating and Predicting

Predicting

Predicting is different from estimating because predicting often involves dealing with unknowns. But people do have to make predictions in their personal, social or vocational lives. In some cases we can use past knowledge, or information about situations, preferences and trends, and apply this to make more accurate predictions, or even forecasts. Some common predictions might be about:
\Rightarrow numbers of visitors or attendees who will turn up
\Rightarrow the outcome of sporting contests
\Rightarrow amounts of income and sales for a business
\Rightarrow when an event is likely to happen
\Rightarrow the biological sex of a newborn baby
\Rightarrow whether and when an invention might occur
\Rightarrow the likelihood of someone succeeding in life, and especially
\Rightarrow the weather!
So what do you predict is going to happen? And about what?

9L Making predictions

1. Make these predictio. Disc Q irsm ups and report back to the class.

| The team that wins the AFL
 grand final next year. | The nur
 won by Ausilia at the next
 Olympics. | The number of gold medals
 won by Australia at the next
 Commonwealth Games. |
| :--- | :--- | :--- | :--- |
| Your age when you get your
 first full-time job. | A \% chance prediction of you
 earning \$1 million before
 you turn 40. | Predict how much you might
 earn from working in your
 lifetime. |
| When Australia will source
 more than 50\% of its energy
 needs from renewables. | When humankind will next
 land on the Moon? | When humankind will land
 on Mars. |
| Who the next Prime Minister
 will be? | How much you will need
 to pay for your first motor
 vehicle? | Which of Instagram or
 TikTok will first cease to be
 important? |

2. Predict the greater likelihood between these situations. Give reasons for your choice. You add 2 more comparisons.

a. Car accident as a driver vs as a passenger?	b. Being unemployed at age 18 vs age 28?
c. If the weather tomorrow will be sunny vs overcast vs rain?	d. You earning \$1m in your lifetime vs you winning \$1m in lotto?
e. Regions in your state experiencing bushfires vs floods?	
g.	

3. This prediction is based on sou num in important to be able to prove that logic by doing the at.s. alsce a od skill to be able to turn spoken or written words into nuse te ins in in in to underline all the numbers, as well as all of the nur - acy - $c \in$, ts.
Discuss these estimates as a class a. ${ }^{6}$ do the calculations.
a. Vinh and Joy are making spring rolls for a multi-cultural lunch as part of a PDS group activity. It takes them 20 minutes to chop all the ingredients, and approximately 2 minutes to assemble a spring roll. They predict it will take them about 1 hour to prepare and assemble 20 spring rolls.
i. Do the calculations to assess whether their predictions are valid.
ii. How many spring rolls do you think they could make in the 2 nd hour? Why?

9.19 Assessment Task

AT4 Working it Safe Civic Numeracy

Introduction
A key part of civic responsibility is the responsibility of employers and managers to keep their workers safe as part of workplace health and safety measures.

There are many risks associated with working, with some industries, occupations and work-related tasks having a higher risk, or likelihood, of injury and illness.

Employers, and workers within organisations, must also ensure that they carry out their work duties in a way that does not harm other work-related stakeholders including colleagues, suppliers, visitors and of course, customers and clients.

Added to these risks, is the sad, but very real fact that younger workers are more likely to be injured in work-related situations. This means that you have to take extra steps to reduce the likelihood of work-related injury. These steps can include \Rightarrow undergoing suitable induction and training,
\Rightarrow using and wearing mandated personal prote jive equipment (PPP), and \Rightarrow making sure that at all times you follos. st acedures.

Young workers face a greater risk if in . group of workers. According ive koyoung workers arealn wifured at work than any other age group ${ }^{1}$
(:) when young workers are il.ur $\left(\frac{1}{2}\right.$ y are 21% more likely to be hospitalised as a result of their Puries ${ }^{1}$
 males working in rural and regional areas are particularly at risk ${ }^{1}$.
'Source: ABS, (2006), Work-Related Injuries, Australia 2005-06. via www.worksafe.vic.gov.au The most dangerous work environments for young people include: ${ }^{2}$
:) retail: especially fish'n'chip shops and takeaway food
© cafés and restaurants
:) manufacturing: especially meat products, metal fabrication, and wood and joinery sectorsconstruction: especially plumbing, electrical and carpentry work.
${ }^{2}$ Source: www.workfsafe.vic.gov.au PDF: Young_worker_safety_Tips_for_educators.pdf)
In 2015/16, 49 Victorian workers aged 15-24 were injured every week. Most injuries were caused by poor manual handling, and commonly occurred to hands, fingers and backs. ${ }^{3}$ So special care needs to be taken to ensure that young workers are safe in the workplace.
${ }^{3}$ Source: www.workfsafe.vic.gov.au 'Young workers vulnerable to workplace injuries', News, Sep 2016.

Required

For this assessment task, you are required to investigate the likelihood of workplace injury and illness.
You will then use this information to prepare an annotated numerical report that provides suggestions on how to reduce the risk of workplace injury and illness, especially for younger workers.

Tasks

1. Use WorkSafe Victoria's injury hotspots for young workers. www.worksafe.vic.gov.au/injury-hotspots

a. Access at least 2 of the 5 industry young worker infographics.

b. Describe the incidence of workplace injury d illness affecting different parts of the body in this industry.

c. Create pie charts to show the ro are Pc

e. List strategies and actions recommended to reduce the likelihood of injury and illness occurring.

f. Create an infographic, a video, or a demonstration that communicates this information for 1 industry. You might use you, or other workers, as the model(s).

2. Repeat steps a-f above for another injury hotspot infographic (not 1 of the 5 young worker ones).

9.21 Assessment Task

Extension

3. Investigate the most common mechanism (cause) of workplace injury and illness.
a. Create a bar graph to show this data.
b. Develop at least 3 statements that use numerical evidence to show the likelihood of this happening.

4. Investigate the incidence of workplace injury and illness by age group.
a. Calculate the 2021 percentages.
b. Develop at least 3 statements that use numerical evidence to show the likelihood of this happening at different ages

 young workers aged 15, 24 ?,
a. Create a pie chari sinus e ser indoportions.
b. Develop at least 3 stätements torical evidence to explain the likelihood of this happening.

5. Investigate the incidence of workplace injury and illness by occupation.
a. Identify and describe the riskiest occupations.
b. Develop at least 3 statements that use numerical evidence to explain the likelihood of this happening.

WorkSafe Victoria claims reported by mechanism of injury: $\mathbf{2 0 1 1}$ \& 2021		
Mechanism of Injury/Disease	$\mathbf{2 0 1 1}$	$\mathbf{2 0 2 1}$
Falls, Trips and Slips of a Person	5762	5924
Hitting Objects With a Part of the Body	1189	961
Being Hit by Moving Objects	3742	4453
Sound and Pressure	1689	2078
Body Stressing	12044	10586
Heat, Electricity and Other Environmental Factors	208	214
Chemicals and Other Substances	218	338
Biological Factors	106	198
Mental Stress	2846	3844
Vehicle Incidents and Other	1527	881
Total	29331	$\mathbf{2 9 4 7 7}$

In 2011 there were 29,331 claims with WorkSafe Victoria for injury (or illness). The most common mechanism (cause) was Body Stressing with 12,044 claims, representing 41\% of all claims. By 2021 Body Stressing was still the most common case, but had fallen to 10,586 ; and now represented 36% of all claims.

WorkSafe Victoria claims reported by age:$2011 \text { \& } 2021$				In 2011 there were 29,331 claims with WorkSafe ictoria for injur'inr 'ness). Tr mi common age its s 50-54 -4.8% o 3v e still the mon injury srou and had risen tc $\geqslant 89$ claims; which how represented 12.9% of all claims.	Of the 29,331 claims with WorkSafe Victoria
Age group	2011	\%	2021 \%		for 2011, there were
15-19	677	2.3	592		677 claims by workers
20-24	2037	6.9	2040		aged 15-19 (2.3\% of all
25-29	2408	8.2	2720		claims).
30-34	2517	8.6	2834		By 2021 claims by
35-39	2916	9.9	2838		workers aged 15-19
40-44	3670	12.5	2855		had fallen to 592; and
45-49	4066	13.9	337		now represented 2\%
50-54	4344	14.8			of all claims.
55-59	3569	12.2			Although this is a
60-64	2290	7.8			small proportion, the
$65+$	823	2.8			number of workers
Not Stated	7	0	1		and total hours worked
Under 15	7	0	1		y those aged 15-19 is
All	29331		29477		

WorkSafe Victoria young worker claims reported by gender and age: 2011 \& 2021						
Gender \& Age	2011	2011	2011	2021	2021	2021
	Claims	Total claims	\% of age	Claims	Total claims	\% of age
		by Gender	\& gender		by Gender	\& gender
Male 15-19	488	19148	2.5	428	18690	2.3
Female 15-19	189	10183	1.9	164	10787	1.5
Male 20-24	1425	19148	7.5	1291	18690	6.9
Female 20-24	612	10183	6.0	749	10787	6.9
Under 15	M4 F3		na	F1		na

Sources: WorkSafe Victoria, Claims
Statistical Reports, 2021 \& 2011

In 2011 there were 488 claims by males aged 15-19 and 189 by females aged 15-19. 2.5\% of all injury claims by males were by workers aged 15-19, for females this was 1.9\% In 2021 there were 428 claims by males aged 15-19 and 164 by females aged 15-19. 2.3% of all injury claims by males were by workers aged $15-19$, for females this was 1.5%.
9.23 Assessment Task

Assessment Task

9.25 // Problem-Solving Cycle // Maths Toolkit

How Does it Work?

10.01 Context-Based Learning 242
10.09 My Network 250
10.03 My Strengths 244
10.11 Assessment Tasks 252
10.07 My Weaknesses 248
10.15 Problem-Solving and Toolkit.. 256

Comments:

10.01 Context-Based Learning

Context-based learning

Applied learning is one of the best ways to develop real skills that will make you more employable.
You have consistently applied what you have learned across your Vocational Pathways program and VET studies. And you have also applied learning from your vocational and VET experiences to each of your VPC subjects.
Context-based learning is when we combine theoretical learning and applied learning to better understand why we are learning.

By being aware of the context, you can make deeper connections. You not only understand what you are learning, but also why you are learning this.

Context-based learning helps you to see the connections between the different requirements that lead to successful task completion. This is a bit like applying the 4-Stage Problem-Solving Cycle.
When you embrace context-based learning you become better at problem-solving, decision-making, information recall and task-b ed knowledge.
Essentially you start to learn how to learn - bec se everything you are now learning has a purpose.
You are most likely to have undertaken corearning in your personal life to develop personal and social com, ett)
Consider driving a car, playing anstrurs mas mart or craft, playing sport, beating a video game, If in, m. iangeas, and managing your money. How about learning vo 0 , communicate?
People learn these things because the in to, or they come to a point in their life or career when they need to. It is about growing and maturing.
Context-based learning isn't about finding out information and knowledge, just-intime. A brain surgeon doesn't just Google it before an operation. A chef doesn't go on YouTube to learn a recipe for something they've added to the menu. And a train driver doesn't post on Facebook asking what is the next station after Glen Iris.
Sometimes it's easy to forget that we are surrounded by people who know how to do different things. And some of these things you might always have wanted to learn, like riding a unicycle.

Other things you might need to learn, like basic nutrition for better health and wellbeing. Some skills could save money. Some could save time. And some skills could save a life.

So maybe it's time to find out: "How does it work?"

The most important part of a puzzle is always you.

1. Describe 3 things that you believe you are very good at doing, or that you understand well.
i.
ii.
iii.

2. Describe 3 things that you have no idea how to do, but knowing how to do these will improve your career prospects.
i.
ii.
iii.
3. Describe 3 'mysteries' of the world that have always baffled you.
i.
ii.
iii.

10.03 My Strengths

10B My strengths

1. List your strongest tasks, activities, knowledge and understanding for the 4 numeracies and for Vocational numeracy. These will be things that can do and understand well. This means that you can do these things over and over again.

2. Look at your lists and think about how you learned to develop these strengths.

Was it at school, at work, on your own, asking f help, being trained or coached, shown by a family member, through practic thrigh online research and so on?
Also reflect on why you developed these $\gg \boldsymbol{z}$ hs. What motivated you?

10.05 My Strengths

10C Unpacking my strengths

1. Choose $\mathbf{3}$ of your strongest task skills and/or areas of knowledge. Try to feature different numeracies.
2. Think about how you apply each of the 4-stages of the problem-solving cycle to do this task or activity, and/or to demonstrate your knowledge and understanding.
3. Explain how you use and apply mathematical tools and techniques for these tasks or knowledge, including analogue, digital and technological tools.

My skills strength is...	Numeracy area
1. Identify the maths involved in the task. What tools and technique	2. Use and apply the maths to do the task. tools and techniques do I use?
3. Evaluate and reflect on what l've done. What tools and techniques do I use?	4. Communicate and report for others. What tools and techniques do I use?

My skills strength is...	Numeracy area
1. Identify the maths involved in the task. What tools and techniques do I use?	2. Use and apply the maths to do the task. What tools and techniques do I use?
Evaluate and reflect on what l've done. 3. What tools and techniques do I use?	Communicate and report for others. nat tools and techniques do I use?
My skills strength is...	- ${ }^{\sim}$ Numeracy area
1. Identify the maths involved in the tasm What tools and techniques do I use?	2. Use and apply the maths to do the task. What tools and techniques do I use?
Evaluate and reflect on what l've done. 3. What tools and techniques do I use?	Communicate and report for others. 4. What tools and techniques do I use?

10.07 My Weaknesses

10D My weaknesses

1. List tasks, activities, knowledge and understanding for each of the 4 numeracies, and for Vocational numeracy, that you struggle with.

These are your skills-gaps and represent areas in which you should, and need, to develop your skills.

My Vocational skills-gaps

2. Take a look at these lists and think about why you have these weaknesses or skills-gaps. Is it because:
\square you don't understand the task, or
\square you've never been motivated to learnyou have never been shown or tal 0 W1 it, and/or
\square you have poor skills in this are= se
\square you are avoiding it!
Why I haven't developed the

Why I haven't developed these Financial skills.	Why I need to develop these?
Why I haven't developed these Health \&	Why I need to develop these?

 Recreational skills.	Why I need to develop these?
Why I haven't developed these Civic skills.	Why I need to develop these?
Why I haven't developed these Vocational skills.	Why I need to develop these?

10.09 My Network

10E I think they can?

1. In the digital age, people are over-relying on the internet and social media to find out information about how to do things.

But they are forgetting that they are surrounded by people in their networks who already know about different things, and that they might already know people who can do complex tasks. So it's time to tap into the knowledge of your network.


```
What might my teachers know about
            - what's their expertise?
\(\Rightarrow\)
\(\Rightarrow\)
\(\Rightarrow\)
\(\Rightarrow\)
```


2. Now it's time to find out what these people know and can do.

But don't use digital methods to contact them. Ask them face-to-face, or call them on the phone.
You'll be surprised how much more you'll learn that way.
Take summary notes of what you find out, or video what you learn to do.

10.11 Assessment Task

AT5 Learning to Learn Applied Numeracies

Consider these situations.
Tone is always late but their classmate Yi is always on time. Tone is worried that they won't be able to get to their work placement on time.

Yi wants to be a tradie and will need to get a manual license. But Yi had one lesson and kept stalling. Sam has already clocked up 90 learner hours driving in a manual car and found using a clutch a very natural skill to master.

Sam would like to start their own business one day but has no idea of budgets and basic accounting concepts. Red does accounting and finds it all very relatable because they work as a casual at the local newsagency.

Red's partner loves dancing but Red has a poor sense of rhythm and is too embarrassed to tell their partner. So Red avoid. going out anywhere with their partner if it involves music. Tone is a natural he dance floor and can pick up any dance style very quickly.
What's going on here? What do you
uys should do?

Required

For this assessment task, you are required to share your knowledge and skills to help other people. You will also learn new knowledge and skills from other people.

Add important task information here.

Step 1: Can do

\Rightarrow Your teacher will give each class member 4 pieces of stiff card.
\Rightarrow On each card write down 4 areas of knowledge, or specific skills, that you understand or can do very well. Do not put your name on these.

Step 2: Can't do

\Rightarrow Your teacher will give each class member another 4 pieces of stiff card.
\Rightarrow On each write down 4 important areas of knowledge, or specific skills, that you do not understand, or that you can't do or improve at. Again, no names.

Step 3: Class noticeboard

\Rightarrow Your teacher will shuffle the 'Can do' cards and then put them up on a wall on one side of the room.
\Rightarrow Your teacher will shuffle the 'Can't do' cards and then put them up on the wall on the other side of the room.

Step 4: Skills and si Is-gaps
\Rightarrow Go to the 'Can do' cards and find left at feature knowledge or skills that you'd like to learn,
\Rightarrow Go to the 'Can't do' cards and N. ina.2 th \& are asking for knowledge or skills that vo dhe a to A Alat person with.

Ipers
\Rightarrow Find the 'Can do' a car en and work out if you could help one another.

Step 6: Look close - Your strengths/Their weaknesses

1. Work with a classmate to help them develop their knowledge and/or skills.
2. Identify how each of the 4 stages of the problem-solving process applies to this knowledge or skill.Identify the maths involvedAct on and use the mathsEvaluate and report
\square Communicate and report
3. Describe the appropriate use of maths tools and techniques.
4. Summarise the objectives, the learning processes used, and the outcomes that are achieved.
5. Make a summary video, or perform a demonstration for the class.

Step 7: Look close - Your weaknesses/Their strengths

1. Work with a classmate with them helping you to develop your knowledge and/or skills.
2. Clarify how each of the 4 stages of the problem-solving process applies to this knowledge or skill.
\square Identify the maths involvedAct on and use the maths
\square Evaluate and report
\square Communicate and report
3. Describe how to use and apply maths tools and techniques.
4. Summarise the objectives, the learning processes used, and the outcomes that are achieved.
5. Make a summary video, or perform a den nstration for the class.

Step 8: Look further - Your sti

1. Work with an external experiens help them develop their knowledge and/or skills.
2. Identify how each of the 4 raser nesolving process applies to this knowledge or s
3. Describe the apprest rols and techniques.
4. Summarise the objectives, we Car.ng processes used, and the outcomes that are achieved.
5. Make a summary video, or perform a demonstration for the class.

Step 9: Look further - Your weaknesses/Their strengths

1. Work with an external experienced person from your network with them helping you to develop your knowledge and/or skills.
2. Clarify how each of the 4 stages of the problem-solving process applies to this knowledge or skill.
3. Describe how to use and apply maths tools and techniques.
4. Summarise the objectives, the learning processes used, and the outcomes that are achieved.
5. Make a summary video, or perform a demonstration for the class.

Step 10: So what do you know?

10.15 // Problem-Solving Cycle // Maths Toolkit

4-Stage Problem-Solving Cycle 10

Addition and subtraction 22-23
AFL ladder 196-197
art and design 152-153
bank accounts 126-131
Bar Graphs 198-201
Budgeting 120-123
Calculating - Addition 14-17
Calculating - Subtraction 18-21
Calculating 12-13
calendars \& diaries 67
Chance and Probability 224-229
Changing Size 150-159
checksheets 191
circumference 167
Coincidence and Luck 220-223
commission 112-113
Comparing Prices 98-107
Context-Based Learning 242-243
Converting \& Estimating Time 36-37
cooking measures $168,170,181$

currency 78

Data and Information 187-214
Data and Information 188-191
Describing Location 52-57
directions 40-41, 52
Digital Money 88-89
Directions in Action 58-59
Distance and Time 60-65
Dollars and Sense 107-134
Dollars and Sense 108-109
energy generation 204
Estimating and Predicting 230-
233
Estimating vs Measuring 174-177
Expenses 116-119
false economy 98
features and landmarks 42-43
Fractions and Decimals 94-97
Getting Around 40-49
Health \& Recreation Measuring 160-161

How Does it Work? 241-256
Income 112-115
inflation 217
Infographics 210-211
Introduction 2-5
It's Time 30-35
Keeping It Safe 128-131
Length and Distance 164-167
Likelihood and Uncertainly 216219

Line Graphs 206-209
lines 142
Location and Planning 49-74
Location and Planning 50-51
luck 220-223
Making Change 82-85
Making Sense of the < <1. 15 -
240

Mulc. iation $\subset \nabla$ rion 90-9 My Netwo \leftrightarrows
My Strengths $244-247$
My Weaknesses 248-249
Number lines 15, 18
Numeracy Skills 1-26
Numeracy Skills 6-11
payment-in-kind 112-113
Pay Slips 124-125
Percentages 110-111
perimeter 166-167
Personal Banking 126-127
Personal Numeracy - Location 38-39
Personal Numeracy 28-29
personal space 56-57
pictograms 210-211
Pie Charts 202-205
Planning and Organising 66-75
probability 226-229

Properties of Shapes 142-143
Quantity \& Measuring 159-186
randomness 225
retainer 112-113
rosters 70-71
salaries 112-113
scale 43
scale and ratio 150-151
security - cash 128-129
security - digital 130-131
Shapes and Objects 135-158
Shapes and Objects 136-141
Size and Colour 144-149

Systematics 28

Tables 192-197
telling the time 32-35
Temperature 178-181
Time and Place 27-24
timetables 69
to-do list 68
travel speeds 63
uncertainly 216-219
unemployment 217
unit costs 100-101
Volume - Fluids \& Solids 170-176
wages 112-113
Weight (mass) 168-169

[^0]: Additional information:

